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Actions 

Actions, in contrast to transformations, execute the scheduled task on the
dataset; once you have finished transforming your data you can execute
your transformations.

The .take(...) method

This is most arguably the most useful (and used, such as the .map(...)
method). The method is preferred to .collect(...) as it only returns the n
top rows from a single data partition in contrast to .collect(...), which
returns the whole RDD. This is especially important when you deal with
large datasets:

data_first = data_from_file_conv.take(1)
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If you want somewhat randomized records you can use .takeSample(...)
instead, which takes three arguments: First whether the sampling should
be with replacement, the second specifies the number of records to
return, and the third is a seed to the pseudo-random numbers generator:

data_take_sampled = data_from_file_conv.takeSample(False, 1, 667)

Actions 
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The .collect(...) method

This method returns all the elements of the RDD to the driver. As we have
just provided a caution about it, we will not repeat ourselves here.

Actions 

The .reduce(...) method reduces the elements of an RDD using a specified
method.

You can use it to sum the elements of your RDD:

The .reduce(...) method

rdd1.map(lambda row: row[1]).reduce(lambda x, y: x + y)

This will produce the sum of 15.
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Actions 

We first create a list of all the values of the rdd1 using the .map(...)
transformation, and then use the .reduce(...) method to process the
results. The reduce(...) method, on each partition, runs the summation
method (here expressed as a lambda) and returns the sum to the driver
node where the final aggregation takes place.

The .reduceByKey(...) method works in a similar way to the .reduce(...)
method, but it performs a reduction on a key-by-key basis:

data_key = sc.parallelize(

[('a', 4),('b', 3),('c', 2),('a', 8),('d', 2),('b', 1),

('d', 3)],4)

data_key.reduceByKey(lambda x, y: x + y).collect()

The preceding code produces the following:
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Actions 

The .count(...) method counts the number of elements in the RDD. Use
the following code:

The .count(...) method 

data_reduce.count()

This code will produce 6, the exact number of elements in the
data_reduce RDD.

The .count(...) method produces the same result as the following method,
but it does not require moving the whole dataset to the driver:

len(data_reduce.collect()) # WRONG -- DON'T DO THIS!
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Actions 

If your dataset is in a key-value form, you can use the .countByKey()
method to get the counts of distinct keys. Run the following code:

data_key.countByKey().items()

This code will produce the following output:

7



Actions 

The .saveAsTextFile(...) method

As the name suggests, the .saveAsTextFile(...) the RDD and saves it to
text files: Each partition to a separate file:

data_key.saveAsTextFile(
'/Users/drabast/Documents/PySpark_Data/data_key.txt')
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Actions 

def parseInput(row): 

import re 

pattern = re.compile(r'\(\'([a-z])\', ([0-9])\)') 

row_split = pattern.split(row) 

return (row_split[1], int(row_split[2])) 

data_key_reread = sc .textFile( 
'/Users/drabast/Documents/PySpark_Data/data_key.txt').map(parse
Input) 

data_key_reread.collect()

To read it back, you need to parse it back as all the rows are treated as
strings:

The list of keys read matches what we had initially:
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Actions 

The .foreach(...) method 

This is a method that applies the same function to each element of the RDD
in an iterative way; in contrast to .map(..), the .foreach(...) method applies
a defined function to each record in a one-by-one fashion.

It is useful when you want to save the data to a database that is not
natively supported by PySpark.

Here, we'll use it to print (to CLI - not the Jupyter Notebook) all the
records that are stored in data_key RDD:

def f(x):

print(x)

data_key.foreach(f)

If you now navigate to CLI you should see all the records printed out. Note, that every

time the order will most likely be different.
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Iterative Operations on Spark RDD 

The illustration given below shows the iterative operations on Spark RDD.
It will store intermediate results in a distributed memory instead of Stable
storage (Disk) and make the system faster.
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This illustration shows interactive operations on Spark RDD. If different
queries are run on the same set of data repeatedly, this particular data
can be kept in memory for better execution times.

Iterative Operations on Spark RDD 
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Spark Shell

Spark provides an interactive shell: a powerful tool to analyze data
interactively.

It is available in either Scala or Python language.

Spark’s primary abstraction is a distributed collection of items called a
Resilient Distributed Dataset (RDD).

RDDs can be created from Hadoop Input Formats (such as HDFS files) or
by transforming other RDDs.

Open Spark Shell

The following command is used to open Spark shell.
$ spark-shell

scala> val inputfile = sc.textFile(“input.txt”) 
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RDD Transformations

The Spark RDD API introduces few Transformations and few Actions to
manipulate RDD.

RDD Transformations

RDD transformations returns pointer to new RDD and allows you to create
dependencies between RDDs.

Each RDD in dependency chain (String of Dependencies) has a function for
calculating its data and has a pointer (dependency) to its parent RDD.
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Spark is lazy, so nothing will be executed unless you call some
transformation or action that will trigger job creation and execution.

Therefore, RDD transformation is not a set of data but is a step in a
program (might be the only step) telling Spark how to get data and what
to do with it.

RDD Transformations
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Iterative Operations on Spark RDD 
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RDD Transformations

Sr. Transformation and Meaning

1 map(func)

Returns a new distributed dataset, formed by passing each element of the
source through a function func.

2 filter(func)

Returns a new dataset formed by selecting those elements of the source on

which func returns true.
3 flatMap(func)

Similar to map, but each input item can be mapped to 0 or more output items

(so func should return a Seq rather than a single item).
4 mapPartitions(func)

Similar to map, but runs separately on each partition (block) of the RDD, so

func must be of type Iterator<T> => Iterator<U> when running on an RDD of

type T.
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RDD Transformations

Sr. Transformation and Meaning

5 mapPartitionsWithIndex(func)

Similar to map Partitions, but also provides func with an integer value representing

the index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U>

when running on an RDD of type T.

6 sample(withReplacement, fraction, seed)

Sample a fraction of the data, with or without replacement, using a given random

number generator seed.

7 union(otherDataset)

Returns a new dataset that contains the union of the elements in the so dataset and the

argument.
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RDD Transformations

Sr. Transformation and Meaning

8 intersection(otherDataset)

Returns a new RDD that contains the intersection of elements in the source dataset and the

argument.

9 distinct([numTasks]))

Returns a new dataset that contains the distinct elements of the source dataset.

10 groupByKey([numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs. Note:

If you are grouping in order to perform an aggregation (such as a sum or average) over

each key, using reduceByKey or aggregateByKey will yield much better performance.
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RDD Transformations

Sr. Transformation and Meaning

11 reduceByKey(func, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the
values for each key are aggregated using the given reduce function func, which must be
of type (V, V) => V.

12 aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the
values for each key are aggregated using the given combine functions and a neutral
"zero" value. Allows an aggregated value type that is different from the input value
type, while avoiding unnecessary allocations.

13 sortByKey([ascending], [numTasks])

When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset
of (K, V) pairs sorted by keys in ascending or descending order, as specified in the
Boolean ascending argument.
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RDD Transformations

Sr. Transformation and Meaning

14 join(otherDataset, [numTasks])

When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs
with all pairs of elements for each key. Outer joins are supported through
leftOuterJoin, rightOuterJoin, and fullOuterJoin.

15 cogroup(otherDataset, [numTasks])

When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable<V>,
Iterable<W>)) tuples. This operation is also called group With.

16 cartesian(otherDataset)

When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of
elements).
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RDD Transformations

Sr. Transformation and Meaning

17 pipe(command, [envVars])

Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script. RDD
elements are written to the process's stdin and lines output to its stdout are returned as
an RDD of strings.

18 coalesce(numPartitions)

Decrease the number of partitions in the RDD to numPartitions. Useful for running
operations more efficiently after filtering down a large dataset.

19 repartition(numPartitions)

Reshuffle the data in the RDD randomly to create either more or fewer partitions and
balance it across them. This always shuffles all data over the network.

20 epartitionAndSortWithinPartitions(partitioner)

Repartition the RDD according to the given partitioner and, within each resulting
partition, sort records by their keys. This is more efficient than calling repartition and
then sorting within each partition because it can push the sorting down into the shuffle
machinery.
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RDD Actions

Sr. Actions and Meaning

1 reduce(func) 

Aggregate the elements of the dataset using a function func (which takes two arguments 
and returns one). The function should be commutative and associative so that it can be 
computed correctly in parallel. 

2 collect()

Returns all the elements of the dataset as an array at the driver program. This is usually 
useful after a filter or other operation that returns a sufficiently small subset of the data. 

3 count()
Returns the number of elements in the dataset.

4 first()
Returns the first element of the dataset (similar to take (1)). 
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RDD Actions

Sr. Actions and Meaning

5 take(n)
Returns an array with the first n elements of the dataset. 

6 takeSample (withReplacement,num, [seed]) 

Returns an array with a random sample of num elements of the dataset, with or without 
replacement, optionally pre-specifying a random number generator seed. 

7 takeOrdered(n, [ordering]) 

Returns the first n elements of the RDD using either their natural order or a custom 
comparator. 

8 saveAsTextFile(path) 

Writes the elements of the dataset as a text file (or set of text files) in a given directory in 
the local filesystem, HDFS or any other Hadoop-supported file system. Spark calls toString
on each element to convert it to a line of text in the file. 
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RDD Actions

Sr. Actions and Meaning

9 saveAsSequenceFile(path) (Java and Scala) 

Writes the elements of the dataset as a Hadoop SequenceFile in a given path in the local 
filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs 
of key-value pairs that implement Hadoop's Writable interface. In Scala, it is also 
available on types that are implicitly convertible to Writable (Spark includes conversions 
for basic types like Int, Double, String, etc). 

10 saveAsObjectFile(path) (Java and Scala) 

Writes the elements of the dataset in a simple format using Java serialization, which can 
then be loaded using SparkContext.objectFile(). 

11 countByKey() 

Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the 
count of each key. 

12 foreach(func) 

Runs a function func on each element of the dataset. This is usually, done for side 
effects such as updating an Accumulator or interacting with external storage systems.


