
Functions

What is Function in Python

❖ A function is a block of organized, reusable code that is used to perform a single,
related action.

❖ Functions provide better modularity for your application and a high degree of code
reusing.

❖ Python provides you many inbuilt functions like print(), but it also gives freedom to
create your own functions.

How to define and call a function in Python

You can define functions to provide the required functionality. Here are simple
rules to define a function in Python.

❖ Function blocks begin with the keyword def followed by the function name
and parentheses ().

❖ Any input parameters or arguments should be placed within these
parentheses. You can also define parameters inside these parentheses.

❖ The first statement of a function can be an optional statement - the
documentation string of the function or docstring.

❖ The code block within every function starts with a colon : and is indented.

❖ The statement return [expression] exits a function, optionally passing back
an expression to the caller. A return statement with no arguments is the
same as return None.

Example:

Let us define a function by using the command " def func1():" and call the
function. The output of the function will be "I am learning Python function".

The function print func1() calls our def func1(): and print the command " I am
learning Python function None.“

There are set of rules in Python to define a function.

❑ Any args or input parameters should be placed within these parentheses

❑ The function first statement can be an optional statement- docstring or the

documentation string of the function

❑ The code within every function starts with a colon (:) and should be indented

(space)

❑ The statement return (expression) exits a function, optionally passing back a

value to the caller. A return statement with no args is the same as return None.

Significance of Indentation (Space) in Python

Before we get familiarize with Python functions, it is important that we understand the

indentation rule to declare Python functions and these rules are applicable to other

elements of Python as well like declaring conditions, loops or variable.

Now, when you add the indent (space) in front of "print" function, it should print
as expected.

At least, one indent is enough to make your code work successfully.
But as a best practice it is advisable to leave about 3-4 indent to call your function.

❖ It is also necessary that while declaring indentation, you have to maintain
the same indent for the rest of your code.

❖ For example, in below screen shot when we call another statement "still in
func1" and when it is not declared right below the first print statement it will
show an indentation error "unindent does not match any other
indentation level."

Now, when we apply same indentation for both the statements and align them
in the same line, it gives the expected output.

How Function Return Value?

Return command in Python specifies what value to give back to the caller of
the function.

Step1)
Here - we see when function is not "return". For example, we want the
square of 4, and it should give answer "16" when the code is executed.
Which it gives when we simply use "print x*x" code, but when you call
function "print square" it gives "None" as an output. This is because when
you call the function, recursion does not happen and fall off the end of the
function. Python returns "None" for failing off the end of the function.

Step 2)
To make this clearer we replace the print command with assignment
command. Let's check the output.

When you run the command "print square (4)" it actually returns the value of
the object since we don't have any specific function to run over here it returns
"None".

Step 4)
Functions in Python are themselves an object, and an object has some
value. We will here see how Python treats an object. When you run the
command "print square" it returns the value of the object. Since we have
not passed any argument, we don't have any specific function to run over
here it returns a default value (0x021B2D30) which is the location of the
object.

Arguments in Functions

The argument is a value that is passed to the function when it's called.
In other words on the calling side, it is an argument and on the function side it is a
parameter.

Let see how Python Args works –
Step 1)
Arguments are declared in the function definition. While calling the function, you can
pass the values for that args as shown below

Step 2)
To declare a default value of an argument, assign it a value at function
definition.

def multiply(x,y=0)
Example:
x has no default values. Default values of y=0. When we supply only one
argument while calling multiply function, Python assigns the supplied value
to x while keeping the value of y=0. Hence the multiply of x*y=0

Step 3)
This time we will change the value to y=2 instead of the default value y=0,
and it will return the output as (4x2)=8.

Step 4)
You can also change the order in which the arguments can be passed in
Python. Here we have reversed the order of the value x and y to x=4 and
y=2.

Step 5)
Multiple Arguments can also be passed as an array. Here in the example we
call the multiple args (1,2,3,4,5) by calling the (*args) function.

Example:
We declared multiple args as number (1,2,3,4,5) when we call the (*args)
function; it prints out the output as (1,2,3,4,5)

❖ Function defined by the def statement
❖ The code block within every function starts with a colon (:) and should be

indented (space)
❖ Any arguments or input parameters should be placed within these parentheses,

etc.
❖ At least one indent should be left before the code after declaring function
❖ Same indent style should be maintained throughout the code within def function
❖ For best practices three or four indents are considered best before the statement
❖ You can use the "return" command to return values to the function call.
❖ Python will print a random value like (0x021B2D30) when the argument is not

supplied to the calling function. Example "print function."
❖ On the calling side, it is an argument and on the function side it is a parameter
❖ Default value in argument - When we supply only one argument while calling

multiply function or any other function, Python assigns the other argument by
default

❖ Python enables you to reverse the order of the argument as well

Summary

