
Introduction
to

Django

1

Agenda

02

03

04

05

What is a Django?

History of Django

Features of Django

Django Installation

01
What is a Web Framework?

2

What is Web Framework?

Web framework is a set of components designed to
simplify your web development process. It has basic
structuring tools in it, which serve as a solid base for
your project. It allows you to focus on the most
important details and project’s goals instead of creating
things, that you can simply pull out of the framework.

“ “

3

4

What is Django?

Django is a web application
framework written in Python
programming language.

It is based on MVT
(Model View Template)
design pattern.

The Django is very
demanding due to its rapid
development feature.

It takes less time to build
application after collecting
client requirement.

This framework uses a
famous tag line: The web
framework for perfectionists
with deadlines.

01

02

03

04

05

5

History

2003 2005 2008 2017 2018

Django was design
and developed by
Lawrence journal

world.

Publicly released
under BSD license.

1.0 version is
launched

Its current stable
version 2.0.3 is

launched.

2.0 version is
launched

6

Version Date Description

0.90 16 Nov 2005

0.91 11 Jan 2006 magic removal

0.96 23 Mar 2007 newforms, testing tools

1.0 3 Sep 2008 API stability, decoupled admin, unicode

1.1 29 Jul 2009 Aggregates, transaction based tests

1.2 17 May 2010
Multiple db connections, CSRF, model

validation

1.3 23 Mar 2011
Timezones, in browser testing, app

templates.

1.5 26 Feb 2013 Python 3 Support, configurable user model

1.6 6 Nov 2013
Dedicated to Malcolm Tredinnick, db
transaction management, connection

pooling.

7

1.7 2 Sep 2014
Migrations, application loading and

configuration.

1.8 LTS 2 Sep 2014
Migrations, application loading and

configuration.

1.8 LTS 1 Apr 2015
Native support for multiple template

engines.Supported until at least April 2018

1.9 1 Dec 2015
Automatic password validation. New styling

for admin interface.

1.10 1 Aug 2016
Full text search for PostgreSQL. New-style

middleware.

1.11 LTS 1.11 LTS
Last version to support Python 2.7.Supported

until at least April 2020

2.0 Dec 2017
First Python 3-only release, Simplified URL

routing syntax, Mobile friendly admin.

8

Features of Django

Versatile

Open SourceScalable

Secure

Rapid Development

Vast and Supported
Community

9

Django Installation

To install Django, first visit to django official site
(https://www.djangoproject.com) and download django by
clicking on the download section. Here, we will see various

options to download The Django.

Django requires pip to start installation. Pip is a package
manager system which is used to install and manage

packages written in python. For Python 3.4 and higher
versions pip3 is used to manage packages.

10

Django Installation

In this tutorial, we are installing Django in
Ubuntu operating system.

The complete installation process is described below.
Before installing make sure pip is installed in local system.

Here, we are installing Django using pip3, the installation
command is given below.

11

$ pip3 install django==2.0.3

12

Verify Django Installation

After installing Django, we need to verify the installation. Open terminal and
write python3 and press enter. It will display python shell where we can
verify django installation.

13

Django Project

In the previous topic, we have installed Django successfully.
Now, we will learn step by step process to create a Django
application.

14

Django Project Example

Here, we are creating a project djangpapp in the current directory.

$ django-admin startproject djangpapp

15

Locate into the Project

Now, move to the project by changing the directory. The
Directory can be changed by using the following command.

cd djangpapp

16

To see all the files and subfolders of django project, we can use
tree command to view the tree structure of the application. This
is a utility command, if it is not present, can be downloaded via
apt-get install tree command.

17

Running the Django Project

Django project has a built-in development server which is
used to run application instantly without any external web
server. It means we don't need of Apache or another web
server to run the application in development mode.

To run the application, we can use the following command.

$ python3 manage.py runserver

18

19

Look server has started and can be accessed at localhost with
port 8000. Let's access it using the browser, it looks like the
below.

DJANGO
MODELS AND

DATABASE

20

Agenda

What is Model Create First Model

Model Fields Databases

01 02

03 04

21

What is Model?

22

❑ A model is the single, definitive source of information about
your data.

❑ It contains the essential fields and behaviors of the data
you’re storing

❑ Generally, each model maps to a single database table.

❑ Each model is a Python class that subclasses
django.db.models.Model.

❑ Each attribute of the model represents a database field.

23

from django.db import models

class Person(models.Model):

first_name = models.CharField(max_length=30)

last_name = models.CharField(max_length=30)

CREATE YOUR FIRST MODEL

24

Fields are organized into records, which contain all the

information within the table relevant to a specific entity.

There are concepts to know before creating fields:

MODEL FIELDS

Field Type Relationship
Field

Options

25

1. FIELD TYPE
The fields defined inside the Model class are the columns name
of the mapped table

AutoField()

An integer field
that

automatically
increments

BooleanField()

Store true/false
value and

generally used
for checkboxes

CharField()

A string field
for small to
large-sized

strings.

DateField()

A date field
represents

python
datetime. date

instance.

E.g.

26

2. FIELD OPTIONS

Field option are used to customize and put constraint on the
table rows.

E.g.

name= models.CharField(max_length = 60)

here "max_length" specifies the size of the VARCHAR field.

27

The following are some common and mostly used field option:

01 02

03 04
05

Null

to store empty
values as NULL in

database.

Blank

if True, the field
s allowed to be

blank.

default

store default
value for a field

primary_key

this field will be
the primary key

for the table

unique_key

puts unique key
constraint for

column.

28

3. MODEL FIELD RELATIONSHIP

The power of relational databases lies in relating tables to each
other Django offers ways to define the three most common
types of database relationships:

1. many-to-one

2. many-to-many

3. one-to-one.

29

1) Many-to-one relationships:

To define a many-to-one relationship, use
django.db.models.ForeignKey.
You use it just like any other Field type: by including it as a class
attribute of your model.

E.g.

class Manufacturer(models.Model)
pass

class Car(models.Model):
manufacturer = models.ForeignKey(Manufacturer,

on_delete=models.CASCADE)

30

2) Many-to-many relationships

To define a many-to-many relationship, use ManyToManyField.
You use it just like any other Field type: by including it as a
class attribute of your model.

For example, if a Pizza has multiple Topping objects – that is, a
Topping can be on multiple pizzas and each Pizza has multiple
toppings – here’s how you’d represent that:

31

from django.db import models

class Topping(models.Model):

...

pass

class Pizza(models.Model):

...

toppings = models.ManyToManyField(Topping)

32

from django.conf import settings

from django.db import models

class MySpecialUser(models.Model):

user = models.OneToOneField(settings.AUTH_USER_MODEL)

supervisor = models.OneToOneField(settings.AUTH_USER_MODEL)

3) One-to-one relationships

To define a one-to-one relationship, use OneToOneField. You
use it just like any other Field type: by including it as a class
attribute of your model.

E.g.

33

Meta Option

❑ A metaclass is the class of a class.

❑ A class defines how an instance of the class behaves while

a metaclass defines how a class behaves.

❑ A class is an instance of a metaclass.

❑ Give your model metadata by using an inner class Meta.

34

from django.db import models

class Student(models.Model):

name = models.CharField(max_length =50)

class Meta:

ordering =["name"]

db_table = "students"

E.g.

35

Databases

Django officially
supports the following

databases:

36

Telling Django About Your Database

Before we can create any models, we must first setup our
database configuration. To do this, open the settings.py and
locate the dictionary called DATABASES.

modify the default key/value pair so it looks something like
the following example.

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': DATABASE_PATH,

}
}

37

Also create a new variable called DATABASE_PATH and add
that to the top of your settings.py

DATABASE_PATH = os.path.join(PROJECT_PATH, 'rango.db')

