
Django
Rest

Framework

1

Introduction
DRF setup
RESTful Structure
DRF Quick Start

➢ Model Serializer
➢ Update Views
➢ Update URLs
➢ Test

Refactor for REST
➢ GET
➢ Datetime Format
➢ POST
➢ Author Format
➢ Delete

Table of Contents

2

We will learn to build a REST API in Django through a very
simple method. Just follow the below steps and your first API
will be ready to get going with minimum code.

Django REST Framework (DRF) allows developers to rapidly
build RESTful APIs. We will see how DRF is actually used and
also clear some very basics of the web. This article assumes
though, that you have a basic understanding of the working of
the web. We will learn topics like Django for APIs, RESTful
web services and then build up to DRF.

3

What is an API?

API is an acronym for Application Programming Interface. Two
machines use it to communicate with each other. We will be
dealing with Web APIs and then the definition changes to:

An API is used by two applications trying to communicate with
each other over a network or Internet.

4

The API acts as a mediator between Django and other
applications. other applications can be from Android, iOS, Web
apps, browsers, etc. The API’s main task is to receive data
from other applications and provide them to the backend. This
data is usually in JSON format.

Okay, so some of you may ask what about those so-called
Google APIs. Okay, let’s see. They are also APIs of the same
nature. Understand it like Google providing the API as a
service.

5

Here, you can see some of the common examples of APIs used
by developers.

6

7

What are RESTful APIs?

REST stands for Representational State Transfer. REST is an
architecture on which we develop web services. Web services
can be understood as your device connects to the internet.
When you search for anything on Google or watch something
on YouTube. These are web services where your device is
communicating to a server. When these web services use REST
Architecture, they are called RESTful Web Services. These web
services use HTTP to transmit data between machines. now,
back to the question, what are RESTful APIs?

8

A RESTful API acts as a translator between two machines
communicating over a Web service. This is just like an API
but it’s working on a RESTful Web service. Web developers
program REST API such that server can receive data from
applications. These applications can be web-apps,
Android/iOS apps, etc. RESTful APIs today return JSON files
which can be interpreted by a variety of devices.

9

What is Django REST Framework?

So, as we learned in previous sections, DRF is an acronym for
Django REST Framework. (stating the obvious) It’s used to
develop REST APIs for Django. Yup, DRF is used to develop
RESTful APIs which is both easy and a smart way.

DRF is a framework built upon the Django Framework. It is
not a separate framework. You can say that it is a tool which
alongside Django is used to develop RESTful APIs. It increases
the development speed. It also addresses various security
issues natively.

10

$ pip install djangorestframework

Install:

DRF setup

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'talk',
'rest_framework'

)

Update settings.py:

11

In a RESTful API, endpoints (URLs) define the structure of the
API and how end users access data from our application using
the HTTP methods: GET, POST, PUT, DELETE. Endpoints should
be logically organized around collections and elements, both of
which are resources. In our case, we have one single resource,
posts, so we will use the following URLS - /posts/ and
/posts/<id> for collections and elements, respectively.

RESTful Structure:

12

GET POST PUT DELETE

/posts/ Show all posts Add new post Update all posts Delete all posts

/posts/<id> Show <id> N/A Update <id> Delete id

13

Let’s get our new API up and running!

Model Serializer

DRF’s Serializers convert model instances to Python
dictionaires, which can then be rendered in various API
appropriate formats - like JSON or XML. Similar to the Django
ModelForm class, DRF comes with a concise format for its
Serializers, the ModelSerializer class. It’s simple to use: Just
tell it which fields you want to use from the model:

DRF Quick Start

14

from rest_framework import serializers
from talk.models import Post

class PostSerializer(serializers.ModelSerializer):

class Meta:
model = Post
fields = ('id', 'author', 'text', 'created', 'updated')

Save this as serializers.py within the “talk” directory.

15

Update Views

We need to refactor our current views to fit the RESTful
paradigm. Comment out the current views and add in:

from django.http import HttpResponse
from rest_framework.decorators import api_view
from rest_framework.response import Response
from talk.models import Post
from talk.serializers import PostSerializer
from talk.forms import PostForm

def home(request):
tmpl_vars = {'form': PostForm()}
return render(request, 'talk/index.html', tmpl_vars)

16

@api_view(['GET'])
def post_collection(request):

if request.method == 'GET':
posts = Post.objects.all()
serializer = PostSerializer(posts, many=True)
return Response(serializer.data)

@api_view(['GET'])
def post_element(request, pk):

try:
post = Post.objects.get(pk=pk)

except Post.DoesNotExist:
return HttpResponse(status=404)

if request.method == 'GET':
serializer = PostSerializer(post)
return Response(serializer.data)

17

What’s happening here:

1. First, the @api_view decorator checks that the
appropriate HTTP request is passed into the view
function. Right now, we’re only supporting GET requests.

2. Then, the view either grabs all the data, if it’s for the
collection, or just a single post, if it’s for an element.

3. Finally, the data is serialized to JSON and returned.

18

Talk urls
from django.conf.urls import patterns, url

urlpatterns = patterns(
'talk.views',
url(r'^$', 'home'),

api
url(r'^api/v1/posts/$', 'post_collection'),
url(r'^api/v1/posts/(?P<pk>[0-9]+)$', 'post_element')

)

Update URLs

Let’s wire up some new URLs:

19

Test

We’re now ready for our first test!

1. Fire up the server, then navigate to:
http://127.0.0.1:8000/api/v1/posts/?format=json.

2. Now let’s check out the Browsable API. Navigate to
http://127.0.0.1:8000/api/v1/posts/

3. So, With no extra work on our end we automatically get
this nice, human-readable output of our API. Nice! This is
a huge win for DRF.

4. How about an element? Try:
http://127.0.0.1:8000/api/v1/posts/1

http://127.0.0.1:8000/api/v1/posts/?format=json

20

Before moving on you may have noticed that the author field is
an id rather than the actual username. We’ll address this
shortly. For now, let’s wire up our new API so that it works
with our current application’s Templates.

21

GET

On the initial page load, we want to display all posts. To do
that, add the following AJAX request:

Refactor for REST

22

load_posts()

// Load all posts on page load
function load_posts() {

$.ajax({
url : "api/v1/posts/", // the endpoint
type : "GET", // http method
// handle a successful response
success : function(json) {

for (var i = 0; i < json.length; i++) {
console.log(json[i])
$("#talk").prepend("<li id='post-

"+json[i].id+"'>"+json[i].text+" -
"+json[i].author+" - "+json[i].created+

" - delete
me");

}
},

23

// handle a non-successful response
error : function(xhr,errmsg,err) {

$('#results').html("<div class='alert-box alert radius' data-
alert>Oops! We have encountered an error: "+errmsg+

" ×</div>"); // add the
error to the dom

console.log(xhr.status + ": " + xhr.responseText); // provide a
bit more info about the error to the console

}
});

};

24

You’ve seen all this before. Notice how we’re handling a
success: Since the API sends back a number of objects, we
need to iterate through them, appending each to the DOM. We
also changed json[i].postpk to json[i].id as we are serializing
the post id.

Test this out. Fire up the server, log in, then check out the
posts.

Besides the author being displayed as an id, take note of the
datetime format. This is not what we want, right? We want a
readable datetime format. Let’s update that…

25

Datetime Format

We can use an awesome JavaScript library called MomentJS to
easily format the date anyway we want.

First, we need to import the library to our index.html file:

HTML Code:

<!-- scripts -->
<script
src="http://cdnjs.cloudflare.com/ajax/libs/moment.js/2.8.2/momen
t.min.js"></script>
<script src="static/scripts/main.js"></script>

26

for (var i = 0; i < json.length; i++) {
dateString = convert_to_readable_date(json[i].created)
$("#talk").prepend("<li id='post-

"+json[i].id+"'>"+json[i].text+
" - "+json[i].author+" -

"+dateString+
" - delete

me");
}

Then update the for loop in main.js:

JavaScript Code:

27

// convert ugly date to human readable date
function convert_to_readable_date(date_time_string) {

var newDate = moment(date_time_string).format('MM/DD/YYYY,
h:mm:ss a')

return newDate
}

Here we pass the date string to a new function called
convert_to_readable_date(), which needs to be added:

JavaScript:

That’s it. Refresh the browser. The datetime format should
now look something like this - 08/22/2014, 6:48:29 pm.

28

POST

POST requests are handled in similar fashion. Before messing
with the serializer, let’s test it first by just updating the
views. Maybe we’ll get lucky and it will just work.

29

@api_view(['GET', 'POST'])
def post_collection(request):

if request.method == 'GET':
posts = Post.objects.all()
serializer = PostSerializer(posts, many=True)
return Response(serializer.data)

elif request.method == 'POST':
data = {'text': request.DATA.get('the_post'), 'author':

request.user.pk}
serializer = PostSerializer(data=data)
if serializer.is_valid():

serializer.save()
return Response(serializer.data, status=status.HTTP_201_CREATED)

return Response(serializer.errors,
status=status.HTTP_400_BAD_REQUEST)

Update the post_collection() function in views.py:

30

Also add the following import:

from rest_framework import status

What’s happening here:

1. request.DATA extends Django’s HTTPRequest, returning
the content from the request body. Read more about it
here.

2. If the deserialization process works, we return a
response with a code of 201 (created).

3. On the other hand, if the deserialization process fails, we
return a 400 response.

Update the endpoint in the create_post() function

31

url : "create_post/", // the endpoint

From:

JavaScript Code:

To:

JavaScript Code:

url : "api/v1/posts/", // the endpoint

32

success : function(json) {
$('#post-text').val(''); // remove the value from the input
console.log(json); // log the returned json to the console
dateString = convert_to_readable_date(json.created)
$("#talk").prepend("<li id='post-

"+json.id+"'>"+json.text+" - "+
json.author+" - "+dateString+
" - delete me");

console.log("success"); // another sanity check
},

Test it out in the browser. It should work. Don’t forget to update the handling of the
dates correctly as well as changing json.postpk to json.id:

33

Author Format

Now’s a good time to pause and address the author id vs.
username issue. We have a few options:

1. Be really RESTFUL and make another call to get the user
info, which is not good for performance.

2. Utilize the SlugRelatedField relation.

34

from django.contrib.auth.models import User
from rest_framework import serializers
from talk.models import Post

class PostSerializer(serializers.ModelSerializer):
author = serializers.SlugRelatedField(

queryset=User.objects.all(), slug_field='username'
)

class Meta:
model = Post
fields = ('id', 'author', 'text', 'created', 'updated')

Let’s go with the latter option. Update the serializer:

35

What’s happening here?

1. The SlugRelatedField allows us to change the target of
the author field from id to username.

2. Also, by default the target field - username - is both
readable and writeable so out-of-the-box this relation
will work for both GET and POST requests.

36

Update the data variable in the views as well:

data = {'text': request.DATA.get('the_post'), 'author':
request.user}

Test again. You should now see the author’s username. Make
sure both GET and POST requests are working correctly.

37

Delete

Before changing or adding anything, test it out. Try the delete
link. What happens? You should get a 404 error. Any idea why
that would be? Or where to go to find out what the issue is?
How about the delete_post function in our JavaScript file:

url : "delete_post/", // the endpoint

38

That URL does not exist. Before we update it, ask yourself - “Should
we target the collection or an individual element?”. If you’re unsure,
scroll back up and look at the RESTful Structure table. Unless we
want to delete all posts, then we need to hit the element endpoint:

url : "api/v1/posts/"+post_primary_key, // the endpoint

Test again. Now what happens? You should see a 405 error - 405:
{"detail": "Method 'DELETE' not allowed."} - since the view is not
setup to handle a DELETE request.

39

@api_view(['GET', 'DELETE'])
def post_element(request, pk):

try:
post = Post.objects.get(pk=pk)

except Post.DoesNotExist:
return HttpResponse(status=404)

if request.method == 'GET':
serializer = PostSerializer(post)
return Response(serializer.data)

elif request.method == 'DELETE':
post.delete()
return Response(status=status.HTTP_204_NO_CONTENT)

40

With the DELETE HTTP verb added, we can handle the request by
removing the post with the delete() method and returning a 204
response. Does it work? Only one way to find out. This time when
you test make sure that (a) the post is actually deleted and removed
from the DOM and (b) that a 204 status code is returned (you can
confirm this in the Network tab within Chrome Developer Tools).

