
Hadoop Cluster Setup
Purpose
Prerequisites
Installation
Configuring Hadoop in Non-Secure Mode

Configuring Environment of Hadoop Daemons
Configuring the Hadoop Daemons

Monitoring Health of NodeManagers
Slaves File
Hadoop Rack Awareness
Logging
Operating the Hadoop Cluster

Hadoop Startup
Hadoop Shutdown

Web Interfaces

Purpose

This document describes how to install and configure Hadoop clusters ranging from a few nodes to extremely large clusters with thousands of nodes. To play with Hadoop, you may
first want to install it on a single machine (see Single Node Setup).

This document does not cover advanced topics such as Security or High Availability.

Prerequisites

Install Java. See the Hadoop Wiki for known good versions.
Download a stable version of Hadoop from Apache mirrors.

Installation

Installing a Hadoop cluster typically involves unpacking the software on all the machines in the cluster or installing it via a packaging system as appropriate for your operating
system. It is important to divide up the hardware into functions.

Typically one machine in the cluster is designated as the NameNode and another machine as the ResourceManager, exclusively. These are the masters. Other services (such as Web
App Proxy Server and MapReduce Job History server) are usually run either on dedicated hardware or on shared infrastructure, depending upon the load.

The rest of the machines in the cluster act as both DataNode and NodeManager. These are the workers.

Configuring Hadoop in Non-Secure Mode

Hadoop’s Java configuration is driven by two types of important configuration files:

Read-only default configuration - core-default.xml, hdfs-default.xml, yarn-default.xml and mapred-default.xml.

Site-specific configuration - etc/hadoop/core-site.xml, etc/hadoop/hdfs-site.xml, etc/hadoop/yarn-site.xml and etc/hadoop/mapred-site.xml.

Additionally, you can control the Hadoop scripts found in the bin/ directory of the distribution, by setting site-specific values via the etc/hadoop/hadoop-env.sh and
etc/hadoop/yarn-env.sh.

To configure the Hadoop cluster you will need to configure the environment in which the Hadoop daemons execute as well as the configuration parameters for the Hadoop
daemons.

HDFS daemons are NameNode, SecondaryNameNode, and DataNode. YARN daemons are ResourceManager, NodeManager, and WebAppProxy. If MapReduce is to be used, then the
MapReduce Job History Server will also be running. For large installations, these are generally running on separate hosts.

Configuring Environment of Hadoop Daemons

Administrators should use the etc/hadoop/hadoop-env.sh and optionally the etc/hadoop/mapred-env.sh and etc/hadoop/yarn-env.sh scripts to do site-specific customization of
the Hadoop daemons’ process environment.

At the very least, you must specify the JAVA_HOME so that it is correctly defined on each remote node.

Administrators can configure individual daemons using the configuration options shown below in the table:

Daemon Environment Variable

NameNode HDFS_NAMENODE_OPTS

DataNode HDFS_DATANODE_OPTS

Secondary NameNode HDFS_SECONDARYNAMENODE_OPTS

ResourceManager YARN_RESOURCEMANAGER_OPTS

NodeManager YARN_NODEMANAGER_OPTS

WebAppProxy YARN_PROXYSERVER_OPTS

Map Reduce Job History Server MAPRED_HISTORYSERVER_OPTS

For example, To configure Namenode to use parallelGC and a 4GB Java Heap, the following statement should be added in hadoop-env.sh :

 export HDFS_NAMENODE_OPTS="-XX:+UseParallelGC -Xmx4g"

See etc/hadoop/hadoop-env.sh for other examples.

Other useful configuration parameters that you can customize include:

HADOOP_PID_DIR - The directory where the daemons’ process id files are stored.
HADOOP_LOG_DIR - The directory where the daemons’ log files are stored. Log files are automatically created if they don’t exist.
HADOOP_HEAPSIZE_MAX - The maximum amount of memory to use for the Java heapsize. Units supported by the JVM are also supported here. If no unit is present, it will be
assumed the number is in megabytes. By default, Hadoop will let the JVM determine how much to use. This value can be overriden on a per-daemon basis using the
appropriate _OPTS variable listed above. For example, setting HADOOP_HEAPSIZE_MAX=1g and HADOOP_NAMENODE_OPTS="-Xmx5g" will configure the NameNode with 5GB heap.

In most cases, you should specify the HADOOP_PID_DIR and HADOOP_LOG_DIR directories such that they can only be written to by the users that are going to run the hadoop
daemons. Otherwise there is the potential for a symlink attack.

It is also traditional to configure HADOOP_HOME in the system-wide shell environment configuration. For example, a simple script inside /etc/profile.d:

https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/SecureMode.html
http://wiki.apache.org/hadoop/HadoopJavaVersions

 HADOOP_HOME=/path/to/hadoop
 export HADOOP_HOME

Configuring the Hadoop Daemons

This section deals with important parameters to be specified in the given configuration files:

etc/hadoop/core-site.xml

Parameter Value Notes
fs.defaultFS NameNode URI hdfs://host:port/

io.file.buffer.size 131072 Size of read/write buffer used in SequenceFiles.

etc/hadoop/hdfs-site.xml

Configurations for NameNode:

Parameter Value Notes
dfs.namenode.name.dir Path on the local filesystem where the NameNode stores the namespace

and transactions logs persistently.
If this is a comma-delimited list of directories then the name table is replicated in all
of the directories, for redundancy.

dfs.hosts /
dfs.hosts.exclude

List of permitted/excluded DataNodes. If necessary, use these files to control the list of allowable datanodes.

dfs.blocksize 268435456 HDFS blocksize of 256MB for large file-systems.

dfs.namenode.handler.count 100 More NameNode server threads to handle RPCs from large number of DataNodes.

Configurations for DataNode:

Parameter Value Notes
dfs.datanode.data.dir Comma separated list of paths on the local filesystem of a DataNode

where it should store its blocks.
If this is a comma-delimited list of directories, then data will be stored in all named
directories, typically on different devices.

etc/hadoop/yarn-site.xml

Configurations for ResourceManager and NodeManager:

Parameter Value Notes
yarn.acl.enable true /

false
Enable ACLs? Defaults to false.

yarn.admin.acl Admin
ACL

ACL to set admins on the cluster. ACLs are of for comma-separated-usersspacecomma-separated-groups. Defaults to special value of * which means anyone.
Special value of just space means no one has access.

yarn.log-
aggregation-enable

false Configuration to enable or disable log aggregation

Configurations for ResourceManager:

Parameter Value Notes
yarn.resourcemanager.address ResourceManager host:port for clients to

submit jobs.
host:port If set, overrides the hostname set in yarn.resourcemanager.hostname.

yarn.resourcemanager.scheduler.address ResourceManager host:port for
ApplicationMasters to talk to Scheduler to
obtain resources.

host:port If set, overrides the hostname set in yarn.resourcemanager.hostname.

yarn.resourcemanager.resource-
tracker.address

ResourceManager host:port for
NodeManagers.

host:port If set, overrides the hostname set in yarn.resourcemanager.hostname.

yarn.resourcemanager.admin.address ResourceManager host:port for
administrative commands.

host:port If set, overrides the hostname set in yarn.resourcemanager.hostname.

yarn.resourcemanager.webapp.address ResourceManager web-ui host:port. host:port If set, overrides the hostname set in yarn.resourcemanager.hostname.

yarn.resourcemanager.hostname ResourceManager host. host Single hostname that can be set in place of setting all yarn.resourcemanager*address resources.
Results in default ports for ResourceManager components.

yarn.resourcemanager.scheduler.class ResourceManager Scheduler class. CapacityScheduler (recommended), FairScheduler (also recommended), or FifoScheduler. Use a
fully qualified class name, e.g.,
org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler.

yarn.scheduler.minimum-allocation-mb Minimum limit of memory to allocate to
each container request at the Resource
Manager.

In MBs

yarn.scheduler.maximum-allocation-mb Maximum limit of memory to allocate to
each container request at the Resource
Manager.

In MBs

yarn.resourcemanager.nodes.include-
path /
yarn.resourcemanager.nodes.exclude-
path

List of permitted/excluded NodeManagers. If necessary, use these files to control the list of allowable NodeManagers.

Configurations for NodeManager:

Parameter Value Notes
yarn.nodemanager.resource.memory-
mb

Resource i.e.
available physical
memory, in MB,
for given
NodeManager

Defines total available resources on the NodeManager to be made available to running containers

yarn.nodemanager.vmem-pmem-ratio Maximum ratio by
which virtual
memory usage of
tasks may exceed
physical memory

The virtual memory usage of each task may exceed its physical memory limit by this ratio. The total amount of virtual memory used by tasks on the NodeManager may
exceed its physical memory usage by this ratio.

yarn.nodemanager.local-dirs Comma-separated
list of paths on the
local filesystem
where
intermediate data
is written.

Multiple paths help spread disk i/o.

yarn.nodemanager.log-dirs Comma-separated
list of paths on the
local filesystem
where logs are
written.

Multiple paths help spread disk i/o.

yarn.nodemanager.log.retain- 10800 Default time (in seconds) to retain log files on the NodeManager Only applicable if log-aggregation is disabled.

hdfs://host:port/

seconds

yarn.nodemanager.remote-app-log-
dir

/logs HDFS directory where the application logs are moved on application completion. Need to set appropriate permissions. Only applicable if log-aggregation is enabled.

yarn.nodemanager.remote-app-log-
dir-suffix

logs Suffix appended to the remote log dir. Logs will be aggregated to ${yarn.nodemanager.remote-app-log-dir}/${user}/${thisParam} Only applicable if log-aggregation is
enabled.

yarn.nodemanager.aux-services mapreduce_shuffle Shuffle service that needs to be set for Map Reduce applications.

yarn.nodemanager.env-whitelist Environment
properties to be
inherited by
containers from
NodeManagers

For mapreduce application in addition to the default values HADOOP_MAPRED_HOME should to be added. Property value should
JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME

Configurations for History Server (Needs to be moved elsewhere):

Parameter Value Notes
yarn.log-aggregation.retain-
seconds

-1 How long to keep aggregation logs before deleting them. -1 disables. Be careful, set this too small and you will spam the name node.

yarn.log-aggregation.retain-
check-interval-seconds

-1 Time between checks for aggregated log retention. If set to 0 or a negative value then the value is computed as one-tenth of the aggregated log
retention time. Be careful, set this too small and you will spam the name node.

etc/hadoop/mapred-site.xml

Configurations for MapReduce Applications:

Parameter Value Notes
mapreduce.framework.name yarn Execution framework set to Hadoop YARN.

mapreduce.map.memory.mb 1536 Larger resource limit for maps.

mapreduce.map.java.opts -Xmx1024M Larger heap-size for child jvms of maps.

mapreduce.reduce.memory.mb 3072 Larger resource limit for reduces.

mapreduce.reduce.java.opts -Xmx2560M Larger heap-size for child jvms of reduces.

mapreduce.task.io.sort.mb 512 Higher memory-limit while sorting data for efficiency.

mapreduce.task.io.sort.factor 100 More streams merged at once while sorting files.

mapreduce.reduce.shuffle.parallelcopies 50 Higher number of parallel copies run by reduces to fetch outputs from very large number of maps.

Configurations for MapReduce JobHistory Server:

Parameter Value Notes
mapreduce.jobhistory.address MapReduce JobHistory Server host:port Default port is 10020.

mapreduce.jobhistory.webapp.address MapReduce JobHistory Server Web UI host:port Default port is 19888.

mapreduce.jobhistory.intermediate-done-dir /mr-history/tmp Directory where history files are written by MapReduce jobs.

mapreduce.jobhistory.done-dir /mr-history/done Directory where history files are managed by the MR JobHistory Server.

Monitoring Health of NodeManagers

Hadoop provides a mechanism by which administrators can configure the NodeManager to run an administrator supplied script periodically to determine if a node is healthy or not.

Administrators can determine if the node is in a healthy state by performing any checks of their choice in the script. If the script detects the node to be in an unhealthy state, it must
print a line to standard output beginning with the string ERROR. The NodeManager spawns the script periodically and checks its output. If the script’s output contains the string
ERROR, as described above, the node’s status is reported as unhealthy and the node is black-listed by the ResourceManager. No further tasks will be assigned to this node. However,
the NodeManager continues to run the script, so that if the node becomes healthy again, it will be removed from the blacklisted nodes on the ResourceManager automatically. The
node’s health along with the output of the script, if it is unhealthy, is available to the administrator in the ResourceManager web interface. The time since the node was healthy is also
displayed on the web interface.

The following parameters can be used to control the node health monitoring script in etc/hadoop/yarn-site.xml.

Parameter Value Notes
yarn.nodemanager.health-checker.script.path Node health script Script to check for node’s health status.

yarn.nodemanager.health-checker.script.opts Node health script options Options for script to check for node’s health status.

yarn.nodemanager.health-checker.interval-ms Node health script interval Time interval for running health script.

yarn.nodemanager.health-checker.script.timeout-ms Node health script timeout interval Timeout for health script execution.

The health checker script is not supposed to give ERROR if only some of the local disks become bad. NodeManager has the ability to periodically check the health of the local disks
(specifically checks nodemanager-local-dirs and nodemanager-log-dirs) and after reaching the threshold of number of bad directories based on the value set for the config property
yarn.nodemanager.disk-health-checker.min-healthy-disks, the whole node is marked unhealthy and this info is sent to resource manager also. The boot disk is either raided or a
failure in the boot disk is identified by the health checker script.

Slaves File

List all worker hostnames or IP addresses in your etc/hadoop/workers file, one per line. Helper scripts (described below) will use the etc/hadoop/workers file to run commands on
many hosts at once. It is not used for any of the Java-based Hadoop configuration. In order to use this functionality, ssh trusts (via either passphraseless ssh or some other means,
such as Kerberos) must be established for the accounts used to run Hadoop.

Hadoop Rack Awareness

Many Hadoop components are rack-aware and take advantage of the network topology for performance and safety. Hadoop daemons obtain the rack information of the workers in the
cluster by invoking an administrator configured module. See the Rack Awareness documentation for more specific information.

It is highly recommended configuring rack awareness prior to starting HDFS.

Logging

Hadoop uses the Apache log4j via the Apache Commons Logging framework for logging. Edit the etc/hadoop/log4j.properties file to customize the Hadoop daemons’ logging
configuration (log-formats and so on).

Operating the Hadoop Cluster

Once all the necessary configuration is complete, distribute the files to the HADOOP_CONF_DIR directory on all the machines. This should be the same directory on all machines.

In general, it is recommended that HDFS and YARN run as separate users. In the majority of installations, HDFS processes execute as ‘hdfs’. YARN is typically using the ‘yarn’
account.

https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/RackAwareness.html
http://logging.apache.org/log4j/2.x/

Hadoop Startup

To start a Hadoop cluster you will need to start both the HDFS and YARN cluster.

The first time you bring up HDFS, it must be formatted. Format a new distributed filesystem as hdfs:

[hdfs]$ $HADOOP_HOME/bin/hdfs namenode -format <cluster_name>

Start the HDFS NameNode with the following command on the designated node as hdfs:

[hdfs]$ $HADOOP_HOME/bin/hdfs --daemon start namenode

Start a HDFS DataNode with the following command on each designated node as hdfs:

[hdfs]$ $HADOOP_HOME/bin/hdfs --daemon start datanode

If etc/hadoop/workers and ssh trusted access is configured (see Single Node Setup), all of the HDFS processes can be started with a utility script. As hdfs:

[hdfs]$ $HADOOP_HOME/sbin/start-dfs.sh

Start the YARN with the following command, run on the designated ResourceManager as yarn:

[yarn]$ $HADOOP_HOME/bin/yarn --daemon start resourcemanager

Run a script to start a NodeManager on each designated host as yarn:

[yarn]$ $HADOOP_HOME/bin/yarn --daemon start nodemanager

Start a standalone WebAppProxy server. Run on the WebAppProxy server as yarn. If multiple servers are used with load balancing it should be run on each of them:

[yarn]$ $HADOOP_HOME/bin/yarn --daemon start proxyserver

If etc/hadoop/workers and ssh trusted access is configured (see Single Node Setup), all of the YARN processes can be started with a utility script. As yarn:

[yarn]$ $HADOOP_HOME/sbin/start-yarn.sh

Start the MapReduce JobHistory Server with the following command, run on the designated server as mapred:

[mapred]$ $HADOOP_HOME/bin/mapred --daemon start historyserver

Hadoop Shutdown

Stop the NameNode with the following command, run on the designated NameNode as hdfs:

[hdfs]$ $HADOOP_HOME/bin/hdfs --daemon stop namenode

Run a script to stop a DataNode as hdfs:

[hdfs]$ $HADOOP_HOME/bin/hdfs --daemon stop datanode

If etc/hadoop/workers and ssh trusted access is configured (see Single Node Setup), all of the HDFS processes may be stopped with a utility script. As hdfs:

[hdfs]$ $HADOOP_HOME/sbin/stop-dfs.sh

Stop the ResourceManager with the following command, run on the designated ResourceManager as yarn:

[yarn]$ $HADOOP_HOME/bin/yarn --daemon stop resourcemanager

Run a script to stop a NodeManager on a worker as yarn:

[yarn]$ $HADOOP_HOME/bin/yarn --daemon stop nodemanager

If etc/hadoop/workers and ssh trusted access is configured (see Single Node Setup), all of the YARN processes can be stopped with a utility script. As yarn:

[yarn]$ $HADOOP_HOME/sbin/stop-yarn.sh

Stop the WebAppProxy server. Run on the WebAppProxy server as yarn. If multiple servers are used with load balancing it should be run on each of them:

[yarn]$ $HADOOP_HOME/bin/yarn stop proxyserver

Stop the MapReduce JobHistory Server with the following command, run on the designated server as mapred:

[mapred]$ $HADOOP_HOME/bin/mapred --daemon stop historyserver

https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/SingleCluster.html

Web Interfaces

Once the Hadoop cluster is up and running check the web-ui of the components as described below:

Daemon Web Interface Notes

NameNode http://nn_host:port/ Default HTTP port is 9870.

ResourceManager http://rm_host:port/ Default HTTP port is 8088.

MapReduce JobHistory Server http://jhs_host:port/ Default HTTP port is 19888.

http://nn_host:port/
http://rm_host:port/
http://jhs_host:port/

