
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321832054
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321832054
https://plusone.google.com/share?url=http://www.informit.com/title/9780321832054
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321832054
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321832054/Free-Sample-Chapter

Praise for Michael Hartl’s
Books and Videos
on Ruby on RailsTM

‘‘My former company (CD Baby) was one of the first to loudly switch to Ruby on
Rails, and then even more loudly switch back to PHP (Google me to read about the
drama). This book by Michael Hartl came so highly recommended that I had to try
it, and the Ruby on RailsTM Tutorial is what I used to switch back to Rails again.’’

—From the Foreword by Derek Sivers (sivers.org)
Formerly: Founder, CD Baby
Currently: Founder, Thoughts Ltd.

‘‘Michael Hartl’s Rails Tutorial book is the #1 (and only, in my opinion) place to
start when it comes to books about learning Rails. . . . It’s an amazing piece of work
and, unusually, walks you through building a Rails app from start to finish with
testing. If you want to read just one book and feel like a Rails master by the end of
it, pick the Ruby on RailsTM Tutorial .’’

—Peter Cooper
Editor, Ruby Inside

‘‘Grounded in the real world.’’
—I Programmer (www.i-programmer.info), by Ian Elliot

‘‘The book gives you the theory and practice, while the videos focus on showing you
in person how its done. Highly recommended combo.’’

—Antonio Cangiano, Software Engineer, IBM

‘‘The author is clearly an expert at the Ruby language and the Rails framework, but
more than that, he is a working software engineer who introduces best practices
throughout the text.’’

—Greg Charles, Senior Software Developer, Fairway Technologies

‘‘Overall, these video tutorials should be a great resource for anyone new to Rails.’’
—Michael Morin, ruby.about.com

‘‘Hands-down, I would recommend this book to anyone wanting to get into Ruby
on Rails development.’’

—Michael Crump, Microsoft MVP

www.i-programmer.info

RUBY ONRAILSTM TUTORIAL

Second Edition

Visit informit.com/ruby for a complete list of available products.

I he Addison-Wesley Professional Ruby Series provides readers

with practical, people-oriented, and in-depth information aboutT
applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

RUBY ONRAILSTM TUTORIAL

Learn Web Development with Rails

Second Edition

Michael Hartl

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Michael Hartl

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

All source code in the Ruby on Rails TM Tutorial is available jointly under the MIT License
(opensource.org/licenses/mit-license.php) and the Beerware License (people.freebsd.org/∼phk/).

ISBN 13: 978-0-321-83205-4
ISBN 10: 0-321-83205-1
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor,
Michigan.
Third printing, June 2013

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nahil

Project Manager
Laserwords

Copy Editor
Laserwords

Indexer
Laserwords

Proofreader
Laserwords

Reviewer
Jennifer Lindner

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Laserwords

Contents

Foreword to the First Edition by Derek Sivers xv

Foreword to the First Edition by Obie Fernandez xvii

Acknowledgments xix

About the Author xxi

Chapter 1 From Zero to Deploy 1

1.1 Introduction 3
1.1.1 Comments for Various Readers 4
1.1.2 ‘‘Scaling’’ Rails 7
1.1.3 Conventions in This Book 7

1.2 Up and Running 9
1.2.1 Development Environments 10
1.2.2 Ruby, RubyGems, Rails, and Git 12
1.2.3 The First Application 17
1.2.4 Bundler 19
1.2.5 rails server 23
1.2.6 Model-view-controller (MVC) 25

1.3 Version Control with Git 27
1.3.1 Installation and Setup 27
1.3.2 Adding and Committing 30
1.3.3 What Good Does Git Do You? 31

vii

viii Contents

1.3.4 GitHub 32
1.3.5 Branch, Edit, Commit, Merge 34

1.4 Deploying 39
1.4.1 Heroku Setup 39
1.4.2 Heroku Deployment, Step One 40
1.4.3 Heroku Deployment, Step Two 40
1.4.4 Heroku Commands 41

1.5 Conclusion 43

Chapter 2 A Demo App 45

2.1 Planning the Application 45
2.1.1 Modeling Demo Users 47
2.1.2 Modeling Demo Microposts 48

2.2 The Users Resource 49
2.2.1 A User Tour 51
2.2.2 MVC in Action 56
2.2.3 Weaknesses of this Users Resource 62

2.3 The Microposts Resource 63
2.3.1 A Micropost Microtour 63
2.3.2 Putting the micro in Microposts 66
2.3.3 A User has many Microposts 68
2.3.4 Inheritance Hierarchies 70
2.3.5 Deploying the Demo App 73

2.4 Conclusion 74

Chapter 3 Mostly Static Pages 77

3.1 Static Pages 82
3.1.1 Truly Static Pages 82
3.1.2 Static Pages with Rails 85

3.2 Our First Tests 93
3.2.1 Test-driven Development 93
3.2.2 Adding a Page 99

3.3 Slightly Dynamic Pages 103
3.3.1 Testing a Title Change 103
3.3.2 Passing Title Tests 106
3.3.3 Embedded Ruby 108
3.3.4 Eliminating Duplication with Layouts 111

3.4 Conclusion 114

Contents ix

3.5 Exercises 114
3.6 Advanced Setup 117

3.6.1 Eliminating bundle exec 118
3.6.2 Automated Tests with Guard 120
3.6.3 Speeding up Tests with Spork 123
3.6.4 Tests inside Sublime Text 127

Chapter 4 Rails-Flavored Ruby 129

4.1 Motivation 129
4.2 Strings and Methods 134

4.2.1 Comments 134
4.2.2 Strings 135
4.2.3 Objects and Message Passing 138
4.2.4 Method Definitions 141
4.2.5 Back to the Title Helper 142

4.3 Other Data Structures 142
4.3.1 Arrays and Ranges 142
4.3.2 Blocks 146
4.3.3 Hashes and Symbols 148
4.3.4 CSS revisited 152

4.4 Ruby Classes 153
4.4.1 Constructors 153
4.4.2 Class Inheritance 155
4.4.3 Modifying Built-in Classes 158
4.4.4 A Controller Class 159
4.4.5 A User Class 161

4.5 Conclusion 164
4.6 Exercises 164

Chapter 5 Filling in the Layout 167

5.1 Adding Some Structure 167
5.1.1 Site Navigation 169
5.1.2 Bootstrap and Custom CSS 175
5.1.3 Partials 181

5.2 Sass and the Asset Pipeline 187
5.2.1 The Asset Pipeline 187
5.2.2 Syntactically Awesome Stylesheets 190

x Contents

5.3 Layout Links 197
5.3.1 Route Tests 200
5.3.2 Rails Routes 202
5.3.3 Named Routes 205
5.3.4 Pretty RSpec 207

5.4 User Signup: A First Step 211
5.4.1 Users Controller 212
5.4.2 Signup URI 213

5.5 Conclusion 215
5.6 Exercises 217

Chapter 6 Modeling Users 221

6.1 User Model 222
6.1.1 Database Migrations 223
6.1.2 The Model File 228
6.1.3 Creating User Objects 230
6.1.4 Finding User Objects 233
6.1.5 Updating User Objects 235

6.2 User Validations 236
6.2.1 Initial User Tests 236
6.2.2 Validating Presence 239
6.2.3 Length Validation 243
6.2.4 Format Validation 245
6.2.5 Uniqueness Validation 249

6.3 Adding a Secure Password 254
6.3.1 An Encrypted Password 255
6.3.2 Password and Confirmation 257
6.3.3 User Authentication 260
6.3.4 User Has Secure Password 263
6.3.5 Creating a User 265

6.4 Conclusion 267
6.5 Exercises 268

Chapter 7 Sign Up 271

7.1 Showing Users 271
7.1.1 Debug and Rails Environments 272
7.1.2 A Users Resource 278

Contents xi

7.1.3 Testing the User Show Page (with Factories) 282
7.1.4 A Gravatar Image and a Sidebar 286

7.2 Signup Form 292
7.2.1 Tests for User Signup 293
7.2.2 Using form for 297
7.2.3 The Form HTML 301

7.3 Signup Failure 303
7.3.1 A Working Form 303
7.3.2 Signup Error Messages 308

7.4 Signup Success 312
7.4.1 The Finished Signup Form 313
7.4.2 The Flash 315
7.4.3 The First Signup 317
7.4.4 Deploying to Production with SSL 317

7.5 Conclusion 321
7.6 Exercises 321

Chapter 8 Sign In, Sign Out 325

8.1 Sessions and Signin Failure 325
8.1.1 Sessions Controller 326
8.1.2 Signin Tests 330
8.1.3 Signin Form 333
8.1.4 Reviewing Form Submission 336
8.1.5 Rendering with a Flash Message 339

8.2 Signin Success 343
8.2.1 Remember Me 343
8.2.2 A Working sign in Method 349
8.2.3 Current User 351
8.2.4 Changing the Layout Links 355
8.2.5 Signin upon Signup 359
8.2.6 Signing Out 361

8.3 Introduction to Cucumber (Optional) 363
8.3.1 Installation and Setup 364
8.3.2 Features and Steps 365
8.3.3 Counterpoint: RSpec Custom Matchers 368

8.4 Conclusion 371
8.5 Exercises 372

xii Contents

Chapter 9 Updating, Showing, and Deleting Users 373

9.1 Updating Users 373
9.1.1 Edit Form 374
9.1.2 Unsuccessful Edits 380
9.1.3 Successful Edits 382

9.2 Authorization 385
9.2.1 Requiring Signed-in Users 386
9.2.2 Requiring the Right User 390
9.2.3 Friendly Forwarding 392

9.3 Showing All Users 396
9.3.1 User Index 396
9.3.2 Sample Users 403
9.3.3 Pagination 404
9.3.4 Partial Refactoring 410

9.4 Deleting Users 413
9.4.1 Administrative Users 413
9.4.2 The destroy Action 417

9.5 Conclusion 422
9.6 Exercises 424

Chapter 10 User Microposts 429

10.1 A Micropost Model 429
10.1.1 The Basic Model 430
10.1.2 Accessible Attributes and the First Validation 432
10.1.3 User/Micropost Associations 433
10.1.4 Micropost Refinements 439
10.1.5 Content Validations 443

10.2 Showing Microposts 445
10.2.1 Augmenting the User Show Page 446
10.2.2 Sample Microposts 450

10.3 Manipulating Microposts 454
10.3.1 Access Control 456
10.3.2 Creating Microposts 459
10.3.3 A Proto-feed 467
10.3.4 Destroying Microposts 475

10.4 Conclusion 479
10.5 Exercises 480

Contents xiii

Chapter 11 Following Users 483

11.1 The Relationship Model 484
11.1.1 A Problem with the Data Model (and a Solution) 485
11.1.2 User/Relationship Associations 491
11.1.3 Validations 495
11.1.4 Followed users 495
11.1.5 Followers 500

11.2 A Web Interface for Following Users 503
11.2.1 Sample Following Data 503
11.2.2 Stats and a Follow Form 505
11.2.3 Following and Followers Pages 515
11.2.4 A Working Follow Button the Standard Way 519
11.2.5 A Working Follow Button with Ajax 524

11.3 The Status Feed 529
11.3.1 Motivation and Strategy 530
11.3.2 A First Feed Implementation 532
11.3.3 Subselects 535
11.3.4 The New Status Feed 538

11.4 Conclusion 539
11.4.1 Extensions to the Sample Application 540
11.4.2 Guide to Further Resources 542

11.5 Exercises 543

Index 545

This page intentionally left blank

Foreword to the First Edition

My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails,
and then even more loudly switch back to PHP (Google me to read about the drama).
This book by Michael Hartl came so highly recommended that I had to try it, and
Ruby on RailsTM 3 Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that finally
made me get it. Everything is done very much ‘‘the Rails way’’—a way that felt very
unnatural to me before, but now after doing this book finally feels natural. This is also
the only Rails book that does test-driven development the entire time, an approach
highly recommended by the experts but which has never been so clearly demonstrated
before. Finally, by including Git, GitHub, and Heroku in the demo examples, the
author really gives you a feel for what it’s like to do a real-world project. The tutorial’s
code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through the Rails
Tutorial in three long days, doing all the examples and challenges at the end of each
chapter. Do it from start to finish, without jumping around, and you’ll get the ultimate
benefit.

Enjoy!

—Derek Sivers (sivers.org)
Formerly: Founder, CD Baby

Currently: Founder, Thoughts Ltd.

xv

This page intentionally left blank

Foreword to the First Edition

‘‘If you want to learn web development with Ruby on Rails, how should I start?’’ For
years Michael Hartl has provided the answer as author of the RailsSpace tutorial in our
series and now the new Ruby on RailsTM 3 Tutorial that you hold in your hands (or PDF
reader, I guess).

I’m so proud of having Michael on the series roster. He is living, breathing proof
that us Rails folks are some of the luckiest in the wide world of technology. Before
getting into Ruby, Michael taught theoretical and computational physics at Caltech for
six years, where he received the Lifetime Achievement Award for Excellence in Teaching
in 2000. He is a Harvard graduate, has a Ph.D. in Physics from Caltech, and is an
alumnus of Paul Graham’s esteemed Y Combinator program for entrepreneurs. And
what does Michael apply his impressive experience and teaching prowess to? Teaching
new software developers all around the world how to use Ruby on Rails effectively!
Lucky we are indeed!

The availability of this tutorial actually comes at a critical time for Rails adoption.
We’re five years into the history of Rails and today’s version of the platform has
unprecedented power and flexibility. Experienced Rails folks can leverage that power
effectively, but we’re hearing growing cries of frustration from newcomers. The amount
of information out there about Rails is fantastic if you know what you’re doing
already. However, if you’re new, the scope and mass of information about Rails can be
mind-boggling.

Luckily, Michael takes the same approach as his first book in the series, building
a sample application from scratch, and writes in a style that’s meant to be read from
start to finish. Along the way, he explains all the little details that are likely to trip up

xvii

xviii Foreword to the First Edition

beginners. Impressively, he goes beyond just a straightforward explanation of what Rails
does and ventures into prescriptive advice about good software development practices,
such as test-driven development. Neither does Michael constrain himself to a box
delineated by the extents of the Rails framework—he goes ahead and teaches the reader
to use tools essential to existence in the Rails community, such as Git and GitHub.
In a friendly style, he even provides copious contextual footnotes of benefit to new
programmers, such as the pronunciation of SQL and pointers to the origins of lorem
ipsum. Tying all the content together in a way that remains concise and usable is truly a
tour de force of dedication!

I tell you with all my heart that this book is one of the most significant titles in
my Professional Ruby Series, because it facilitates the continued growth of the Rails
ecosystem. By helping newcomers become productive members of the community
quickly, he ensures that Ruby on Rails continues its powerful and disruptive charge into
the mainstream. The Rails Tutorial is potent fuel for the fire that is powering growth
and riches for so many of us, and for that we are forever grateful.

—Obie Fernandez, Series Editor

Acknowledgments

The Ruby on RailsTM Tutorial owes a lot to my previous Rails book, RailsSpace, and
hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both for the work he
did on that book and for his support of this one. I’d also like to thank Debra Williams
Cauley, my editor on both RailsSpace and the Ruby on RailsTM Tutorial ; as long as she
keeps taking me to baseball games, I’ll keep writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and inspired me
over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche, Jeremy Kemper,
Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper, Matt Aimonetti, Gregg
Pollack, Wayne E. Seguin, Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-
Werner, Chris Wanstrath, Chad Fowler, Josh Susser, Obie Fernandez, Ian McFarland,
Steven Bristol, Pratik Naik, Sarah Mei, Sarah Allen, Wolfram Arnold, Alex Chaffee,
Giles Bowkett, Evan Dorn, Long Nguyen, James Lindenbaum, Adam Wiggins, Tikhon
Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, the good people at Pivotal Labs,
the Heroku gang, the thoughtbot guys, and the GitHub crew. Thanks to Jen Lindner,
Patty Donovan (Laserwords), and Julie Nahil and Michael Thurston from Pearson for
their help with the book. Finally, many, many readers—far too many to list—have
contributed a huge number of bug reports and suggestions during the writing of this
book, and I gratefully acknowledge their help in making it as good as it can be.

xix

This page intentionally left blank

About the Author

Michael Hartl is the author of the Ruby on RailsTM Tutorial , the leading introduction
to web development with Ruby on Rails. His prior experience includes writing and
developing RailsSpace, an extremely obsolete Rails tutorial book, and developing Insoshi,
a once-popular and now-obsolete social networking platform in Ruby on Rails. In 2011,
Michael received a Ruby Hero Award for his contributions to the Ruby community.
He is a graduate of Harvard College, has a Ph.D. in physics from Caltech, and is an
alumnus of the Y Combinator entrepreneur program.

xxi

This page intentionally left blank

CHAPTER 1
From Zero to Deploy

Welcome to Ruby on Rails™Tutorial . The goal of this book is to be the best answer to the
question, ‘‘If I want to learn web development with Ruby on Rails, where should I start?’’
By the time you finish the Rails Tutorial, you will have all the skills you need to develop
and deploy your own custom web applications with Rails. You will also be ready to benefit
from the many more advanced books, blogs, and screencasts that are part of the thriving
Rails educational ecosystem. Finally, since the Rails Tutorial uses Rails 3, the knowledge
you gain here represents the state of the art in web development. (The most up-to-date
version of the Rails Tutorial can be found on the book’s website at http://railstutorial.org;
if you are reading this book offline, be sure to check the online version of the Rails
Tutorial book at http://railstutorial.org/book for the latest updates.)

Note that the goal of this book is not merely to teach Rails, but rather to teach
web development with Rails, which means acquiring (or expanding) the skills needed to
develop software for the World Wide Web. In addition to Ruby on Rails, this skillset
includes HTML and CSS, databases, version control, testing, and deployment. To
accomplish this goal, Rails Tutorial takes an integrated approach: You will learn Rails
by example by building a substantial sample application from scratch. As Derek Sivers
notes in the foreword, this book is structured as a linear narrative, designed to be read
from start to finish. If you are used to skipping around in technical books, taking this
linear approach might require some adjustment, but I suggest giving it a try. You can
think of the Rails Tutorial as a video game where you are the main character and where
you level up as a Rails developer in each chapter. (The exercises are the minibosses.)

1

http://railstutorial.org
http://railstutorial.org/book

2 Chapter 1: From Zero to Deploy

In this first chapter, we’ll get started with Ruby on Rails by installing all the necessary
software and by setting up our development environment (Section 1.2). We’ll then
create our first Rails application, called (appropriately enough) first_app. The Rails
Tutorial emphasizes good software development practices, so immediately after creating
our fresh new Rails project we’ll put it under version control with Git (Section 1.3).
And, believe it or not, in this chapter we’ll even put our first app on the wider web by
deploying it to production (Section 1.4).

In Chapter 2, we’ll make a second project, whose purpose is to demonstrate the
basic workings of a Rails application. To get up and running quickly, we’ll build this
demo app (called demo_app) using scaffolding (Box 1.1) to generate code; since this
code is both ugly and complex, Chapter 2 will focus on interacting with the demo app
through its URIs (sometimes called URLs)1 using a web browser.

The rest of the tutorial focuses on developing a single large sample application (called
sample_app), writing all the code from scratch. We’ll develop the sample app using
test-driven development (TDD), getting started in Chapter 3 by creating static pages
and then adding a little dynamic content. We’ll take a quick detour in Chapter 4 to
learn a little about the Ruby language underlying Rails. Then, in Chapter 5 through
Chapter 9, we’ll complete the foundation for the sample application by making a site
layout, a user data model, and a full registration and authentication system. Finally,
in Chapter 10 and Chapter 11 we’ll add microblogging and social features to make a
working example site.

The final sample application will bear more than a passing resemblance to a certain
popular social microblogging site—a site that, coincidentally, was also originally written
in Rails. Although of necessity our efforts will focus on this specific sample application,
the emphasis throughout the Rails Tutorial will be on general principles, so that you will
have a solid foundation no matter what kinds of web applications you want to build.

Box 1.1 Scaffolding: Quicker, Easier, More Seductive

From the beginning, Rails has benefited from a palpable sense of excitement,
starting with the famous 15-minute weblog video by Rails creator David Heinemeier
Hansson. That video and its successors are a great way to get a taste of Rails’ power,

1. URI stands for Uniform Resource Identifier, while the slightly less general URL stands for Uniform Resource
Locator. In practice, the URI is usually equivalent to ‘‘the thing you see in the address bar of your browser.’’

1.1 Introduction 3

and I recommend watching them. But be warned: They accomplish their amazing
15-minute feat using a feature called scaffolding, which relies heavily on generated
code, magically created by the Rails generate command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffolding
approach—it’s quicker, easier, more seductive. But the complexity and sheer amount
of code in the scaffolding can be utterly overwhelming to a beginning Rails developer;
you may be able to use it, but you probably won’t understand it. Following the
scaffolding approach risks turning you into a virtuoso script generator with little (and
brittle) actual knowledge of Rails.

In the Rails Tutorial, we’ll take the (nearly) polar opposite approach: Although
Chapter 2 will develop a small demo app using scaffolding, the core of the Rails
Tutorial is the sample app, which we’ll start writing in Chapter 3. At each stage of
developing the sample application, we will write small, bite-sized pieces of code—sim-
ple enough to understand, yet novel enough to be challenging. The cumulative effect
will be a deeper, more flexible knowledge of Rails, giving you a good background
for writing nearly any type of web application.

1.1 Introduction
Since its debut in 2004, Ruby on Rails has rapidly become one of the most powerful
and popular frameworks for building dynamic web applications. Everyone from scrappy
startups to huge companies have used Rails: 37signals, GitHub, Shopify, Scribd, Twitter,
LivingSocial, Groupon, Hulu, the Yellow Pages—the list of sites using Rails goes on
and on. There are also many web development shops that specialize in Rails, such
as ENTP, thoughtbot, Pivotal Labs, and Hashrocket, plus innumerable independent
consultants, trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100 percent open-source,
available under the permissive MIT License, and as a result it also costs nothing to
download or use. Rails also owes much of its success to its elegant and compact design;
by exploiting the malleability of the underlying Ruby language, Rails effectively creates
a domain-specific language for writing web applications. As a result, many common
web programming tasks—such as generating HTML, making data models, and routing
URIs—are easy with Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and framework
design. For example, Rails was one of the first frameworks to fully digest and implement
the REST architectural style for structuring web applications (which we’ll be learning

4 Chapter 1: From Zero to Deploy

about throughout this tutorial). And when other frameworks develop successful new
techniques, Rails creator David Heinemeier Hansson and the Rails core team don’t
hesitate to incorporate their ideas. Perhaps the most dramatic example is the merger of
Rails and Merb, a rival Ruby web framework, so that Rails now benefits from Merb’s
modular design, stable API, and improved performance.

Finally, Rails benefits from an unusually enthusiastic and diverse community. The
results include hundreds of open-source contributors, well-attended conferences, a huge
number of plugins and gems (self-contained solutions to specific problems such as
pagination and image upload), a rich variety of informative blogs, and a cornucopia
of discussion forums and IRC channels. The large number of Rails programmers also
makes it easier to handle the inevitable application errors: The ‘‘Google the error
message’’ algorithm nearly always produces a relevant blog post or discussion-forum
thread.

1.1.1 Comments for Various Readers

The Rails Tutorial contains integrated tutorials not only for Rails, but also for the
underlying Ruby language, the RSpec testing framework, HTML, CSS, a small amount
of JavaScript, and even a little SQL. This means that, no matter where you currently
are in your knowledge of web development, by the time you finish this tutorial you
will be ready for more advanced Rails resources, as well as for the more systematic
treatments of the other subjects mentioned. It also means that there’s a lot of material
to cover; if you don’t already have experience programming computers, you might find
it overwhelming. The comments below contain some suggestions for approaching the
Rails Tutorial depending on your background.

All readers: One common question when learning Rails is whether to learn Ruby
first. The answer depends on your personal learning style and how much programming
experience you already have. If you prefer to learn everything systematically from the
ground up, or if you have never programmed before, then learning Ruby first might
work well for you, and in this case I recommend Beginning Ruby by Peter Cooper.
On the other hand, many beginning Rails developers are excited about making web
applications, and would rather not slog through a 500-page book on pure Ruby before
ever writing a single web page. In this case, I recommend following the short interactive

1.1 Introduction 5

tutorial at TryRuby,2 and then optimally do the free tutorial at Rails for Zombies3 to
get a taste of what Rails can do.

Another common question is whether to use tests from the start. As noted in
the introduction, the Rails Tutorial uses test-driven development (also called test-first
development), which in my view is the best way to develop Rails applications, but it
does introduce a substantial amount of overhead and complexity. If you find yourself
getting bogged down by the tests, I suggest either skipping them on a first reading or
(even better) using them as a tool to verify your code’s correctness without worrying
about how they work. This latter strategy involves creating the necessary test files (called
specs) and filling them with the test code exactly as it appears in the book. You can then
run the test suite (as described in Chapter 5) to watch it fail, then write the application
code as described in the tutorial, and finally re-run the test suite to watch it pass.

Inexperienced programmers: The Rails Tutorial is not aimed principally at beginning
programmers, and web applications, even relatively simple ones, are by their nature
fairly complex. If you are completely new to web programming and find the Rails
Tutorial too difficult, I suggest learning the basics of HTML and CSS and then
giving the Rails Tutorial another go. (Unfortunately, I don’t have a personal recom-
mendation here, but Head First HTML looks promising, and one reader recommends
CSS: The Missing Manual by David Sawyer McFarland.) You might also consider read-
ing the first few chapters of Beginning Ruby by Peter Cooper, which starts with sample
applications much smaller than a full-blown web app. That said, a surprising number
of beginners have used this tutorial to learn web development, so I suggest giving it
a try, and I especially recommend the Rails Tutorial screencast series4 to give you an
‘‘over-the-shoulder’’ look at Rails software development.

Experienced programmers new to web development: Your previous experience means
you probably already understand ideas like classes, methods, data structures, and others,
which is a big advantage. Be warned that if your background is in C/C++ or Java, you

2. http://tryruby.org

3. http://railsforzombies.org

4. http://railstutorial.org/screencasts

http://tryruby.org
http://railsforzombies.org
http://railstutorial.org/screencasts

6 Chapter 1: From Zero to Deploy

may find Ruby a bit of an odd duck, and it might take time to get used to it; just stick
with it and eventually you’ll be fine. (Ruby even lets you put semicolons at the ends of
lines if you miss them too much.) The Rails Tutorial covers all the web-specific ideas
you’ll need, so don’t worry if you don’t currently know a PUT from a POST.

Experienced web developers new to Rails: You have a great head start, especially if
you have used a dynamic language such as PHP or (even better) Python. The basics of
what we cover will likely be familiar, but test-driven development may be new to you,
as may be the structured REST style favored by Rails. Ruby has its own idiosyncrasies,
so those will likely be new, too.

Experienced Ruby programmers: The set of Ruby programmers who don’t know
Rails is a small one nowadays, but if you are a member of this elite group you can fly
through this book and then move on to The Rails 3 Way by Obie Fernandez.

Inexperienced Rails programmers: You’ve perhaps read some other tutorials and made
a few small Rails apps yourself. Based on reader feedback, I’m confident that you can
still get a lot out of this book. Among other things, the techniques here may be more
up-to-date than the ones you picked up when you originally learned Rails.

Experienced Rails programmers: This book is unnecessary for you, but many expe-
rienced Rails developers have expressed surprise at how much they learned from this
book, and you might enjoy seeing Rails from a different perspective.

After finishing the Ruby on Rails Tutorial, I recommend that experienced program-
mers read The Well-Grounded Rubyist by David A. Black, which is an excellent in-depth
discussion of Ruby from the ground up, or The Ruby Way by Hal Fulton, which is also
fairly advanced but takes a more topical approach. Then move on to The Rails 3 Way
to deepen your Rails expertise.

At the end of this process, no matter where you started, you should be ready for
the many more intermediate-to-advanced Rails resources out there. Here are some I
particularly recommend:

• RailsCasts by Ryan Bates: Excellent (mostly) free Rails screencasts

• PeepCode: Excellent commercial screencasts

1.1 Introduction 7

• Code School: Interactive programming courses

• Rails Guides: Good topical and up-to-date Rails references

• RailsCasts by Ryan Bates: Did I already mention RailsCasts? Seriously: RailsCasts.

1.1.2 ‘‘Scaling’’ Rails

Before moving on with the rest of the introduction, I’d like to take a moment to
address the one issue that dogged the Rails framework the most in its early days: the
supposed inability of Rails to ‘‘scale’’—i.e., to handle large amounts of traffic. Part
of this issue relied on a misconception; you scale a site, not a framework, and Rails, as
awesome as it is, is only a framework. So the real question should have been, ‘‘Can a
site built with Rails scale?’’ In any case, the question has now been definitively answered
in the affirmative: Some of the most heavily trafficked sites in the world use Rails.
Actually doing the scaling is beyond the scope of just Rails, but rest assured that if your
application ever needs to handle the load of Hulu or the Yellow Pages, Rails won’t stop
you from taking over the world.

1.1.3 Conventions in This Book

The conventions in this book are mostly self-explanatory. In this section, I’ll mention
some that may not be.

Both the HTML and PDF editions of this book are full of links, both to internal
sections (such as Section 1.2) and to external sites (such as the main Ruby on Rails
download page).5

Many examples in this book use command-line commands. For simplicity, all
command line examples use a Unix-style command line prompt (a dollar sign), as
follows:

$ echo "hello, world"

hello, world

5. When reading the Rails Tutorial, you may find it convenient to follow an internal section link to look at
the reference and then immediately go back to where you were before. This is easy when reading the book
as a web page, since you can just use the Back button of your browser, but both Adobe Reader and OS X’s
Preview allow you to do this with the PDF as well. In Reader, you can right-click on the document and select
‘‘Previous View’’ to go back. In Preview, use the Go menu: Go > Back.

8 Chapter 1: From Zero to Deploy

Windows users should understand that their systems will use the analogous angle
prompt >:

C:\Sites> echo "hello, world"

hello, world

On Unix systems, some commands should be executed with sudo, which stands
for ‘‘substitute user do.’’ By default, a command executed with sudo is run as an
administrative user, which has access to files and directories that normal users can’t
touch, such as in this example from Section 1.2.2:

$ sudo ruby setup.rb

Most Unix/Linux/OS X systems require sudo by default, unless you are using Ruby
Version Manager as suggested in Section 1.2.2; in this case, you would type this
instead:

$ ruby setup.rb

Rails comes with lots of commands that can be run at the command line. For
example, in Section 1.2.5 we’ll run a local development web server as follows:

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix convention for
directory separators (i.e., a forward slash /). My Rails Tutorial sample application, for
instance, lives in

/Users/mhartl/rails projects/sample app

On Windows, the analogous directory would be

C:\Sites\sample app

The root directory for any given app is known as the Rails root, but this terminology
is confusing and many people mistakenly believe that the ‘‘Rails root’’ is the root
directory for Rails itself. For clarity, the Rails Tutorial will refer to the Rails root as

1.2 Up and Running 9

the application root, and henceforth all directories will be relative to this directory. For
example, the config directory of my sample application is

/Users/mhartl/rails projects/sample app/config

The application root directory here is everything before config, that is,

/Users/mhartl/rails projects/sample app

For brevity, when referring to the file

/Users/mhartl/rails projects/sample app/config/routes.rb

I’ll omit the application root and simply write config/routes.rb.
The Rails Tutorial often shows output from various programs (shell commands,

version control status, Ruby programs, etc.). Because of the innumerable small differ-
ences between different computer systems, the output you see may not always agree
exactly with what is shown in the text, but this is not cause for concern.

Some commands may produce errors depending on your system; rather than
attempt the Sisyphean task of documenting all such errors in this tutorial, I will
delegate to the ‘‘Google the error message’’ algorithm, which among other things is
good practice for real-life software development. If you run into any problems while
following the tutorial, I suggest consulting the resources listed on the Rails Tutorial
help page.6

1.2 Up and Running
I think of Chapter 1 as the ‘‘weeding out phase’’ in law school—if you can get your
dev environment set up, the rest is easy to get through.

—Bob Cavezza, Rails Tutorial reader

It’s time now to get going with a Ruby on Rails development environment and
our first application. There is quite a bit of overhead here, especially if you don’t have

6. http://railstutorial.org/help

http://railstutorial.org/help

10 Chapter 1: From Zero to Deploy

extensive programming experience, so don’t get discouraged if it takes a while to get
started. It’s not just you; every developer goes through it (often more than once), but
rest assured that the effort will be richly rewarded.

1.2.1 Development Environments

Considering various idiosyncratic customizations, there are probably as many devel-
opment environments as there are Rails programmers, but there are at least two
broad types: text editor/command line environments, and integrated development envi-
ronments (IDEs). Let’s consider the latter first.

IDEs
There is no shortage of Rails IDEs, including RadRails, RubyMine, and 3rd Rail.
I’ve heard especially good things about RubyMine, and one reader (David Loeffler)
has assembled notes on how to use RubyMine with this tutorial.7 If you’re comfortable
using an IDE, I suggest taking a look at the options mentioned to see what fits with the
way you work.

Text Editors and Command Lines
Instead of using an IDE, I prefer to use a text editor to edit text, and a command line to
issue commands (Figure 1.1). Which combination you use depends on your tastes and
your platform.

• Text editor: I recommend Sublime Text 2, an outstanding cross-platform text
editor that is in beta as of this writing but has already proven to be exceptionally
powerful. Sublime Text is heavily influenced by TextMate, and in fact is compatible
with most TextMate customizations, such as snippets and color schemes. (TextMate,
which is available only on OS X, is still a good choice if you use a Mac.) A second
excellent choice is Vim,8 versions of which are available for all major platforms.
Sublime Text is a commercial product, whereas Vim is free and open-source;
both are industrial-strength editors, but Sublime Text is much more accessible to
beginners.

7. https://github.com/perfectionist/sample project/wiki

8. The vi editor is one of the most ancient yet powerful weapons in the Unix arsenal, and Vim is ‘‘vi improved.’’

https://github.com/perfectionist/sample_project/wiki

1.2 Up and Running 11

Figure 1.1 A text editor/command line development environment (TextMate/iTerm).

• Terminal: On OS X, I recommend either use iTerm or the native Terminal
app. On Linux, the default terminal is fine. On Windows, many users prefer to
develop Rails applications in a virtual machine running Linux, in which case your
command-line options reduce to the previous case. If developing within Windows
itself, I recommend using the command prompt that comes with Rails Installer
(Section 1.2.2).

If you decide to use Sublime Text, you might want to follow the setup instructions
for Rails Tutorial Sublime Text.9 Note: Such configuration settings are fiddly and
error-prone, so this step should only be attempted by advanced users.

Browsers
Although there are many web browsers to choose from, the vast majority of Rails
programmers use Firefox, Safari, or Chrome when developing. The screenshots in Rails

9. https://github.com/mhartl/rails tutorial sublime text

https://github.com/mhartl/rails_tutorial_sublime_text

12 Chapter 1: From Zero to Deploy

Tutorial will generally be of a Firefox browser. If you use Firefox, I suggest using
the Firebug add-on, which lets you perform all sorts of magic, such as dynamically
inspecting (and even editing) the HTML structure and CSS rules on any page. For
those not using Firefox, both Safari and Chrome have a built-in ‘‘Inspect element’’
feature available by right-clicking on any part of the page.

A Note about Tools
In the process of getting your development environment up and running, you may
find that you spend a lot of time getting everything just right. The learning process for
editors and IDEs is particularly long; you can spend weeks on Sublime Text or Vim
tutorials alone. If you’re new to this game, I want to assure you that spending time
learning tools is normal. Everyone goes through it. Sometimes it is frustrating, and it’s
easy to get impatient when you have an awesome web app in your head and you just
want to learn Rails already, but have to spend a week learning some weird ancient Unix
editor just to get started. But a craftsman has to know his tools, and in the end the
reward is worth the effort.

1.2.2 Ruby, RubyGems, Rails, and Git
Practically all the software in the world is either broken or very difficult to use.
So users dread software. They’ve been trained that whenever they try to install
something, or even fill out a form online, it’s not going to work. I dread installing
stuff, and I have a Ph.D. in computer science.

—Paul Graham, Founders at Work

Now it’s time to install Ruby and Rails. I’ve done my best to cover as many bases
as possible, but systems vary, and many things can go wrong during these steps. Be
sure to Google the error message or consult the Rails Tutorial help page if you run into
trouble.

Unless otherwise noted, you should use the exact versions of all software used
in the tutorial, including Rails itself, if you want the same results. Sometimes
minor version differences will yield identical results, but you shouldn’t count on this,
especially with respect to Rails versions. The main exception is Ruby itself: 1.9.2
and 1.9.3 are virtually identical for the purposes of this tutorial, so feel free to use
either one.

1.2 Up and Running 13

Rails Installer (Windows)
Installing Rails on Windows used to be a real pain, but thanks to the efforts of the good
people at Engine Yard—especially Dr. Nic Williams and Wayne E. Seguin—installing
Rails and related software on Windows is now easy. If you are using Windows, go
to Rails Installer and download the Rails Installer executable and view the excellent
installation video. Double-click the executable and follow the instructions to install
Git (so you can skip Section 1.2.2), Ruby (skip Section 1.2.2), RubyGems (skip
Section 1.2.2), and Rails itself (skip Section 1.2.2). Once the installation has finished,
you can skip right to the creation of the first application in Section 1.2.3.

Bear in mind that the Rails Installer might use a slightly different version of Rails
from the one installed in Section 1.2.2, which might cause incompatibilities. To fix this,
I am currently working with Nic and Wayne to create a list of Rails Installers ordered
by Rails version number.

Install Git
Much of the Rails ecosystem depends in one way or another on a version control system
called Git (covered in more detail in Section 1.3). Because its use is ubiquitous, you
should install Git even at this early stage; I suggest following the installation instructions
for your platform at the Installing Git section of Pro Git.

Install Ruby
The next step is to install Ruby. It’s possible that your system already has it; try
running

$ ruby -v

ruby 1.9.3

to see the version number. Rails 3 requires Ruby 1.8.7 or later and works best with
Ruby 1.9.x. This tutorial assumes that most readers are using Ruby 1.9.2 or 1.9.3, but
Ruby 1.8.7 should work as well (although there is one syntax difference, covered in
Chapter 4, and assorted minor differences in output).

As part of installing Ruby, if you are using OS X or Linux, I strongly recom-
mend using Ruby Version Manager (RVM), which allows you to install and manage
multiple versions of Ruby on the same machine. (The Pik project accomplishes a
similar feat on Windows.) This is particularly important if you want to run different

14 Chapter 1: From Zero to Deploy

versions of Ruby or Rails on the same machine. If you run into any problems with
RVM, you can often find its creator, Wayne E. Seguin, on the RVM IRC channel
(#rvm on freenode.net).10 If you are running Linux, I particularly recommend the
installation tutorial for Linux Ubuntu and Linux Mint by Mircea Goia.

After installing RVM, you can install Ruby as follows:11

$ rvm get head && rvm reload

$ rvm install 1.9.3

<wait a while>

Here the first command updates and reloads RVM itself, which is a good practice since
RVM gets updated frequently. The second installs the 1.9.3 version of Ruby; depending
on your system, it might take a while to download and compile, so don’t worry if it
seems to be taking forever.

Some Linux users report having to include the path to a library called OpenSSL:

$ rvm install 1.9.3 --with-openssl-dir=$HOME/.rvm.usr

On some older OS X systems, you might have to include the path to the readline
library:

$ rvm install 1.9.3 --with-readline-dir=/opt/local

(Like I said, lots of things can go wrong. The only solution is web searches and
determination.)

After installing Ruby, you should configure your system for the other software
needed to run Rails applications. This typically involves installing gems, which are
self-contained packages of Ruby code. Since gems with different version numbers
sometimes conflict, it is often convenient to create separate gemsets, which are self-
contained bundles of gems. For the purposes of this tutorial, I suggest creating a gemset
called rails3tutorial2ndEd:

$ rvm use 1.9.3@rails3tutorial2ndEd --create --default

Using /Users/mhartl/.rvm/gems/ruby-1.9.3 with gemset rails3tutorial2ndEd

10. If you haven’t used IRC before, I suggest you start by searching the web for ‘‘irc client <your platform>.’’
Two good native clients for OS X are Colloquy and LimeChat. And of course there’s always the web interface
at http://webchat.freenode.net/?channels=rvm.

11. You might have to install the Subversion version control system to get this to work.

http://webchat.freenode.net/?channels=rvm

1.2 Up and Running 15

This command creates (--create) the gemset rails3tutorial2ndEd associated with
Ruby 1.9.3 while arranging to start using it immediately (use) and setting it as the
default (--default) gemset, so that any time we open a new terminal window the
1.9.3@rails3tutorial2ndEd Ruby/gemset combination is automatically selected.
RVM supports a large variety of commands for manipulating gemsets; see the docu-
mentation at http://rvm.beginrescueend.com/gemsets. If you ever get stuck with RVM,
running commands like these should help you get your bearings:

$ rvm --help

$ rvm gemset --help

Install RubyGems
RubyGems is a package manager for Ruby projects, and there are many useful libraries
(including Rails) available as Ruby packages, or gems. Installing RubyGems should
be easy once you install Ruby. In fact, if you have installed RVM, you already have
RubyGems, since RVM includes it automatically:

$ which gem

/Users/mhartl/.rvm/rubies/ruby-1.9.3-p0/bin/gem

If you don’t already have it, you should download RubyGems, extract it, and then go
to the rubygems directory and run the setup program:

$ ruby setup.rb

(If you get a permissions error here, recall from Section 1.1.3 that you may have to use
sudo.)

If you already have RubyGems installed, you should make sure your system uses
the version used in this tutorial:

$ gem update --system 1.8.24

Freezing your system to this particular version will help prevent conflicts as RubyGems
changes in the future.

When installing gems, by default RubyGems generates two different kinds of
documentation (called ri and rdoc), but many Ruby and Rails developers find that
the time to build them isn’t worth the benefit. (Many programmers rely on online
documentation instead of the native ri and rdoc documents.) To prevent the automatic

http://rvm.beginrescueend.com/gemsets

16 Chapter 1: From Zero to Deploy

generation of the documentation, I recommend making a gem configuration file called
.gemrc in your home directory as in Listing 1.1 with the line in Listing 1.2. (The
tilde ‘‘˜’’ means ‘‘home directory,’’ while the dot . in .gemrc makes the file hidden,
which is a common convention for configuration files.)

Listing 1.1 Creating a gem configuration file.

$ subl ˜/.gemrc

Here subl is the command-line command to launch Sublime Text on OS X, which
you can set up using the Sublime Text 2 documentation for the OS X command line.
If you’re on a different platform, or if you’re using a different editor, you should replace
this command as necessary (i.e., by double-clicking the application icon or by using an
alternate command such as mate, vim, gvim, or mvim). For brevity, throughout the rest
of this tutorial I’ll use subl as a shorthand for ‘‘open with your favorite text editor.’’

Listing 1.2 Suppressing the ri and rdoc documentation in .gemrc.

install: --no-rdoc --no-ri

update: --no-rdoc --no-ri

Install Rails
Once you’ve installed RubyGems, installing Rails should be easy. This tutorial stan-
dardizes on Rails 3.2, which we can install as follows:

$ gem install rails -v 3.2.13

To check your Rails installation, run the following command to print out the version
number:

$ rails -v

Rails 3.2.13

Note: If you installed Rails using the Rails Installer in Section 1.2.2, there might be
slight version differences. As of this writing, those differences are not relevant, but in
the future, as the current Rails version diverges from the one used in this tutorial, these
differences may become significant. I am currently working with Engine Yard to create
links to specific versions of the Rails Installer.

1.2 Up and Running 17

If you’re running Linux, you might have to install a couple of other packages at
this point:

$ sudo apt-get install libxslt-dev libxml2-dev libsqlite3-dev # Linux only

1.2.3 The First Application

Virtually all Rails applications start the same way, with the rails command. This
handy program creates a skeleton Rails application in a directory of your choice. To get
started, make a directory for your Rails projects and then run the rails command to
make the first application (Listing 1.3):

Listing 1.3 Running rails to generate a new application.

$ mkdir rails projects

$ cd rails projects

$ rails new first app

create

create README.rdoc

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/assets/images/rails.png

create app/assets/javascripts/application.js

create app/assets/stylesheets/application.css

create app/controllers/application controller.rb

create app/helpers/application helper.rb

create app/mailers

create app/models

create app/views/layouts/application.html.erb

create app/mailers/.gitkeep

create app/models/.gitkeep

create config

create config/routes.rb

create config/application.rb

create config/environment.rb

.

.

.

create vendor/plugins

create vendor/plugins/.gitkeep

run bundle install

18 Chapter 1: From Zero to Deploy

Fetching source index for https://rubygems.org/

.

.

.

Your bundle is complete! Use 'bundle show [gemname]' to see where a bundled

gem is installed.

As seen at the end of Listing 1.3, running rails automatically runs the bundle

install command after the file creation is done. If that step doesn’t work right now,
don’t worry; follow the steps in Section 1.2.4 and you should be able to get it to work.

Notice how many files and directories the rails command creates. This standard
directory and file structure (Figure 1.2) is one of the many advantages of Rails; it
immediately gets you from zero to a functional (if minimal) application. Moreover,
since the structure is common to all Rails apps, you can immediately get your bearings
when looking at someone else’s code. A summary of the default Rails files appears in
Table 1.1; we’ll learn about most of these files and directories throughout the rest of this
book. In particular, starting in Section 5.2.1 we’ll discuss the app/assets directory,

Figure 1.2 The directory structure for a newly hatched Rails app.

1.2 Up and Running 19

Table 1.1 A summary of the default Rails directory structure.

File/Directory Purpose

app/ Core application (app) code, including models, views, controllers, and
helpers

app/assets Applications assets such as cascading style sheets (CSS), JavaScript files, and
images

config/ Application configuration
db/ Database files
doc/ Documentation for the application
lib/ Library modules
lib/assets Library assets such as cascading style sheets (CSS), JavaScript files, and

images
log/ Application log files
public/ Data accessible to the public (e.g., web browsers), such as error pages
script/rails A script for generating code, opening console sessions, or starting a local

server
test/ Application tests (made obsolete by the spec/ directory in Section 3.1.2)
tmp/ Temporary files
vendor/ Third-party code such as plugins and gems
vendor/assets Third-party assets such as cascading style sheets (CSS), JavaScript files, and

images
README.rdoc A brief description of the application
Rakefile Utility tasks available via the rake command
Gemfile Gem requirements for this app
Gemfile.lock A list of gems used to ensure that all copies of the app use the same gem

versions
config.ru A configuration file for Rack middleware
.gitignore Patterns for files that should be ignored by Git

part of the asset pipeline (new as of Rails 3.1) that makes it easier than ever to organize
and deploy assets such as cascading style sheets and JavaScript files.

1.2.4 Bundler

After creating a new Rails application, the next step is to use Bundler to install and
include the gems needed by the app. As noted briefly in Section 1.2.3, Bundler is
run automatically (via bundle install) by the rails command, but in this section

20 Chapter 1: From Zero to Deploy

we’ll make some changes to the default application gems and run Bundler again. This
involves opening the Gemfile with your favorite text editor:

$ cd first app/

$ subl Gemfile

The result should look something like Listing 1.4. The code in this file is Ruby, but
don’t worry at this point about the syntax; Chapter 4 will cover Ruby in more depth.

Listing 1.4 The default Gemfile in the first_app directory.

source 'https://rubygems.org'

gem 'rails', '3.2.13'

Bundle edge Rails instead:

gem 'rails', :git => 'git://github.com/rails/rails.git'

gem 'sqlite3'

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '˜> 3.2.3'

gem 'coffee-rails', '˜> 3.2.2'

gem 'uglifier', '>= 1.2.3'

end

gem 'jquery-rails'

To use ActiveModel has secure password

gem 'bcrypt-ruby', '˜> 3.0.0'

To use Jbuilder templates for JSON

gem 'jbuilder'

Use unicorn as the web server

gem 'unicorn'

Deploy with Capistrano

gem 'capistrano'

To use debugger

gem 'ruby-debug19', :require => 'ruby-debug'

1.2 Up and Running 21

Many of these lines are commented out with the hash symbol #; they are there to show
you some commonly needed gems and to give examples of the Bundler syntax. For
now, we won’t need any gems other than the defaults: Rails itself, some gems related
to the asset pipeline (Section 5.2.1), the gem for the jQuery JavaScript library, and the
gem for the Ruby interface to the SQLite database.

Unless you specify a version number to the gem command, Bundler will automati-
cally install the latest version of the gem. Unfortunately, gem updates often cause minor
but potentially confusing breakage, so in this tutorial we’ll include explicit version
numbers known to work, as seen in Listing 1.5 (which also omits the commented-out
lines from Listing 1.4).

Listing 1.5 A Gemfile with an explicit version of each Ruby gem.

source 'https://rubygems.org'

gem 'rails', '3.2.13'

group :development do

gem 'sqlite3', '1.3.5'

end

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

gem 'jquery-rails', '2.0.0'

Listing 1.5 changes the line for jQuery, the default JavaScript library used by Rails,
from

gem 'jquery-rails'

to

gem 'jquery-rails', '2.0.0'

22 Chapter 1: From Zero to Deploy

We’ve also changed

gem 'sqlite3'

to

group :development do

gem 'sqlite3', '1.3.5'

end

which forces Bundler to install version 1.3.5 of the sqlite3 gem. Note that we’ve
also taken this opportunity to arrange for SQLite to be included only in a development
environment (Section 7.1.1), which prevents potential conflicts with the database used
by Heroku (Section 1.4).

Listing 1.5 also changes a few other lines, converting

group :assets do

gem 'sass-rails', '˜> 3.2.3'

gem 'coffee-rails', '˜> 3.2.2'

gem 'uglifier', '>= 1.2.3'

end

to

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

The syntax

gem 'uglifier', '>= 1.2.3'

installs the latest version of the uglifier gem (which handles file compression for the
asset pipeline) as long as it’s greater than version 1.2.3—even if it’s, say, version 7.2.
Meanwhile, the code

gem 'coffee-rails', '˜> 3.2.2'

installs the gem coffee-rails (also needed by the asset pipeline) as long as it’s lower
than version 3.3. In other words, the >= notation always performs upgrades, whereas

1.2 Up and Running 23

the ˜> 3.2.2 notation only performs upgrades to minor point releases (e.g., from 3.1.1

to 3.1.2), but not to major point releases (e.g., from 3.1 to 3.2). Unfortunately,
experience shows that even minor point releases often break things, so for the Rails
Tutorial we’ll err on the side of caution by including exact version numbers for virtually
all gems. (The only exception is gems that are in release candidate or beta stage as of
this writing; for those gems, we’ll use ˜> so that the final versions will be loaded once
they’re done.)

Once you’ve assembled the proper Gemfile, install the gems using bundle

install:

$ bundle install

Fetching source index for https://rubygems.org/

.

.

.

(If you’re running OS X and you get an error about missing Ruby header files (e.g.,
ruby.h) at this point, you may need to install Xcode. These are developer tools that came
with your OS X installation disk, but to avoid the full installation I recommend the
much smaller Command Line Tools for Xcode.12) The bundle install command
might take a few moments, but when it’s done our application will be ready to
run. Note: This setup is fine for the first app, but it isn’t ideal. Chapter 3 covers a
more powerful (and slightly more advanced) method for installing Ruby gems with
Bundler.

1.2.5 rails server

Thanks to running rails new in Section 1.2.3 and bundle install in Section 1.2.4,
we already have an application we can run—but how? Happily, Rails comes with a
command-line program, or script, that runs a local web server, visible only from your
development machine:13

$ rails server

=> Booting WEBrick

=> Rails application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

12. https://developer.apple.com/downloads

13. Recall from Section 1.1.3 that Windows users might have to type ruby rails server instead.

https://developer.apple.com/downloads

24 Chapter 1: From Zero to Deploy

Figure 1.3 The default Rails page.

(If your system complains about the lack of a JavaScript runtime, visit the execjs page at
GitHub for a list of possibilities. I particularly recommend installing Node.js.) This
tells us that the application is running on port number 300014 at the address 0.0.0.0.
This address tells the computer to listen on every available IP address configured on that
specific machine; in particular, we can view the application using the special address
127.0.0.1, which is also known as localhost. We can see the result of visiting
http://localhost:3000/ in Figure 1.3.

To see information about our first application, click on the link ‘‘About your
application’s environment.’’ The result is shown in Figure 1.4. (Figure 1.4 represents
the environment on my machine when I made the screenshot; your results may
differ.)

14. Normally, websites run on port 80, but this usually requires special privileges, so Rails picks a less restricted
higher-numbered port for the development server.

1.2 Up and Running 25

Figure 1.4 The default page with the app environment.

Of course, we don’t need the default Rails page in the long run, but it’s nice to see
it working for now. We’ll remove the default page (and replace it with a custom home
page) in Section 5.3.2.

1.2.6 Model-view-controller (MVC)

Even at this early stage, it’s helpful to get a high-level overview of how Rails applications
work (Figure 1.5). You might have noticed that the standard Rails application structure
(Figure 1.2) has an application directory called app/ with three subdirectories: models,
views, and controllers. This is a hint that Rails follows the model-view-controller
(MVC) architectural pattern, which enforces a separation between ‘‘domain logic’’
(also called ‘‘business logic’’) from the input and presentation logic associated with a
graphical user interface (GUI). In the case of web applications, the ‘‘domain logic’’

26 Chapter 1: From Zero to Deploy

Figure 1.5 A schematic representation of the model-view-controller (MVC) architecture.

typically consists of data models for things like users, articles, and products, and the
GUI is just a web page in a web browser.

When interacting with a Rails application, a browser sends a request, which is
received by a web server and passed on to a Rails controller, which is in charge of what
to do next. In some cases, the controller will immediately render a view, which is a
template that gets converted to HTML and sent back to the browser. More commonly
for dynamic sites, the controller interacts with a model, which is a Ruby object that
represents an element of the site (such as a user) and is in charge of communicating
with the database. After invoking the model, the controller then renders the view and
returns the complete web page to the browser as HTML.

If this discussion seems a bit abstract right now, worry not; we’ll refer back to this
section frequently. In addition, Section 2.2.2 has a more detailed discussion of MVC in

1.3 Version Control with Git 27

the context of the demo app. Finally, the sample app will use all aspects of MVC; we’ll
cover controllers and views starting in Section 3.1.2, models starting in Section 6.1, and
we’ll see all three working together in Section 7.1.2.

1.3 Version Control with Git
Now that we have a fresh and working Rails application, we’ll take a moment for a
step that, while technically optional, would be viewed by many Rails developers as
practically essential, namely, placing our application source code under version control.
Version control systems allow us to track changes to our project’s code, collaborate
more easily, and roll back any inadvertent errors (such as accidentally deleting files).
Knowing how to use a version control system is a required skill for every software
developer.

There are many options for version control, but the Rails community has largely
standardized on Git, a distributed version control system originally developed by Linus
Torvalds to host the Linux kernel. Git is a large subject, and we’ll only be scratching
the surface in this book, but there are many good free resources online; I especially
recommend Pro Git by Scott Chacon (Apress, 2009). Putting your source code under
version control with Git is strongly recommended, not only because it’s nearly a
universal practice in the Rails world, but also because it will allow you to share your code
more easily (Section 1.3.4) and deploy your application right here in the first chapter
(Section 1.4).

1.3.1 Installation and Setup

The first step is to install Git if you haven’t yet followed the steps in Section 1.2.2. (As
noted in that section, this involves following the instructions in the Installing Git section
of Pro Git.)

First-time System Setup
After installing Git, you should perform a set of one-time setup steps. These are system
setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"

$ git config --global user.email your.email@example.com

28 Chapter 1: From Zero to Deploy

I also like to use co in place of the more verbose checkout command, which we can
arrange as follows:

$ git config --global alias.co checkout

This tutorial will usually use the full checkout command, which works for systems
that don’t have co configured, but in real life I nearly always use git co.

As a final setup step, you can optionally set the editor Git will use for commit
messages. If you use a graphical editor such as Sublime Text, TextMate, gVim, or
MacVim, you need to use a flag to make sure that the editor stays attached to the shell
instead of detaching immediately:15

$ git config --global core.editor "subl -w"

Replace "subl -w" with "mate -w" for TextMate, "gvim -f" for gVim, or "mvim
-f" for MacVim.

First-time Repository Setup
Now we come to some steps that are necessary each time you create a new repository.
First, navigate to the root directory of the first app and initialize a new repository:

$ git init

Initialized empty Git repository in /Users/mhartl/rails projects/first app/.git/

The next step is to add the project files to the repository. There’s a minor
complication, though: By default Git tracks the changes of all the files, but there are
some files we don’t want to track. For example, Rails creates log files to record the
behavior of the application; these files change frequently, and we don’t want our version
control system to have to update them constantly. Git has a simple mechanism to ignore
such files: Simply include a file called .gitignore in the application root directory
with some rules telling Git which files to ignore.16

15. Normally this is a feature, since it lets you continue to use the command line after launching your editor,
but Git interprets the detachment as closing the file with an empty commit message, which prevents the
commit from going through. I only mention this point because it can be seriously confusing if you try to set
your editor to subl or gvim without the flag. If you find this note confusing, feel free to ignore it.

16. If you can’t see the .gitignore file in your directory, you may need to configure your directory viewer to
show hidden files.

1.3 Version Control with Git 29

Looking again at Table 1.1, we see that the rails command creates a default
.gitignore file in the application root directory, as shown in Listing 1.6.

Listing 1.6 The default .gitignore created by the rails command.

See http://help.github.com/ignore-files/ for more about ignoring files.

#

If you find yourself ignoring temporary files generated by your text editor

or operating system, you probably want to add a global ignore instead:

git config --global core.excludesfile ˜/.gitignore global

Ignore bundler config

/.bundle

Ignore the default SQLite database.

/db/*.sqlite3

Ignore all logfiles and tempfiles.

/log/*.log

/tmp

Listing 1.6 causes Git to ignore files such as log files, Rails temporary (tmp) files, and
SQLite databases. (For example, to ignore log files, which live in the log/ directory, we
use log/*.log to ignore all files that end in .log.) Most of these ignored files change
frequently and automatically, so including them under version control is inconvenient;
moreover, when collaborating with others they can cause frustrating and irrelevant
conflicts.

The .gitignore file in Listing 1.6 is probably sufficient for this tutorial, but
depending on your system you may find Listing 1.7 more convenient. This augmented
.gitignore arranges to ignore Rails documentation files, Vim and Emacs swap files,
and (for OS X users) the weird .DS_Store directories created by the Mac Finder
application. If you want to use this broader set of ignored files, open up .gitignore

in your favorite text editor and fill it with the contents of Listing 1.7.

Listing 1.7 An augmented .gitignore file.

Ignore bundler config

/.bundle

Ignore the default SQLite database.

/db/*.sqlite3

30 Chapter 1: From Zero to Deploy

Ignore all logfiles and tempfiles.

/log/*.log

/tmp

Ignore other unneeded files.

doc/

*.swp

*˜

.project

.DS Store

1.3.2 Adding and Committing

Finally, we’ll add the files in your new Rails project to Git and then commit the
results. You can add all the files (apart from those that match the ignore patterns in
.gitignore) as follows:

$ git add .

Here the dot ‘‘.’’ represents the current directory, and Git is smart enough to add the
files recursively, so it automatically includes all the subdirectories. This command adds
the project files to a staging area, which contains pending changes to your project; you
can see which files are in the staging area using the status command:17

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: README.rdoc

new file: Rakefile

.

.

.

(The results are long, so I’ve used vertical dots to indicate omitted output.)

17. If in the future any unwanted files start showing up when you type git status, just add them to your
.gitignore file from Listing 1.7.

1.3 Version Control with Git 31

To tell Git you want to keep the changes, use the commit command:

$ git commit -m "Initial commit"

[master (root-commit) df0a62f] Initial commit

42 files changed, 8461 insertions(+), 0 deletions(-)

create mode 100644 README.rdoc

create mode 100644 Rakefile

.

.

.

The -m flag lets you add a message for the commit; if you omit -m, Git will open the
editor you set in Section 1.3.1 and have you enter the message there.

It is important to note that Git commits are local, recorded only on the machine
on which the commits occur. This is in contrast to the popular open-source version
control system called Subversion, in which a commit necessarily makes changes on a
remote repository. Git divides a Subversion-style commit into its two logical pieces: A
local recording of the changes (git commit) and a push of the changes up to a remote
repository (git push). We’ll see an example of the push step in Section 1.3.5.

By the way, you can see a list of your commit messages using the log command:

$ git log

commit df0a62f3f091e53ffa799309b3e32c27b0b38eb4

Author: Michael Hartl <michael@michaelhartl.com>

Date: Thu Oct 15 11:36:21 2009 -0700

Initial commit

To exit git log, you may have to type q to quit.

1.3.3 What Good Does Git Do You?

It’s probably not entirely clear at this point why putting your source under version
control does you any good, so let me give just one example. (We’ll see many others
in the chapters ahead.) Suppose you’ve made some accidental changes, such as (D’oh!)
deleting the critical app/controllers/ directory:

$ ls app/controllers/

application controller.rb

$ rm -rf app/controllers/

$ ls app/controllers/

ls: app/controllers/: No such file or directory

32 Chapter 1: From Zero to Deploy

Here we’re using the Unix ls command to list the contents of the app/controllers/
directory and the rm command to remove it. The -rf flag means ‘‘recursive force’’,
which recursively removes all files, directories, subdirectories, and so on, without asking
for explicit confirmation of each deletion.

Let’s check the status to see what’s up:

$ git status

On branch master

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

deleted: app/controllers/application controller.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the ‘‘working tree’’;
they haven’t been committed yet. This means we can still undo the changes easily by
having Git check out the previous commit with the checkout command (and a -f flag
to force overwriting the current changes):

$ git checkout -f

$ git status

On branch master

nothing to commit (working directory clean)

$ ls app/controllers/

application controller.rb

The missing directory and file are back. That’s a relief!

1.3.4 GitHub

Now that you’ve put your project under version control with Git, it’s time to push
your code up to GitHub, a social code site optimized for hosting and sharing Git
repositories. Putting a copy of your Git repository at GitHub serves two purposes: It’s
a full backup of your code (including the full history of commits), and it makes any
future collaboration much easier. This step is optional, but being a GitHub member
will open the door to participating in a wide variety of open-source projects.

1.3 Version Control with Git 33

Figure 1.6 Creating the first app repository at GitHub.

GitHub has a variety of paid plans, but for open-source code their services are
free, so sign up for a free GitHub account if you don’t have one already. (You might
have to follow the GitHub tutorial on creating SSH keys first.) After signing up, click
on the link to create a repository and fill in the information as in Figure 1.6. (Take
care not to initialize the repository with a README file, as rails new creates one
of those automatically.) After submitting the form, push up your first application
as follows:

$ git remote add origin git@github.com:<username>/first app.git

$ git push -u origin master

These commands tell Git that you want to add GitHub as the origin for your main
(master) branch and then push your repository up to GitHub. (Don’t worry about what
the -u flag does; if you’re curious, do a web search for ‘‘git set upstream’’.) Of course,

34 Chapter 1: From Zero to Deploy

Figure 1.7 A GitHub repository page.

you should replace <username> with your actual username. For example, the command
I ran for the railstutorial user was

$ git remote add origin git@github.com:railstutorial/first app.git

The result is a page at GitHub for the first application repository, with file browsing,
full commit history, and lots of other goodies (Figure 1.7).

1.3.5 Branch, Edit, Commit, Merge

If you’ve followed the steps in Section 1.3.4, you might notice that GitHub auto-
matically shows the contents of the README file on the main repository page. In our
case, since the project is a Rails application generated using the rails command, the
README file is the one that comes with Rails (Figure 1.8). Because of the .rdoc exten-
sion on the file, GitHub ensures that it is formatted nicely, but the contents aren’t

1.3 Version Control with Git 35

Figure 1.8 The initial (rather useless) README file for our project at GitHub.

helpful at all, so in this section we’ll make our first edit by changing the README to
describe our project rather than the Rails framework itself. In the process, we’ll see a
first example of the branch, edit, commit, merge workflow that I recommend using
with Git.

Branch
Git is incredibly good at making branches, which are effectively copies of a repository
where we can make (possibly experimental) changes without modifying the parent files.
In most cases, the parent repository is the master branch, and we can create a new topic
branch by using checkout with the -b flag:

$ git checkout -b modify-README

Switched to a new branch 'modify-README'

$ git branch

master

* modify-README

36 Chapter 1: From Zero to Deploy

Here the second command, git branch, just lists all the local branches, and the
asterisk * identifies which branch we’re currently on. Note that git checkout

-b modify-README both creates a new branch and switches to it, as indicated by
the asterisk in front of the modify-README branch. (If you set up the co alias in
Section 1.3, you can use git co -b modify-README instead.)

The full value of branching only becomes clear when working on a project with
multiple developers,18 but branches are helpful even for a single-developer tutorial such
as this one. In particular, the master branch is insulated from any changes we make
to the topic branch, so even if we really screw things up, we can always abandon the
changes by checking out the master branch and deleting the topic branch. We’ll see
how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother with a new
branch, but it’s never too early to start practicing good habits.

Edit
After creating the topic branch, we’ll edit it to make it a little more descriptive. I prefer
the Markdown markup language to the default RDoc for this purpose, and if you use
the file extension .md then GitHub will automatically format it nicely for you. So, first
we’ll use Git’s version of the Unix mv (‘‘move’’) command to change the name, and
then fill it in with the contents of Listing 1.8:

$ git mv README.rdoc README.md

$ subl README.md

Listing 1.8 The new README file, README.md.

Ruby on Rails Tutorial: first application

This is the first application for

[*Ruby on Rails Tutorial: Learn Rails by Example*](http://railstutorial.org/)

by [Michael Hartl](http://michaelhartl.com/).

Commit
With the changes made, we can take a look at the status of our branch:

18. See the chapter Git Branching in Pro Git for details.

1.3 Version Control with Git 37

$ git status

On branch modify-README

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.rdoc -> README.md

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: README.md

#

At this point, we could use git add . as in Section 1.3.2, but Git provides the -a flag
as a shortcut for the (very common) case of committing all modifications to existing
files (or files created using git mv, which don’t count as new files to Git):

$ git commit -a -m "Improve the README file"

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README.rdoc

create mode 100644 README.md

Be careful about using the -a flag improperly; if you have added any new files to the
project since the last commit, you still have to tell Git about them using git add first.

Note that we write the commit message in the present tense. Git models commits as
a series of patches, and in this context it makes sense to describe what each commit does,
rather than what it did. Moreover, this usage matches up with the commit messages
generated by Git commands themselves. See the GitHub post Shiny new commit styles
for more information.

Merge
Now that we’ve finished making our changes, we’re ready to merge the results back into
our master branch:

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating 34f06b7..2c92bef

Fast forward

README.rdoc | 243 --

38 Chapter 1: From Zero to Deploy

README.md | 5 +

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README.rdoc

create mode 100644 README.md

Note that the Git output frequently includes things like 34f06b7, which are related to
Git’s internal representation of repositories. Your exact results will differ in these details,
but otherwise should essentially match the output shown above.

After you’ve merged in the changes, you can tidy up your branches by deleting the
topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README

Deleted branch modify-README (was 2c92bef).

This step is optional, and in fact it’s quite common to leave the topic branch intact. This
way you can switch back and forth between the topic and master branches, merging in
changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch changes, in
this case with git branch -D:

For illustration only; don't do this unless you mess up a branch

$ git checkout -b topic-branch

$ <really screw up the branch>

$ git add .

$ git commit -a -m "Major screw up"

$ git checkout master

$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t merged in
the changes.

Push
Now that we’ve updated the README, we can push the changes up to GitHub to see the
result. Since we have already done one push (Section 1.3.4), on most systems we can
omit origin master and simply run git push:

$ git push

As promised, GitHub nicely formats the new file using Markdown (Figure 1.9).

1.4 Deploying 39

Figure 1.9 The improved README file formatted with Markdown.

1.4 Deploying
Even at this early stage, we’re already going to deploy our (still-empty) Rails application
to production. This step is optional, but deploying early and often allows us to catch
any deployment problems early in our development cycle. The alternative—deploying
only after laborious effort sealed away in a development environment—often leads to
terrible integration headaches when launch time comes.19

Deploying Rails applications used to be a pain, but the Rails deployment ecosystem
has matured rapidly in the past few years, and now there are several great options.
These include shared hosts or virtual private servers running Phusion Passenger (a
module for the Apache and Nginx20 web servers), full-service deployment companies
such as Engine Yard and Rails Machine, and cloud deployment services such as
Engine Yard Cloud and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform built
specifically for deploying Rails and other Ruby web applications.21 Heroku makes
deploying Rails applications ridiculously easy—as long as your source code is under
version control with Git. (This is yet another reason to follow the Git setup steps in
Section 1.3 if you haven’t already.) The rest of this section is dedicated to deploying
our first application to Heroku.

1.4.1 Heroku Setup

After signing up for a Heroku account, install the Heroku gem:

$ gem install heroku

19. Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about
accidentally making your app public too soon there are several options; see Section 1.4.4 for one.

20. Pronounced ‘‘Engine X.’’

21. Heroku works with any Ruby web platform that uses Rack middleware, which provides a standard interface
between web frameworks and web servers. Adoption of the Rack interface has been extraordinarily strong in
the Ruby community, including frameworks as varied as Sinatra, Ramaze, Camping, and Rails, which means
that Heroku basically supports any Ruby web app.

40 Chapter 1: From Zero to Deploy

As with GitHub (Section 1.3.4), when using Heroku you will need to create SSH keys
if you haven’t already, and then tell Heroku your public key so that you can use Git to
push the sample application repository up to their servers:

$ heroku keys:add

Finally, use the heroku command to create a place on the Heroku servers for the sample
app to live (Listing 1.9).

Listing 1.9 Creating a new application at Heroku.

$ heroku create --stack cedar

Created http://stormy-cloud-5881.herokuapp.com/ |

git@heroku.com:stormy-cloud-5881.herokuapp.com

Git remote heroku added

(The --stack cedar argument arranges to use the latest and greatest version of
Heroku, called the Celadon Cedar Stack.) Yes, that’s it. The heroku command creates
a new subdomain just for our application, available for immediate viewing. There’s
nothing there yet, though, so let’s get busy deploying.

1.4.2 Heroku Deployment, Step One

To deploy to Heroku, the first step is to use Git to push the application to Heroku:

$ git push heroku master

1.4.3 Heroku Deployment, Step Two

There is no step two! We’re already done (Figure 1.10). To see your newly deployed
application, you can visit the address that you saw when you ran heroku create (i.e.,
Listing 1.9, but with the address for your app, not the address for mine). You can also
use an argument to the heroku command that automatically opens your browser with
the right address:

$ heroku open

Because of the details of their setup, the ‘‘About your application’s environment’’ link
doesn’t work on Heroku. Don’t worry; this is normal. The error will go away (in

1.4 Deploying 41

Figure 1.10 The first Rails Tutorial application running on Heroku.

the context of the full sample application) when we remove the default Rails page in
Section 5.3.2.

Once you’ve deployed successfully, Heroku provides a beautiful interface for
administering and configuring your application (Figure 1.11).

1.4.4 Heroku Commands

There are many Heroku commands, and we’ll barely scratch the surface in this
book. Let’s take a minute to show just one of them by renaming the application as
follows:

$ heroku rename railstutorial

Don’t use this name yourself; it’s already taken by me! In fact, you probably shouldn’t
bother with this step right now; using the default address supplied by Heroku is fine.

42 Chapter 1: From Zero to Deploy

Figure 1.11 The beautiful interface at Heroku.

But if you do want to rename your application, you can arrange for it to be reasonably
secure by using a random or obscure subdomain, such as the following:

hwpcbmze.heroku.com

seyjhflo.heroku.com

jhyicevg.heroku.com

With a random subdomain like this, someone could visit your site only if you gave him
or her the address. (By the way, as a preview of Ruby’s compact awesomeness, here’s
the code I used to generate the random subdomains:

('a'..'z').to a.shuffle[0..7].join

Pretty sweet.)
In addition to supporting subdomains, Heroku also supports custom domains. (In

fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re reading this book online,
you’re looking at a Heroku-hosted site right now!) See the Heroku documentation for
more information about custom domains and other Heroku topics.

1.5 Conclusion 43

1.5 Conclusion
We’ve come a long way in this chapter: installation, development environment setup,
version control, and deployment. If you want to share your progress at this point, feel
free to send a tweet or Facebook status update with something like this:

I’m learning Ruby on Rails with @railstutorial! http://railstutorial.org

All that’s left is to actually start learning Rails! Let’s get to it.

http://railstutorial.org

This page intentionally left blank

Index

Note: Page numbers in italics indicate figures, those with t indicate tables, and those
with n indicate footnotes.

Symbols
" (double quote character), 135
(hash symbol), 21
/ (forward slash), 8
|| = construction, 354–355
! (not) operator, 139
&& (and) operator, 139
+ (plus) operator, 135
|| (or) operator, 139

A
About page

about route, adding (Listing 3.14), 100–101
about view, adding, 101–102
adding, 99–103
adding code to test contents of (Listing 3.13),

99
code for (Listing 3.16), 102
footer partial with links for (Listing 5.25), 206
with HTML structure (Listing 3.21), 108
with HTML structure removed (Listing 3.28),

113
new, 102
refactoring, 103
StaticPages controller with added about action

(Listing 3.15), 101

tests for static pages (Listing 5.27), 210
view for, with Embedded Ruby title

(Listing 3.24), 110–111
writing a failing test for, 99–100

abstraction layers, 226n4
access control, 456–459
access control in manipulating Microposts,

456–459
accessible attributes and first validation, 432–433
accessible attributes in model file, 230
actions, 85–86
Active Record, 222

callback, 253
count method, 295
creating user objects, 230–233
finding user objects, 233–235
updating user objects, 235–236
See also Validations

adding files, in Git, 30–31
administrative users, 413–417

attr accessible, 416–417
attr accessible attributes for User model

without :admin attribute (Listing 9.42),
417

deleting, 413–417
migration to add boolean admin attribute to

users (Listing 9.40), 415

545

546 Index

administrative users (continued)
sample data populator code with admin user

(Listing 9.41), 416
tests for admin attribute (Listing 9.39), 414
user delete links (viewable by admins)

(Listing 9.45), 419
User model with admin boolean attribute, 415

administrative users, deleting, 413–417
Ajax

follow button with, 524–529
form for following a user using (Listing 11.35),

525
form for unfollowing a user using

(Listing 11.36), 525
JavaScript Embedded Ruby to create following

relationship (Listing 11.39), 529
problem solved by, 524
Ruby JavaScript to destroy following

relationship (Listing 11.40), 529
Ajax requests, responding to, 525–529

JS-ERb, 528–529
in Relationships controller (Listing 11.38), 527
tests for Relationships controller

(Listing 11.37), 526
ampersand (&), 534
anchor tag, 97
annotate, 229–230
annotated User model (Listing 6.5), 229–230
ApplicationController class with inheritance

(Listing 2.16), 72
Application Programmer Interface (API), 542
application root, 9, 28–29, 125, 161
Architectural Styles and the Design of Network-based

Software Architectures (Fielding), 60n4
arrays, in Ruby data structures, 142–145
asset directory in asset pipeline, 187–188
asset pipeline, Sass and, 187–190

asset directory, 187–188
efficiency in production, 189–190
manifest files, 188–189
preprocessor engines, 189

assignment, 352
See also Mass assignment

associations
Micropost resource, 68–70
user/micropost, 433–438
user/relationship, 491–494

associative arrays, 148
asynchronous JavaScript and XML. See Ajax
attr accessible

administrative users, 416–417
attributes for User model without :admin

attribute (Listing 9.42), 417
making name and email attributes accessible

(Listing 6.6), 230
to prevent mass assignment, 230, 416–417

attribute accessors, 162
authenticate method

has secure password, 264, 338
moving the authenticate method into the

Sessions helper (Listing 10.27), 457–458
test for (Listing 6.29), 262–263

authentication, 260–263
adding authentication to Microposts controller

actions (Listing 10.28), 458
vs. authorization, 385
sessions and, 325–326
signin failure, 325–343
signin success, 343–363
See also Authenticate method

authenticity token, 301
authorization, 385–396

vs. authentication, 385
of following and followers pages, tests for

(Listing 11.28), 516–517
friendly forwarding, 392–396
for relationships controller, tests for

(Listing 11.33), 522–523
requiring right user, 390–392
requiring signed-in users, 386–389

automated testing, 77
Automattic, 286
avatar, 286n7

B
Bates, Ryan, 6, 7, 540
BCrypt cost factor in test environment, redefining

(Listing 7.11), 286
before filters, 373

adding a signed in user before filter
(Listing 9.12), 387

applied to every action in controller, 387
correct user before filter in microposts,

477–478

Index 547

correct user before filter to protect edit/update
pages (Listing 9.15), 391

current user boolean method, 391–392
in requiring right user, 390–392
restricting destroy action to admins

(Listing 9.48), 422
Beginning Ruby (Cooper), 4, 5, 129, 543
Black, David A., 6, 543
blocks, in Ruby data structures, 146–148
Booleans, 133, 138–139, 142
Bootstrap

adding bootstrap-sass gem to (Listing 5.3), 175
adding to application.js (Listing 8.25), 358
and custom CSS in layout structure, 175–186
framework, 176, 317

browsers, 11–12
built-in Ruby classes, modifying, 158–159
bundle exec, eliminating, 118–119

binstubs, 119
RVM Bundler integration, 118–119

Bundler, 19–23
business logic, 25

C
callback, 253, 346–348
Capybara, 79

in Cucumber step files, 367
integration tests, 93
signin tests, 330
signup tests, 294
syntax for CSS id, 471
in test-driven development, 94–95
test for destroying microposts, 477
tests for user update action (Listing 9.9), 383

cascading style sheets (CSS), 152–153, 190–197
asset directory, 187–188
Bootstrap framework, 176, 317
Capybara syntax for CSS id, 471
custom CSS, 175–186
efficiency in production, 189–190
HTML source produced by CSS includes

(Listing 4.7), 153
layout links, 197–211
manifest files, 188–189
for microposts (Listing 10.24), 452–453
mixins, 274–275
nesting, 190–192

partials, 181–186
preprocessor engines, 189
in Ruby data structures, 152–153
Sass, 187–197
site navigation, 169–175
structure, adding, 167–186
for styling error messages (Listing 7.24), 311
for user index (Listing 9.26), 400
user signup, 211–215
variables, 193–197

Celadon Cedar Stack, 40
chaining, 139, 421
checkout command, 28, 32
Chrome, 11–12, 103, 170
classes, 153–163

built-in, modifying, 158–159
code for example user (Listing 4.9), 161
constructor, 153–154
container class, 172
controller, 159–161
defining Word class in console (Listing 4.8),

156
inheritance, 155–157
user, 161–163

class methods, 154–155
class name converted to id, 493n5
Code School, 6, 543
command lines, 10, 11
comments, 134–135
commit command, in Git, 31
config directory, 9, 88, 89
constructor classes, 153–154
Contact page

action for (Listing 5.18), 199
adding, 197–199
adding route for (Listing 5.17), 199
footer partial with links for (Listing 5.25), 206
for sample app, 114–117
tests for (Listing 5.16), 198
tests for static pages (Listing 5.27), 210
view for (Listing 5.19), 199

container class, 172
content validations, Micropost model, 443–444
controller classes, 159–161
cookies, 349–351

expiring 20 years in the future, 350
remember token added to, 379

548 Index

cookies (continued)
remember token removed from, 363
used as a hash, 349–351

Cooper, Peter, 4, 5, 543
correct user before filter

in microposts, 477–478
to protect edit/update pages (Listing 9.15), 391

counting columns, 105n12
count method, 295
create action

adding (empty) @feed items instance variable
to (Listing 10.45), 474–475

completed, 313
completed Sessions controller create action (not

yet working) (Listing 8.13), 343
handling signup failure (but not success)

(Listing 7.21), 305
for microposts, 461
Microposts controller create action

(Listing 10.30), 461
preliminary version of sessions create action

(Listing 8.9), 337
for Sessions controller, 326, 336–338, 343,

395
Sessions create action with friendly forwarding

(Listing 9.20), 395
in signup failure, 304–305
strategy for using, 304
tests for post-save behavior in (Listing 7.32),

323
user create action with save and redirect

(Listing 7.25), 314
for Users controller, 425, 459

creating microposts, 459–467
adding micropost instance variable to home

action (Listing 10.34), 463
adding microposts creation to Home page

(Listing 10.31), 461
form partial for creating microposts

(Listing 10.33), 463
Microposts controller create action

(Listing 10.30), 461
partial for user info sidebar (Listing 10.32), 462
tests for (Listing 10.29), 460
updating error-messages partial from

Listing 7.23 to work with other objects
(Listing 10.35), 464

updating errors for editing users
(Listing 10.37), 465

updating rendering of user signup errors
(Listing 10.36), 465

cross-site request forgery (CSRF), 301
cross-site scripting attack, 481
CSS. See Cascading style sheets (CSS)
CSS: The Missing Manual (McFarland), 5
Cucumber, 363–371

adding cucumber-rails gem to Gemfile
(Listing 8.31), 364

adding helper method and custom RSpec
matcher (Listing 8.34), 371

features and steps, 365–368
features to test user signin (Listing 8.32), 366
installation and setup, 364–365
RSpec examples, equivalent, 368–371
signin tests using, 363–371
steps needed to get signin features to pass

(Listing 8.33), 368
current user, 351–355

defining assignment to (Listing 8.20), 352
definition for (Listing 8.21), 353
finding, using remember token (Listing 8.22),

353
non-nil, 356
in signin success, 351–355

current user? boolean method, 391–392

D
database indices, 254
database migration. See Migration
data model

defined, 47
micropost, 48–49
user, 47–48

debug
adding code for debug box, including Sass

mixin (Listing 7.2), 274
information, adding to site layout (Listing 7.1),

273–274
information, restricting to development

environment, 276
information in sign up, 271–276
output, 275
in Rails environments, 276

default Rails directory structure, 19t

Index 549

default Rails page, 24
with the app environment, 25

default scope in Micropost model refinements,
440–441

demo app, 45–75
conclusion, 74–75
Microposts resource, 63–74
planning the application, 45–49
Users resource, 49–63

demo app, deploying, 73–74
dependent refinements in Micropost model,

441–443
deploying Rails, 39–42
destroy action

adding factory for administrative users
(Listing 9.43), 417–418

adding working destroy action (Listing 9.46),
420–421

in deleting users, 417–422
before filter restricting destroy action to admins

(Listing 9.48), 422
test for protecting destroy action (Listing 9.47),

421–422
tests for delete links (Listing 9.44), 418–419
user index /users with delete links, 420

destroying microposts
ensuring that user’s microposts are destroyed

along with user (Listing 10.16), 443
feed item partial with added delete link

(Listing 10.47), 476
Microposts controller destroy action

(Listing 10.49), 477–478
mockup of proto-feed with micropost delete

links, 476
testing that microposts are destroyed when

users are (Listing 10.15), 442
tests for Microposts controller destroy action

(Listing 10.48), 477
user home page after deleting

second-most-recent micropost, 479
development environment, 9–27

browsers, 11–12
command lines, 10, 11
IDEs, 10
terminals, 11
text editors, 10, 11
time learning tools, 12

development log, 231–232, 450n4
directories

standard directory and file structure, 18
summary of default Rails directory structure,

19t
div tags, 171
doctype, 84
Document Object Model (DOM), 528
domain logic, 25
domain-specific language (DSL), 3, 94, 283
drb option, 125
duplication, eliminating, 103, 111–113
dynamic pages. See Slightly dynamic pages

E
each method, 146, 151, 245, 399, 533n11
edit form, in updating users, 374–380
edits in updating users, successful, 382–384
edits in updating users, unsuccessful, 380–382
Emacs, 29
Embedded Ruby

instance variables and, 162
JavaScript, to create following relationship

(Listing 11.39), 529
slightly dynamic pages, 108–111

Embedded Ruby title
view for About page with (Listing 3.24),

110–111
view for Help page with (Listing 3.23), 110
view for Home page with (Listing 3.22), 109

empty? method, 138, 139, 310
encrypted passwords, 255–257
Engine Yard, 13, 16
Engine Yard Cloud, 39
environment loading, adding to Spork.prefork

block (Listing 3.36), 124
equality comparison operator, 144
ERb. See Embedded Ruby
error messages, signup, 308–312

code to display error messages on signup form
(Listing 7.22), 309

CSS for styling error messages (Listing 7.24),
311

failed signup with error messages, 312
partial for displaying form submission error

messages (Listing 7.23), 309
exceptions, 234n8

550 Index

F
factories

complete factory file, including new factory for
microposts (Listing 10.12), 439

to simulate User model objects (Listing 7.8),
284

test for user show page (Listing 7.9),
285

testing user show page with, 282–286
Factory Girl, 283–286

adding to Gemfile (Listing 7.7), 284
in micropost refinements, 439–440
sequence, defining (Listing 9.32),

407
sequence, solving problems in, 406
slow nature of running, 285–286

Faker gem, 403
adding to Gemfile (Listing 9.29), 403
lorem ipsum text, 450–451, 451n5

feed, 429
proto-, 467–475
RSS, 542
status, 529–539

Fernandez, Obie, 6, 142n5, 543
Fielding, Roy, 60
Files

standard directory and file structure, 18
summary of default Rails directory structure,

19t
Firebug, 12, 301
Firefox, 11–12, 89, 170
first feed implementation, 532–535
flash, 315–317

adding contents of flash variable to site layout
(Listing 7.26), 315–316

adding flash message to user signup
(Listing 7.27), 317

ERb in site layout using content tag
(Listing 7.33), 324

vs. flash.now, 316n11
message for failed signin, 339–343, 340

flash.now, 316n11, 342
follow and unfollow buttons, 519–529

with Ajax, 524–529
current user’s followers, 520
profile of user to follow, with follow button,

486

profile with unfollow button and incremented
followers count, 487

Relationships controller (Listing 11.34),
523–524

tests for (Listing 11.32), 521–522
tests for relationships controller authorization

(Listing 11.33), 522–523
user profile with follow button, 514
users being followed by current user, 520
working follow button, 519–524

followed users in relationship model, 495–500
follower notifications, 541
followers, 500–503

implementing user.followers using reverse
relationships (Listing 11.16), 502

model for user followers using reverse
Relationship model, 500

testing for reverse relationships (Listing 11.15),
501

followers relationship model, 500–503
follow form, 505–514

adding followed users and followers actions
to Users controller (Listing 11.18),
506

adding follow form and follower stats to user
profile page (Listing 11.27), 513

for following a user using (Listing 11.35), 525
form for following user (Listing 11.25), 512
form for unfollowing user (Listing 11.26), 512
partial for follow/unfollow form

(Listing 11.23), 511
RESTful routes provided by custom rules in

resource, 506t
routes added for user relationships

(Listing 11.24), 512
for unfollowing a user using (Listing 11.36),

525
following

adding following/follower relationships to
sample data (Listing 11.17), 503–504

following? and follow! utility methods
(Listing 11.12), 498

problem with the data model (and a solution),
485–490

relationship model, 484–503
sample following data, 503–505
user/relationship associations, 491–494

Index 551

users, 503–544
utility methods, tests for (Listing 11.11), 497

following and followers pages, 515–519
following and followers actions (Listing 11.30),

518
mockups of, 515–516
show follow view used to render following and

followers (Listing 11.31), 519
test for followed users and followers pages

(Listing 11.29), 517–518
tests for authorization of (Listing 11.28),

516–517
following data, sample, 503–505
following? method, 497–500
follow! method, 497–500
forgery, 112
format, validating, 245–248
form for, 297–300
form tag, 303, 334, 372
forward slash (/), 8
Fowler, Martin, 222n1
friendly forwarding, 392–396

adding store location to signed-in user before
filter (Listing 9.19), 394–395

code to implement (Listing 9.18), 394
Sessions create action with (Listing 9.20), 395
test for friendly forwarding (Listing 9.17), 393

full-table scan, 254
Fulton, Hal, 6, 543
functions, 91

G
gem configuration file

creating (Listing 1.1), 16
suppressing ri and rdoc documentation in

(Listing 1.2), 16
Gemfile

adding annotate gem to (Listing 6.4), 229
adding bcrypt-ruby to (Listing 6.24), 255
adding bootstrap-sass gem to (Listing 5.3), 175
adding cucumber-rails gem to (Listing 8.31),

364
adding Factory Girl to (Listing 7.7), 284
adding Faker gem to (Listing 9.29), 403
default, in the first app directory (Listing 1.4),

20

default Gemfile in the first app directory
(Listing 1.4), 20

for demo app (Listing 2.1), 46
with explicit version of each Ruby gem

(Listing 1.5), 21–22
including will paginate in (Listing 9.31),

405
needed to use PostgreSQL instead of SQLite

(Listing 3.31), 117
for sample app (Listing 3.1), 78
for sample app (Listing 3.35), 123
for sample app, final (Listing 9.49), 423–424
for sample app including Guard (Listing 3.33),

120
gems, 14
gemsets, 14–15
generated code, scaffolding and, 3
generate script, 49, 86, 94
GET, 89–90
Git, 27–39

adding files in, 30–31
benefit of using, 31–32
branches, 35–36
commit command, 31
committing, 36–37
editing, 36
first-time repository setup, 28–30
first-time setup, 27–28
installing, 13
merging, 37–38
pushing, 38–39
README file, 34–35, 35
README file, README.md (Listing 1.8),

36
README file formatted with Markdown, 39
status command, 30

GitHub, 32–34
creating first app repository at, 33
creating sample app repository at, 81
initial README file for project at, 35
repository page, 34

.gitignore
augmented .gitignore file (Listing 1.7),

29–30
default .gitignore created by rails command

(Listing 1.6), 29
Goia, Mircea, 14

552 Index

Gravatar, 286–291
adding sidebar to user show view (Listing 7.14),

290
defining gravatar for helper method

(Listing 7.13), 288
editing, 382–384
SCSS for styling user show page, including

sidebar (Listing 7.15), 290–291
in sign up, 286–291
user profile page /users/1 with default Gravatar,

289
user show page /users/1 with sidebar and CSS,

291
user show page with custom Gravatar, 289
user show view with name and (Listing 7.12),

287
Guard

automated tests with, 120–122
Gemfile for sample app including

(Listing 3.33), 120
Spork with Guard, 126–127

gVim, 28

H
Hansson, David Heinemeier, 2, 4
hashes, 337

nested (Listing 4.6), 151
in Ruby data structures, 148–152

hash symbol, 21
has secure password

authenticate method, 264, 338
User, 263–265

have selector method, 104
Head First HTML, 5
Help page

code added to test (Listing 3.11), 98
generated view for (Listing 3.8), 92
with HTML structure (Listing 3.20), 107
with HTML structure removed (Listing 3.27),

113
tests for static pages (Listing 5.27), 210
view for, with Embedded Ruby title

(Listing 3.23), 110
Heroku

commands, 41–42
creating a new application at (Listing 1.9), 40
deployment, 40–41
setup, 39–40

hierarchies, inheritance, 70–73, 73
Home page

adding follower stats to (Listing 11.21), 509
adding microposts creation to (Listing 10.31),

461–462
with follow stats, 511
generated view for (Listing 3.7), 92
with HTML structure (Listing 3.19), 107
with HTML structure removed (Listing 3.26),

113
with link to signup page (Listing 5.2), 173
mockup with form for creating microposts,

459
mockup with proto-feed, 467
SCSS for Home page sidebar (Listing 11.22),

510
with status feed, mockup of, 530
with status feed and incremented following

count, 488
testing following/follower statistics on

(Listing 11.19), 507
view for, with Embedded Ruby title

(Listing 3.22), 109
view for, with HTML structure (Listing 3.19),

107
with working status feed, 539

href, 97
HTML

About page with HTML structure removed
(Listing 3.28), 113

About page with structure (Listing 3.21), 108
code for signin form (Listing 8.7), 334
for edit form defined in Listing 9.3 and shown

in Figure 9.2. (Listing 9.4), 377
for form in Figure 7.12 (Listing 7.20), 301
initial user edit page with pre-filled name and

email, 377
produced by CSS includes (Listing 4.7), 153
for signin form produced by Listing 8.7, 335
signup form, 301–303, 335
for signup form/signup for new users, 300
typical, with friendly greeting (Listing 3.3), 84
user edit action (Listing 9.2), 375
for user edit form (Listing 9.2), 377

HTTP, 89–90
HTTP verbs, 89, 90
hypertext reference (href), 97
hypertext transfer protocol. See HTTP

Index 553

I
IDEs, 10
implicit return, 141
index, user. See User index
index action, simplified for demo app

(Listing 2.4), 61
index.html file, 82–84, 83
index page

with 100 sample users, 405
correspondence between pages and URIs for

Users resource, 52t
initial, for Users resource, 52
micropost, 68
with one user, 402
with second user, 55
tests for (Listing 9.23), 398–399
users with pagination, 410

inheritance
ApplicationController class with (Listing 2.16),

72
class, 155–157
classes, 155–157
hierarchies, 70–73, 73
Micropost class with (Listing 2.13), 71
MicropostsController class with (Listing 2.15),

72
User class with (Listing 2.12), 71
UsersController class with (Listing 2.14), 72

inheritance class, 155–157
inheritance hierarchies, 70–73, 73
initialization hash, 231
inspect method, 151
installing Rails, 16–17
instance variables, 61, 162

adding (empty) @feed items to create action
(Listing10.45), 474–475

adding to home action (Listing 10.41), 471
adding to the home action (Listing 10.34),

463
adding to user show action (Listing 10.22),

449
integrated development environments (IDEs), 10
integration tests, 93

See also Tests
interpolation, 136–137

string, 115, 133, 142, 162, 209
IRC client, 14n10
iTerm, 11

J
JavaScript

adding Bootstrap to application.js
(Listing 8.25), 358

to create following relationship (Listing 11.39),
529

to destroy following relationship
(Listing 11.40), 529

unobtrusive, 525
JavaScript Embedded Ruby (JS-ERb), 528–529

to create a following relationship
(Listing 11.39), 529

join method, 145, 534
JS-ERb. See JavaScript Embedded Ruby

(JS-ERb)

K
Katz, Yehuda, 364, 543

L
layout, filling in, 167–219

adding structure, 167–186
asset pipeline, Sass and, 187–190
conclusion, 215–216
exercises, 217–219
layout links, 197–211
stylesheets and, improving with Sass, 190–197
user signup, 211–215

layout files
duplication eliminated with, 103, 111–113
sample application site layout (Listing 3.25),

112
sample application site layout (Listing 4.1), 130
sample application site layout (Listing 4.3),

132
site layout with added structure (Listing 5.1),

169
layout links, 197–211

changing for signed-in users (Listing 8.24),
357–358

named routes, 205–207
Rails routes, 202–205
route tests, 200–202
RSpec, 207–211
test for links on layout (Listing 5.36), 218

layout links, changing, 355–359
adding Bootstrap JavaScript library to

application.js (Listing 8.25), 358

554 Index

layout links, changing (continued)
the signed in? helper method (Listing 8.23),

356
for signed-in users (Listing 8.24), 357–358
signin success and, 355–359

length validations, 243–244
adding for name attribute (Listing 6.15), 244
constraining micropost characters (Listing 2.9),

67
test name for (Listing 6.14), 244

Linux, 13–14
Linux Mint, 14
Linux Ubuntu, 14
lists, unordered, 172
literal constructor, 153–154
literal strings, 135
Loeffler, David, 10
log, development, 231–232
log files, ignoring, 29

M
Macintosh OS X, 11
MacVim, 28
magic columns, 226, 232
manifest files in asset pipeline, 188–189
map method, 147–148, 533
mapping for site links, 198t
mass assignment

attr accessible used to prevent, 230, 416
invalid, ensuring Rails throws errors on

(Listing 10.6), 436
memoization, 354n7
Merb, merger with Rails, 4
message passing in Ruby, objects and, 138–141
messaging, 541
method chaining, 139, 421
method definitions, 141
micropost associations, 433–438
Micropost class with inheritance (Listing 2.13), 71
micropost data model, 48–49
micropost migration (Listing 10.1), 430
Micropost model, 429–444, 431

accessible attributes and first validation,
432–433

basic model, 430–432
content validations, 443–444
initial Micropost spec (Listing 10.2), 431

micropost migration (Listing 10.1), 430
refinements, 439–443
tests for (Listing 10.17), 443–444
tests for validity of new micropost

(Listing 10.3), 432
user has many microposts (Listing 10.11), 438
user/micropost associations, 433–438
validation for user (Listing 10.4), 433
validations (Listing 10.18), 444

microposts
adding to sample data (Listing 10.23), 451
CSS for (Listing 10.24), 452–453
destroying along with user (Listing 10.16), 443
form partial for creating (Listing 10.33), 463
ordering with default scope (Listing 10.14), 441
partial for showing single micropost

(Listing 10.21), 449
sample microposts, 450–454
summary of user/micropost association

methods, 434t
testing that microposts are destroyed when

users are (Listing 10.15), 442
testing the order of a user’s microposts

(Listing 10.13), 440–441
Microposts, manipulating, 454–479

access control, 456–459
creating microposts, 459–467
destroying microposts, 475–479
micropost pagination links, 455
proto-feed, 467–475

Microposts, showing, 445–454
profile page with microposts, mockup of, 445
sample microposts, 450–454
user show page, augmenting, 446–450

Microposts controller
create action (Listing 10.30), 461
destroy action (Listing 10.49), 477–478
in schematic form (Listing 2.8), 65–66
tests for destroy action (Listing 10.48), 477

MicropostsController class with inheritance
(Listing 2.15), 72

Microposts resource, 63–75
access control, 456–459
associations, 68–70
demo app, deploying, 73–74
error messages for failed micropost creation, 69
inheritance hierarchies, 70–73, 73

Index 555

length validations, 243–244
micropost belonging to user (Listing 2.11), 69
between microposts and users, 70
microtour, 63–66
Rails routes with new rule (Listing 2.7), 65
RESTful routes provided by, 65t
routes for (Listing 10.25), 455
user has many microposts (Listing 2.10), 68
validations, 66–68

microtour, 63–66
migration

to add boolean admin attribute to users
(Listing 9.40), 415

micropost (Listing 10.1), 430
password, 256–257
Rake used in, 50
user model, 223–228
for User model (to create users table)

(Listing 6.2), 225
mockups, 167–168
model annotation in model file, 228–230
model file, 228–230

accessible attributes, 230
model annotation, 228–230

modeling demo microposts, 48–49
modeling demo users, 47–48
modeling users, 221–269

conclusion, 267
exercises, 268–269
passwords, 254–267
user model, 222–236
user validations, 236–254

model-view-controller (MVC), 25–27
in action, 56–62
in Rails, diagram of, 57
schematic representation of, 26

motivation
in Ruby, 129–133
in status feed, 529–532

MVC. See Model-view-controller (MVC)

N
name attribute

adding length validation for (Listing 6.15), 244
failing test for validation of (Listing 6.11), 241
validating presence of (Listing 6.9), 240

named routes

footer partial with links (Listing 5.25), 206
header partial with links (Listing 5.24),

205–206
namespaces, 403
nested hashes (Listing 4.6), 151
nesting, 190–192
newline, 105n11
new status feed, 538–539
nil, 136
non-nil current user, 356

O
objects and message passing, in Ruby, 138–141
OS X. See Macintosh OS X

P
PagesController. See StaticPages controller
pagination, for showing all users, 404–410

paginating users in index action (Listing 9.35),
409

tests for pagination (Listing 9.33), 407–408
pagination links, micropost, 455
palindrome? method, 155–156, 158
Paperclip gem, 287n8
partial refactoring, for showing all users, 410–412
partials, 181–186

adding CSS for site footer (Listing 5.13),
185–186

for displaying form submission error messages
(Listing 7.23), 309

for HTML shim (Listing 5.9), 183
for the site footer (Listing 5.11), 184
for the site header (Listing 5.10), 184
site layout with footer partial (Listing 5.12),

185
site layout with partials for stylesheets and

header (Listing 5.8), 182–183
updating error-messages (Listing 10.35), 464

passwords, 254–267
adding bcrypt-ruby to Gemfile (Listing 6.24),

255
and confirmation, 257–260
creating a user, 265–267
encrypted, 255–257
ensuring that User object has password digest

column (Listing 6.25), 256

556 Index

passwords (continued)
migration, 256–257
migration to add password digest column to

users table (Listing 6.26), 256
reminders, 540, 541
secure, adding, 254–260
test for password and password confirmation

(Listing 6.28), 259–260
testing for password and password confirmation

attributes (Listing 6.27), 257
user authentication, 260–263
user has secure password, 263–265
User model with added password digest

attribute, 255
See also Authenticate method

Patterns of Enterprise Application Architecture
(Fowler), 222n1

PeepCode, 6, 543
pending spec, 237
persistence, 223
Phusion Passenger, 39
Pik project, 13
pluralize text helper, 310
PostgreSQLn, 46–47, 115, 117, 223, 253n15
pound sign. See Hash symbol
preprocessor engines in asset pipeline, 189
presence, validating, 239–243
Preston-Werner, Tom, 286
private keyword, 348
production in asset pipeline, efficiency in,

189–190
profile images, 286, 382
profile links, 332
protected page

mockup of, 385
signin form after trying to access, 388

proto-feed, 467–475
adding feed instance variable to home action

(Listing 10.41), 471
adding (empty) @feed items instance

variable to create action (Listing10.45),
474–475

adding status feed to Home page
(Listing 10.44), 473

Home page after creating micropost, 474
Home page with, 473
mockup of Home page with, 467

preliminary implementation for micropost
status feed (Listing 10.39), 469

single feed item partial (Listing 10.43), 472
status feed partial (Listing 10.42), 472
test for rendering feed on Home page

(Listing 10.40), 470–471
tests for (Listing 10.38), 468

public/index.html file, 83
puts method, 136

R
Rails

approach to learning, 4–6
deploying, 39–42
development environment setup, 9–27
environments, 276–277
intermediate-to-advanced resources, 6–7
introduction, 3–9
Merb merger and, 4
Ruby and, importance of, 129–165 (See also

Ruby)
running to generate new application

(Listing 1.3), 17–18
scaling, 7
version control with Git, 27–39

Rails, installing
Git, installing, 13
Rails, installing (Windows), 13, 16–17
Ruby, installing, 13–15
RubyGems, installing, 15–16

The Rails 3 Way (Fernandez), 6, 82n5, 142n5, 543
RailsCasts, 6, 7, 540, 543
Rails command, 17–19

default .gitignore created by (Listing 1.6), 29
to generate new application (Listing 1.3),

17–18
Rails console, 134
Rails Guides, 6, 189, 202, 228, 506, 543
Rails Machine, 39
Rails root, 8–9
Rails routes, 202–205

adding mapping for the (Listing 5.23), 204
adding Users resource to (Listing 7.3), 279
commented-out hint for defining

(Listing 5.22), 204
with new rule for Microposts resource

(Listing 2.7), 65

Index 557

with rule for Users resource (Listing 2.2), 58
for static pages (Listing 5.21), 202

Rails server, 23–25
The Rails 3 Way (Fernandez), 6, 142n5, 543
Rails Tutorial help page, 9n6
Rake, 50, 51

task for populating database with sample users
(Listing 9.30), 403–404

ranges, 145–146
README file

Git, 34–35, 35
improved, formatted with Markdown (Listing),

39
improved, for sample app (Listing 3.2), 80
initial, for project at GitHub, 35
new README file, README.md

(Listing 1.8), 36
updating, 80

Red, Green, Refactor, 94
Green, 100–102
Red, 99–100
Refactor, 103

refactoring
in adding static pages, 103
compact, of Listing 11.38 (Listing 11.47),

544
first attempt at index view (Listing 9.36), 411
partial, 410–412
refactored following and followers actions

(Listing 11.30), 518
refinements in Micropost model, 439–443

default scope, 440–441
dependent: destroy, 441–443

regular expression (regex), 246
relationship model, 484–503, 491

adding belongs to associations to (Listing 11.6),
494

adding indices for relationships table
(Listing 11.1), 490

adding User model followed users association
(Listing 11.10), 496

followed users, 495–500
of followed users through user relationships,

489
followers, 500–503
following? and follow! utility methods

(Listing 11.12), 498

implementing user.followers using reverse
relationships (Listing 11.16), 502

implementing user/relationships has many
association (Listing 11.4), 493

problem with, 485–491
for reverse relationships, 500–503
test for unfollowing a user (Listing 11.12), 499
test for user.followed users attribute

(Listing 11.9), 496
testing for reverse relationships (Listing 11.15),

501
testing for user.relationships attribute

(Listing 11.3), 492
testing Relationship creation and attributes

(Listing 11.2), 491–492
testing Relationship model validations

(Listing 11.7), 495
testing user/relationships belongs to association

(Listing 11.5), 494
tests for ‘‘following’’ utility methods

(Listing 11.11), 497
unfollowing user by destroying user

relationship (Listing 11.14), 499–500
for user followers using reverse relationship

model, 500
user/relationship associations, 491–494
validations, 495

relationships attribute, 492
Relationships controller

Ajax requests in, responding to (Listing 11.38),
527

follow and unfollow buttons (Listing 11.34),
523–524

responses to Ajax requests, tests for
(Listing 11.37), 526

reload method, 383
remember token, 344

added to cookies, 379
before save callback to create (Listing 8.18),

348–349
cookie in local browser, 360
current user found by using (Listing 8.22), 353
first test for (Listing 8.15), 345
migration to add to users table (Listing 8.16),

346
removed from cookies, 363
test for valid (nonblank) (Listing 8.17), 347

558 Index

remember token (continued)
User model with added remember token

attribute, 345
render, 183
replies, 541
repository setup, 28–30
request specs. See Tests
resources

advanced Rails, 4, 6
guide to further, 542–543

REST API, 542
REST architecture, 45, 59, 65, 86, 90
RESTful routes

provided by Microposts resource, 65t
provided by Users resource, 65t

reverse relationships, 500–503
followers using reverse relationship model, 500
implementing user.followers using reverse

relationships (Listing 11.16), 502
testing for reverse relationships (Listing 11.15),

501
root, 8–9
routes in layout links

named, 205–207
Rails, 202–205
tests, 200–202

RSpec
adding helper method and custom RSpec

matcher (Listing 8.34), 371
Cucumber equivalent, 368–371
custom matchers, 368–371
layout links, 207–211
request specs, 93, 368

RSS feed, 542
Rubular, 247, 248
Ruby, 129–165

comments, 134–135
conclusion, 164
exercises, 164–165
gems, 14
gemsets, 14–15
installing, 13–15
method defintions, 141
motivation, 129–133
objects and message passing, 138–141
strings, 135–138
title helper, 142

Ruby classes. See Classes
Ruby data structures, 142–153

arrays, 142–145
blocks, 146–148
cascading style sheets, 152–153
hashes and symbols, 148–152
ranges, 145–146

RubyGems, installing, 15–16
Ruby JavaScript (RJS)

to create following relationship (Listing 11.39),
529

to destroy following relationship
(Listing 11.40), 529

RubyMine, 10
Ruby on Rails. See Rails
Ruby Version Manager (RVM), 8, 13, 118
The Ruby Way (Fulton), 6, 129, 543

S
Safari, 11–12, 89, 170
sample application, extensions to, 540–542

follower notifications, 541
messaging, 541
password reminders, 541
replies, 541
REST API, 542
RSS feed, 542
search, 542
signup confirmation, 541

sample users, showing all, 403–404
sandbox, 231, 252, 265
Sass, 187–197

asset pipeline and, 187–190
improving stylesheets with, 190–197

save!, 497
scaffolding, 2–3
scaling Rails, 7
scope, 440–441
screencasts, 538, 542
SCSS

converting to CSS, 192
error messages styled with, 311
for Home page sidebar (Listing 11.22), 510
initial SCSS file converted to use nesting and

variables (Listing 5.15), 195–197
rewriting, 193–194
Sass supported by, 190

Index 559

for styling user show page, including sidebar
(Listing 7.15), 290–291

search, 542
Secure Sockets Layer (SSL), 318

deploying production with, in signup success,
317–321

Seguin, Wayne E., 13, 14
self, 157, 348
session hijacking attack, 318, 351
sessions

authentication and, 325–326
defined, 325–326
destroying a session (user signout)

(Listing 8.29), 362
preliminary version of sessions create action

(Listing 8.9), 337
sessions create action with friendly forwarding

(Listing 9.20), 395
signin failure and, 325–326
sign out method in Sessions helper module

(Listing 8.30), 363
Sessions controller

adding resource to get standard RESTful
actions for sessions (Listing 8.2), 328

completed Sessions controller create action (not
yet working) (Listing 8.13), 343

create action for, 326, 336–338, 343, 395
signin failure and, 326–329
tests for new session action and view

(Listing 8.1), 327
short-circuit evaluation, 355
showing microposts. See Microposts, showing
sidebar

partial for the user info sidebar (Listing 10.32),
462

SCSS for Home page (Listing 11.22), 510
in SCSS for styling user show page

(Listing 7.15), 290–291
in sign up, 288–291

signed in? helper method (Listing 8.23), 356
signed-in users

authorization of, 386–389
requiring, 386–389

sign in, 325–372
conclusion, 371–372
Cucumber, signin tests using, 363–371
exercises, 372

signin failure, 325–343
flash message, rendering with, 339–343
reviewing from submission, 336–338
sessions, 325–326
Sessions controller, 326–329
signin form, 333–336, 335
signin tests, 330–333

signin form, 333–336, 335
code for (Listing 8.7), 334
HTML for signin form produced by Listing 8.7

(Listing 8.8), 335
initial failed signin, with create as in

Listing 8.9., 336
signin failure and, 333–336

signing out, 361–363
destroying a session (user signout)

(Listing 8.29), 362
sign out method in Sessions helper module

(Listing 8.30), 363
sign in method, signin success and, 349–351
signin success, 343–363

current user, 351–355
layout links, changing, 355–359
remembering user signin status, 343–349
signing out, 361–363
sign in method, 349–351
signin upon signup, 359–361

signin tests
signin failure and, 330–333
using Cucumber, 363–371

signin upon signup, 359–361
sign up, 271–324

conclusion, 321
exercises, 321–324
failure in (See Signup failure)
Rails environments in, 276–277
showing users, 271–291
success in (See Signup success)

signup confirmation, 541
signup failure, 303–312, 306

apartial for displaying form submission
error messages (Listing 7.23),
309

code to display error messages on signup form
(Listing 7.23), 309

create action that can handle (but not success)
(Listing 7.21), 305

560 Index

signup failure (continued)
CSS for styling error messages (Listing 7.24),

311
debug information, 307
mockup of signup failure page, 304
signup error messages, 308–312, 312
working form, 303–308

signup form, 292–303
adding @user variable to the new action

(Listing 7.18), 299
CSS for (Listing 7.19), 300
filled-in form with text and password fields, 302
form for, using, 297–300
form to sign up new users (Listing 7.17), 298
HTML, 301–303
HTML for form in figure 7.12 (Listing 7.20),

301
for new users, 300
tests for signing up users (Listing 7.16),

296–297
tests for user signup, 293–297
using form for, 297–300

signup page
initial (stub) (Listing 5.33), 214
linking the button to (Listing 5.34), 215
route for (Listing 5.32), 214
signing in user upon signup (Listing 8.27), 361
signin upon signup, 359–361
testing that newly signed-up users are also

signed in (Listing 8.26), 360–361
Users controller, 212

signup success, 312–321
deploying production with SSL, 317–321
finished signup form, 313–315
first signup, 317
flash, 315–319
mockup of, 314

signup URI, in user signup, 213–215
site navigation in filling in layout, 169–175

Home page with link to signup page
(Listing 5.2), 173

site layout with added structure (Listing 5.1),
169

skeleton for a shuffle method attached to the
String class (Listing 4.11), 165

skeleton for a string shuffle function
(Listing 4.10), 164

slightly dynamic pages, 103–113
duplication, eliminating with layouts, 103,

111–113
Embedded Ruby, 108–111
instance variables and Embedded Ruby, 162
passing title tests, 106–108
testing a title change, 103–107
testing title page, 103–106

spike, 93
split method, 143
Spork, 123–127

adding environment loading to Spork.prefork
block (Listing 3.36), 124

configuring RSpec to automatically use
(Listing 3.37), 125

Gemfile for sample app (Listing 3.35), 123
Guardfile updated for Spork (Listing 3.38),

126
Guard with Spork, 126–127
speeding up tests with, 123–127

SQL injection, 470
SQLite Database Browser, 226, 227, 266
Stack Overflow, 301, 492n4
staging area, 30
static pages, 77–128

conclusion, 114
exercises, 114–117
test-driven development, 93–99
testing, 93–103
See also Slightly dynamic pages

static pages, adding, 99–103
green, 100–102
red, 99–100
refactor, 103

static pages, advanced setup, 117–128
bundle exec, eliminating, 118–119
Guard, automated tests with, 120–122
Spork, speeding up tests with, 123–127
Sublime Text, tests inside, 127–128

static pages, making, 82–92
with Rails, 85–92
truly static pages, 82–85
undoing things, 87–88

StaticPages controller
with about action (Listing 3.15), 101
generating (Listing 3.4), 86
inheritance hierarchy for, 160

Index 561

made by Listing 3.4 (Listing 3.6), 91
routes for home and help actions in

(Listing 3.5), 88
spec with base title (Listing 3.29), 115–116
spec with title tests (Listing 3.18), 105

stats, 505–514
adding follower stats to Home page

(Listing 11.21), 509
adding follow form and follower stats to user

profile page (Listing 11.27), 513
Home page with follow stats, 511
mockup of stats partial, 505
a partial for displaying follower stats

(Listing 11.20), 508
SCSS for Home page sidebar (Listing 11.22),

510
testing following/follower statistics on the

Home page (Listing 11.19), 507
stats form, 505–514
status command, in Git, 30
status feed, 529–539

adding completed feed to User model
(Listing 11.42), 532

final implementation of from users followed by
(Listing 11.45), 537–538

final tests for (Listing 11.41), 531–532
first cut at from users followed by

(Listing 11.43), 535
first feed implementation, 532–535
home action with paginated feed

(Listing 11.46), 538
Home page with working status feed, 539
improving from users followed by

(Listing 11.44), 536
mockup of a user’s Home page with, 530
motivation and strategy, 529–532
new, 538–539
partial for a single feed item (Listing 10.43),

472
preliminary implementation for micropost

(Listing 10.39), 469
subselects, 535–538
for user following users, 531

strategy in status feed, 529–532
string interpolation, 115, 133, 142, 162,

209
string literals, 135

strings
double-quoted, 137–138
printing, 136–137
in Ruby, 135–138
single-quoted, 137–138

structure in filling in layout, 167–186
bootstrap and custom CSS, 175–186
partials, 181–186
site navigation, 169–175

stylesheets. See Cascading style sheets (CSS)
Sublime Text, tests inside, 127–128
Sublime Text 2, 10, 16, 127
subselects in status feed, 535–538
sudo, 8
superclass method, 155
symbols, 148–152
system setups, 27

T
TDD. See Test-driven development (TDD)
terminals, 11
ternary operator, 481, 482
test-driven development (TDD), 5

Green, 100–102
Red, 99–100
Red, Green, Refactor, 94
Refactor, 103
Spork, 123–127
in testing static pages, 93–99

testing tools, 93
tests

for admin attribute (Listing 9.39), 414
for authorization of following and followers

pages (Listing 11.28), 516–517
automated tests with Guard, 120–122
for Contact page (Listing 5.16), 198
for creating microposts (Listing 10.29), 460
for delete links (Listing 9.44), 418–419
for destroy action in Microposts controller

(Listing 10.48), 477
for email format validation (Listing 6.16),

245–246
for follow and unfollow buttons

(Listing 11.32), 521–522
for ‘‘following’’ utility methods (Listing 11.11),

497
for friendly forwarding (Listing 9.17), 393

562 Index

tests (continued)
for full title helper (Listing 5.37), 219
Guard, automated tests with, 120–122
for index page (Listing 9.23), 398–399
integration tests, 93
for Micropost model (Listing 10.17), 443–444
for Microposts controller destroy action

(Listing 10.48), 477
for micropost’s user association (Listing 10.8),

437
for new session action and view (Listing 8.1),

327
for pagination (Listing 9.33), 407–408
passing title, 106–108
for post-save behavior in (Listing 7.32), 323
for proto-feed (Listing 10.38), 468
for Relationships controller (Listing 11.37),

526
for relationships controller authorization

(Listing 11.33), 522–523
for Relationships controller authorization

(Listing 11.33), 522–523
for responses to Ajax requests (Listing 11.37),

526
for reverse relationships (Listing 11.15),

501
for routes in layout links, 200–202
for showing microposts on user show page

(Listing 10.19), 446
signin, using Cucumber, 363–371
for signin failure, 330–333
for signing up users (Listing 7.16), 296–297
signin tests using Capybara, 294, 330
signin tests using Cucumber, 363–371
spec with title tests (Listing 3.18), 105
speeding up with Spork, 123–127
static pages (Listing 5.27), 210
for static pages, 93–99
for static pages (Listing 5.27), 210
for status feed, final (Listing 11.41), 531–532
Sublime Text, tests inside, 127–128
for title change, 103–106
title test (Listing 3.17), 104
user, initial, 236–239
for user index page (Listing 9.23), 398–399
for user show page (Listing 7.9), 285
for user signup, 293–297

for user’s microposts attribute (Listing 10.9),
437–438

for user update action (Listing 9.9), 383
for user validations, initial, 236–239
for utility methods, (Listing 11.11), 497
for validity of new micropost (Listing 10.3),

432
text editors, 10, 11
TextMate, 10, 28, 105n12
time helpers, 350
timestamps, 225
title change

passing title tests, 106–107
testing, 103–106

title helper, 142
tests for full title helper (Listing 5.37), 219

title test (Listing 3.17), 104
toggle method, 414
tools, learning, 12
Torvalds, Linus, 27

U
underscore method, 493n5
unfollow and follow buttons. See Follow and

unfollow buttons
unfollow form, using Ajax (Listing 11.36),

525
unfollowing a user

by destroying a user relationship
(Listing 11.14), 499–500

test for (Listing 11.13), 499
uniqueness, validating, 249–254
Unix-style command line, 7
unobtrusive JavaScript, 525
unordered list tag, 172
update action. See User update action
updating users, 373–384

edit form, 374–380
successful edits, 382–384
unsuccessful edits, 380–382

URIs
adding to users link (Listing 9.28), 401–402
correspondence between pages and URIs for

Users resource, 52t
defined, 2n1
signup, in user signup, 213–215
test for ‘‘Users’’ link (Listing 9.27), 401

Index 563

URLs
correspondence between pages and Users

resource, 52t
defined, 2n1

user
administrative, 413–417
creating, 265–267
current user? method (Listing 9.16), 392
destroying, 499–500
has secure password, 263–265
new user view with partial (Listing 9.51), 425
paginating, 404–410
requiring signed-in users, 386–389
requiring the right user, 390–392
sample users, 403–404
showing, 271–291
signin status, remembering, 343–349
stub view for showing user information

(Listing 7.4), 280
summary of user/micropost association

methods/updating, 434t
tests, initial, 236–239

user authentication. See Authentication
user authorization. See Authorization
user class, 161–163
User class with inheritance (Listing 2.12), 71
user data model, 47–48
user edit form

adding test for Settings link (Listing 9.5), 378
HTML for (Listing 9.2), 377
mockup of, 374
partial for new and edit form fields

(Listing 9.50), 425
tests for user update action (Listing 9.9), 383
updating error-messages partial from

Listing 7.23 to work with other objects
(Listing 10.35), 464

updating trendering of user signup errors
(Listing 10.36), 465

user edit action (Listing 9.2), 375
user edit view (Listing 9.3), 376
user update action (Listing 9.10), 384

user.followers method, 500
user has many microposts (Listing 10.11), 438

micropost belongs to user (Listing 2.11), 69
relationship between a user and its microposts,

434

user index, 396–403
adding URI to users link (Listing 9.28),

401–402
CSS for (Listing 9.26), 400
first refactoring attempt at index view

(Listing 9.36), 411
including will paginate in Gemfile

(Listing 9.31), 405
mockup of, 397
paginating users in index action (Listing

9.35), 409
pagination, 404–410
with pagination (Listing 9.34), 408
partial refactoring, 410–412
partial to render single user (Listing 9.37), 412
refactored (Listing 9.38), 412
requiring signed-in user for index action

(Listing 9.22), 398
for showing all users, 396–403
test for ‘‘Users’’ link URI (Listing 9.27), 401
testing that index action is protected

(Listing 9.21), 396–397
tests for pagination (Listing 9.33), 407–408
user index action (Listing 9.24), 399
user index view (Listing 9.25), 400
view (Listing 9.25), 400

user index page
page 2 of, 411
tests for (Listing 9.23), 398–399
users with 100 sample users, 405
users with only one user, 402
users with pagination, 410

user info sidebar, partial for (Listing 10.32),
462

user/micropost associations, 433–438
User microposts, 429–482

conclusion, 479–480
exercises, 480–482
manipulating, 454–479
model, 429–444, 431
resources, 63–74
showing, 445–454

User model, 222–236
accessible attributes, 230
with added password digest attribute, 255
adding annotate gem to Gemfile (Listing 6.4),

229

564 Index

User model (continued)
annotated User model (Listing 6.5), 229–230
brand new (Listing 6.3), 228
for demo application (Listing 2.5), 61
generating (Listing 6.1), 224
making name and email attributes accessible

(Listing 6.6), 230
migration for (to create a users table)

(Listing 6.2), 225
migrations, 223–228
model file, 228–230
user objects, 230–236

user objects
creating, 230–233
finding, 233–235
updating, 235–236

user profile page, mockup of, 445
user/relationship associations, 491–494

implementing has many association
(Listing 11.4), 493

See also Relationship model
users, deleting, 413–422

administrative users, 413–417
destroy action, 417–422

users, following, 483–544
conclusion, 539–543
current user’s profile, 484
exercises, 543–544
finding a user to follow, 485
Home page with status feed and incremented

following count, 488
implementation of user following, 488
model of followed users through user

relationships, 489
profile of user to follow, with follow button,

486
profile with unfollow button and incremented

followers count, 487
resources, guide to further, 542–543
sample application, extensions to, 540–542
status feed, 529–539
test for unfollowing (Listing 11.13), 499
web interface for, 503–529
See also Relationship model

users, showing all, 396–412
pagination, 404–410
partial refactoring, 410–412

sample users, 403–404
user index, 396–403

users, showing in sign up, 271–291
debug information, 272–276
Gravatar, 286–291
Rails environments, 276–277
sidebar, 288–291
user show page, testing, 282–286
Users resource, 278–281

users, updating, 373–385
edit form, 374–380
successful edits, 382–384
unsuccessful edits, 380–382

Users controller, 212
adding followed users and followers

actions to Users controller (Listing 11.18),
506

class with inheritance (Listing 2.14), 72
create action for, 425, 459
initial, with new action (Listing 5.29), 212
in schematic form (Listing 2.3), 58
with show action (Listing 7.5), 281
testing the user show page with factories,

282–286
in user signup, 212

user show page, 53, 282–286
adding sidebar to user show view (Listing 7.14),

290
adding title and heading for user profile page

(Listing 7.10), 285
defining gravatar for helper method

(Listing 7.13), 288
factories to simulate User model objects

(Listing 7.8), 284
Factory Girl added to Gemfile (Listing 7.7),

284
in Microposts, augmenting, 446–450
recap of initial User pages spec (Listing 7.6),

282–283
redefining BCrypt cost factor in test

environment (Listing 7.11), 286
SCSS for styling, including sidebar

(Listing 7.15), 290–291
tests for (Listing 7.9), 285
user profile page /users/1 with default

Gravatar, 289
at /users/1 after adding Users resource, 282

Index 565

Users controller with show action
(Listing 7.5), 281

user show page /users/1 with sidebar and CSS,
291

user show page with custom Gravatar, 289
user show view with name and (Listing 7.12),

287
user signup, 211–215

adding flash message to (Listing 7.27), 317
errors, updating rendering of (Listing 10.36),

465
signup URI, 213–215
tests for, 293–297
users controller, 212

Users resource, 49–63
adding to the routes file (Listing 7.3), 279
correspondence between pages and URLs, 52t
MVC in action, 56–62
Rails routes with rule for (Listing 2.2), 58
RESTful routes provided by, 65t
in sign up, 278–281
weaknesses of, 62–63

Users resource tour, 51–56
user update action (Listing 9.10), 384

initial (Listing 9.8), 381
tests for (Listing 9.9), 383

user validations, 236–254
format, 245–248
length, 243–244
presence, 239–243
uniqueness, 249–254
user tests, initial, 236–239

V
validations

commenting out a validation to ensure a failing
test (Listing 6.10), 241

email format with regular expression
(Listing 6.17), 246

format, 245–248
initial user pages spec (Listing 7.6), 282
length, 243–244
length, adding for name attribute

(Listing 6.15), 244
Microposts resource, 66–68
migration for enforcing email uniqueness

(Listing 6.22), 252

of name attribute, failing test for (Listing 6.11),
241

for password attribute (Listing 6.27), 257
practically blank default User spec (Listing 6.7),

237
of presence, 239–243
of presence of name and email attributes

(Listing 6.13), 243
of presence of name attribute (Listing 6.9), 240
Relationship data model, 495
Relationship model, adding (Listing 11.8), 495
in relationship model, 495
test for name length (Listing 6.14), 244
test for presence of email attribute

(Listing 6.12), 243
test for rejection of duplicate email addresses

(Listing 6.18), 249
test for rejection of duplicate email addresses,

insensitive to case (Listing 6.20), 250
testing Relationship model validations

(Listing 11.7), 495
tests for email format validation (Listing 6.16),

245–246
of uniqueness, 249–254
of uniqueness of email addresses

(Listing 6.19), 250
of uniqueness of email addresses, ignoring

case (Listing 6.21), 251
user, 236–254

validations, Micropost model, 432–444
accessible attributes and first, 432–433
content validations, 443–444
first validation, accessible attributes and,

432–433
tests for validity of new micropost

(Listing 10.3), 432
for user (Listing 10.4), 433

variables in improving stylesheets, 193–197
version control. See Git
Vim, 10, 12, 29, 82
virtual attributes, 257

W
web interface for following users, 503–529

adding following/follower relationships to
sample data (Listing 11.17), 503–504

follow button with Ajax, working, 524–529

566 Index

web interface for following users (continued)
follow form, 505–514
following and followers pages, 515–519
follow/unfollow buttons, working, 519–524
sample following data, 503–505
stats, 505–514

Webrat, 79n1
The Well-Grounded Rubyist (Black), 6, 129, 543
will paginate method, 408
Windows, 11

wireframes, 167
wrapping long words, helper for (Listing 10.50),

481

Y
YAML, 276n3

Z
zero-offset, 143

	Contents
	Foreword to the First Edition
	Foreword to the First Edition
	Acknowledgments
	About the Author
	Chapter 1 From Zero to Deploy
	1.1 Introduction
	1.1.1 Comments for Various Readers
	1.1.2 "Scaling" Rails
	1.1.3 Conventions in This Book

	1.2 Up and Running
	1.2.1 Development Environments
	1.2.2 Ruby, RubyGems, Rails, and Git
	1.2.3 The First Application
	1.2.4 Bundler
	1.2.5 rails server
	1.2.6 Model-view-controller (MVC)

	1.3 Version Control with Git
	1.3.1 Installation and Setup
	1.3.2 Adding and Committing
	1.3.3 What Good Does Git Do You?
	1.3.4 GitHub
	1.3.5 Branch, Edit, Commit, Merge

	1.4 Deploying
	1.4.1 Heroku Setup
	1.4.2 Heroku Deployment, Step One
	1.4.3 Heroku Deployment, Step Two
	1.4.4 Heroku Commands

	1.5 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

