
This notebook was prepared by Donne Martin (http://donnemartin.com). Source and license info is on
GitHub (https://github.com/donnemartin/data-science-ipython-notebooks).

Kaggle Machine Learning Competition: Predicting
Titanic Survivors

Competition Site
Description
Evaluation
Data Set
Setup Imports and Variables
Explore the Data
Feature: Passenger Classes
Feature: Sex
Feature: Embarked
Feature: Age
Feature: Family Size
Final Data Preparation for Machine Learning
Data Wrangling Summary
Random Forest: Training
Random Forest: Predicting
Random Forest: Prepare for Kaggle Submission
Support Vector Machine: Training
Support Vector Machine: Predicting

Competition Site

Description, Evaluation, and Data Set taken from the competition site (https://www.kaggle.com/c/titanic-
gettingStarted).

Description

http://donnemartin.com/
https://github.com/donnemartin/data-science-ipython-notebooks
https://www.kaggle.com/c/titanic-gettingStarted

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during
her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and
crew. This sensational tragedy shocked the international community and led to better safety regulations for
ships.

One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for
the passengers and crew. Although there was some element of luck involved in surviving the sinking, some
groups of people were more likely to survive than others, such as women, children, and the upper-class.

In this challenge, we ask you to complete the analysis of what sorts of people were likely to survive. In
particular, we ask you to apply the tools of machine learning to predict which passengers survived the
tragedy.

Evaluation

The historical data has been split into two groups, a 'training set' and a 'test set'. For the training set, we
provide the outcome ('ground truth') for each passenger. You will use this set to build your model to
generate predictions for the test set.

For each passenger in the test set, you must predict whether or not they survived the sinking (0 for
deceased, 1 for survived). Your score is the percentage of passengers you correctly predict.

The Kaggle leaderboard has a public and private component. 50% of your predictions for the test set have
been randomly assigned to the public leaderboard (the same 50% for all users). Your score on this public
portion is what will appear on the leaderboard. At the end of the contest, we will reveal your score on the
private 50% of the data, which will determine the final winner. This method prevents users from 'overfitting'
to the leaderboard.

Data Set

File Name Available Formats

train .csv (59.76 kb)

gendermodel .csv (3.18 kb)

genderclassmodel .csv (3.18 kb)

test .csv (27.96 kb)

gendermodel .py (3.58 kb)

genderclassmodel .py (5.63 kb)

myfirstforest .py (3.99 kb)

VARIABLE DESCRIPTIONS:
survival Survival
 (0 = No; 1 = Yes)
pclass Passenger Class
 (1 = 1st; 2 = 2nd; 3 = 3rd)
name Name
sex Sex
age Age
sibsp Number of Siblings/Spouses Aboard
parch Number of Parents/Children Aboard
ticket Ticket Number
fare Passenger Fare
cabin Cabin
embarked Port of Embarkation
 (C = Cherbourg; Q = Queenstown; S = Southampton)

SPECIAL NOTES:
Pclass is a proxy for socio-economic status (SES)
 1st ~ Upper; 2nd ~ Middle; 3rd ~ Lower

Age is in Years; Fractional if Age less than One (1)
 If the Age is Estimated, it is in the form xx.5

With respect to the family relation variables (i.e. sibsp and parch)
some relations were ignored. The following are the definitions used
for sibsp and parch.

Sibling: Brother, Sister, Stepbrother, or Stepsister of Passenger Aboard
Titanic
Spouse: Husband or Wife of Passenger Aboard Titanic (Mistresses and Fia
nces Ignored)
Parent: Mother or Father of Passenger Aboard Titanic
Child: Son, Daughter, Stepson, or Stepdaughter of Passenger Aboard Tit
anic

Other family relatives excluded from this study include cousins,
nephews/nieces, aunts/uncles, and in-laws. Some children travelled
only with a nanny, therefore parch=0 for them. As well, some
travelled with very close friends or neighbors in a village, however,
the definitions do not support such relations.

Setup Imports and Variables

In [1]:

Explore the Data

Read the data:

In [2]:

Out[2]:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare

0 1 0 3
Braund,

Mr. Owen
Harris

male 22.0 1 0 A/5 21171 7.2500

1 2 1 1

Cumings,
Mrs. John

Bradley
(Florence

Briggs
Th...

female 38.0 1 0 PC 17599 71.2833

2 3 1 3
Heikkinen,

Miss.
Laina

female 26.0 0 0 STON/O2.
3101282 7.9250

3 4 1 1

Futrelle,
Mrs.

Jacques
Heath

(Lily May
Peel)

female 35.0 1 0 113803 53.1000

4 5 0 3
Allen, Mr.

William
Henry

male 35.0 0 0 373450 8.0500

import pandas as pd
import numpy as np
import pylab as plt

Set the global default size of matplotlib figures
plt.rc('figure', figsize=(10, 5))

Size of matplotlib figures that contain subplots
fizsize_with_subplots = (10, 10)

Size of matplotlib histogram bins
bin_size = 10

df_train = pd.read_csv('../data/titanic/train.csv')
df_train.head()

1
2
3
4
5
6
7
8
9

10
11
12

1
2

In [3]:

View the data types of each column:

In [4]:

Type 'object' is a string for pandas, which poses problems with machine learning algorithms. If we want to
use these as features, we'll need to convert these to number representations.

Get some basic information on the DataFrame:

Out[3]:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin

886 887 0 2
Montvila,

Rev.
Juozas

male 27.0 0 0 211536 13.00 NaN

887 888 1 1
Graham,

Miss.
Margaret

Edith
female 19.0 0 0 112053 30.00 B42

888 889 0 3

Johnston,
Miss.

Catherine
Helen

"Carrie"

female NaN 1 2 W./C.
6607 23.45 NaN

889 890 1 1
Behr, Mr.

Karl
Howell

male 26.0 0 0 111369 30.00 C148

890 891 0 3
Dooley,

Mr.
Patrick

male 32.0 0 0 370376 7.75 NaN

Out[4]:

PassengerId int64
Survived int64
Pclass int64
Name object
Sex object
Age float64
SibSp int64
Parch int64
Ticket object
Fare float64
Cabin object
Embarked object
dtype: object

df_train.tail()

df_train.dtypes

1

1

In [5]:

Age, Cabin, and Embarked are missing values. Cabin has too many missing values, whereas we might be
able to infer values for Age and Embarked.

Generate various descriptive statistics on the DataFrame:

In [6]:

Now that we have a general idea of the data set contents, we can dive deeper into each column. We'll be
doing exploratory data analysis and cleaning data to setup 'features' we'll be using in our machine learning
algorithms.

Plot a few features to get a better idea of each:

In [7]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB

Out[6]:

PassengerId Survived Pclass Age SibSp Parch Fare

count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000

mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208

std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429

min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000

25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400

50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200

75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000

max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200

df_train.info()

df_train.describe()

1

1

In [7]:

Out[7]:

Text(0.5,1,'Age Histogram')

Set up a grid of plots
fig = plt.figure(figsize=fizsize_with_subplots)
fig_dims = (3, 2)

Plot death and survival counts
plt.subplot2grid(fig_dims, (0, 0))
df_train['Survived'].value_counts().plot(kind='bar',
 title='Death and Survival Counts')

Plot Pclass counts
plt.subplot2grid(fig_dims, (0, 1))
df_train['Pclass'].value_counts().plot(kind='bar',
 title='Passenger Class Counts')

Plot Sex counts
plt.subplot2grid(fig_dims, (1, 0))
df_train['Sex'].value_counts().plot(kind='bar',
 title='Gender Counts')
plt.xticks(rotation=0)

Plot Embarked counts
plt.subplot2grid(fig_dims, (1, 1))
df_train['Embarked'].value_counts().plot(kind='bar',
 title='Ports of Embarkation Counts')

Plot the Age histogram
plt.subplot2grid(fig_dims, (2, 0))
df_train['Age'].hist()
plt.title('Age Histogram')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Next we'll explore various features to view their impact on survival rates.

Feature: Passenger Classes

From our exploratory data analysis in the previous section, we see there are three passenger classes: First,
Second, and Third class. We'll determine which proportion of passengers survived based on their
passenger class.

Generate a cross tab of Pclass and Survived:

In [8]:

Plot the cross tab:

Out[8]:

Survived 0 1

Pclass

1 80 136

2 97 87

3 372 119

pclass_xt = pd.crosstab(df_train['Pclass'], df_train['Survived'])
pclass_xt

1
2

In [9]:

We can see that passenger class seems to have a significant impact on whether a passenger survived.
Those in First Class the highest chance for survival.

Feature: Sex

Gender might have also played a role in determining a passenger's survival rate. We'll need to map Sex
from a string to a number to prepare it for machine learning algorithms.

Generate a mapping of Sex from a string to a number representation:

In [10]:

Out[9]:

Text(0,0.5,'Survival Rate')

Out[10]:

{'female': 0, 'male': 1}

Normalize the cross tab to sum to 1:
pclass_xt_pct = pclass_xt.div(pclass_xt.sum(1).astype(float), axis=0)

pclass_xt_pct.plot(kind='bar',
 stacked=True,
 title='Survival Rate by Passenger Classes')
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')

sexes = sorted(df_train['Sex'].unique())
genders_mapping = dict(zip(sexes, range(0, len(sexes) + 1)))
genders_mapping

1
2
3
4
5
6
7
8

1
2
3

Transform Sex from a string to a number representation:

In [11]:

Plot a normalized cross tab for Sex_Val and Survived:

Out[11]:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare

0 1 0 3
Braund,

Mr. Owen
Harris

male 22.0 1 0 A/5 21171 7.2500

1 2 1 1

Cumings,
Mrs. John

Bradley
(Florence

Briggs
Th...

female 38.0 1 0 PC 17599 71.2833

2 3 1 3
Heikkinen,

Miss.
Laina

female 26.0 0 0 STON/O2.
3101282 7.9250

3 4 1 1

Futrelle,
Mrs.

Jacques
Heath

(Lily May
Peel)

female 35.0 1 0 113803 53.1000

4 5 0 3
Allen, Mr.

William
Henry

male 35.0 0 0 373450 8.0500

df_train['Sex_Val'] = df_train['Sex'].map(genders_mapping).astype(int)
df_train.head()

1
2

In [12]:

The majority of females survived, whereas the majority of males did not.

Next we'll determine whether we can gain any insights on survival rate by looking at both Sex and Pclass.

Count males and females in each Pclass:

In [14]:

Plot survival rate by Sex and Pclass:

In [15]:

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x11a1ceba8>

M: 1 122
F: 1 94
M: 2 108
F: 2 76
M: 3 347
F: 3 144

sex_val_xt = pd.crosstab(df_train['Sex_Val'], df_train['Survived'])
sex_val_xt_pct = sex_val_xt.div(sex_val_xt.sum(1).astype(float), axis=0)
sex_val_xt_pct.plot(kind='bar', stacked=True, title='Survival Rate by Gender'

Get the unique values of Pclass:
passenger_classes = sorted(df_train['Pclass'].unique())

for p_class in passenger_classes:
 print('M: ', p_class, len(df_train[(df_train['Sex'] == 'male') &
 (df_train['Pclass'] == p_class)]))
 print('F: ', p_class, len(df_train[(df_train['Sex'] == 'female') &
 (df_train['Pclass'] == p_class)]))

1
2
3

1
2
3
4
5
6
7
8

Out[15]:

Text(0,0.5,'Survival Rate')

Plot survival rate by Sex
females_df = df_train[df_train['Sex'] == 'female']
females_xt = pd.crosstab(females_df['Pclass'], df_train['Survived'])
females_xt_pct = females_xt.div(females_xt.sum(1).astype(float), axis=0)
females_xt_pct.plot(kind='bar',
 stacked=True,
 title='Female Survival Rate by Passenger Class')
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')

Plot survival rate by Pclass
males_df = df_train[df_train['Sex'] == 'male']
males_xt = pd.crosstab(males_df['Pclass'], df_train['Survived'])
males_xt_pct = males_xt.div(males_xt.sum(1).astype(float), axis=0)
males_xt_pct.plot(kind='bar',
 stacked=True,
 title='Male Survival Rate by Passenger Class')
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

The vast majority of females in First and Second class survived. Males in First class had the highest chance
for survival.

Feature: Embarked

The Embarked column might be an important feature but it is missing a couple data points which might
pose a problem for machine learning algorithms:

In [15]:

Prepare to map Embarked from a string to a number representation:

In [21]:

Transform Embarked from a string to a number representation to prepare it for machine learning algorithms:

Out[15]:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin

61 62 1 1
Icard,
Miss.

Amelie
female 38 0 0 113572 80 B28

829 830 1 1

Stone,
Mrs.

George
Nelson

(Martha
Evelyn)

female 62 0 0 113572 80 B28

--

TypeError Traceback (most recent cal
l last)
<ipython-input-21-4305ad16072b> in <module>()
 1 # Get the unique values of Embarked
----> 2 embarked_locs=sorted(df_train['Embarked'].unique())
 3
 4 #embarked_locs_mapping = dict(zip(embarked_locs,range(0, len
(embarked_locs) + 1)))
 5 #print(embarked_locs_mapping)

TypeError: '<' not supported between instances of 'float' and 'str'

df_train[df_train['Embarked'].isnull()]

Get the unique values of Embarked
embarked_locs=sorted(df_train['Embarked'].unique())

embarked_locs_mapping = dict(zip(embarked_locs,range(0, len(embarked_locs) +
print(embarked_locs_mapping)

1

1
2
3
4
5

In [22]:

Plot the histogram for Embarked_Val:

In [18]:

Since the vast majority of passengers embarked in 'S': 3, we assign the missing values in Embarked to 'S':

--

NameError Traceback (most recent cal
l last)
<ipython-input-22-7afd02dfe9dd> in <module>()
----> 1 df_train['Embarked_Val'] = df_train['Embarked']
.map(embarked_locs_mapping) .astype(i
nt)
 2 df_train.head()

NameError: name 'embarked_locs_mapping' is not defined

df_train['Embarked_Val'] = df_train['Embarked'] \
 .map(embarked_locs_mapping) \
 .astype(int)
df_train.head()

df_train['Embarked_Val'].hist(bins=len(embarked_locs), range=(0, 3))
plt.title('Port of Embarkation Histogram')
plt.xlabel('Port of Embarkation')
plt.ylabel('Count')
plt.show()

1
2
3
4

1
2
3
4
5

In [19]:

Verify we do not have any more NaNs for Embarked_Val:

In [20]:

Plot a normalized cross tab for Embarked_Val and Survived:

In [21]:

Out[20]:

array([1, 2, 3])

Out[21]:

<matplotlib.text.Text at 0x10b7e28d0>

if len(df_train[df_train['Embarked'].isnull()] > 0):
 df_train.replace({'Embarked_Val' :
 { embarked_locs_mapping[nan] : embarked_locs_mapping['S']
 }
 },
 inplace=True)

embarked_locs = sorted(df_train['Embarked_Val'].unique())
embarked_locs

embarked_val_xt = pd.crosstab(df_train['Embarked_Val'], df_train['Survived'])
embarked_val_xt_pct = \
 embarked_val_xt.div(embarked_val_xt.sum(1).astype(float), axis=0)
embarked_val_xt_pct.plot(kind='bar', stacked=True)
plt.title('Survival Rate by Port of Embarkation')
plt.xlabel('Port of Embarkation')
plt.ylabel('Survival Rate')

1
2
3
4
5
6

1
2

1
2
3
4
5
6
7

It appears those that embarked in location 'C': 1 had the highest rate of survival. We'll dig in some more to
see why this might be the case. Below we plot a graphs to determine gender and passenger class makeup
for each port:

In [22]:

Set up a grid of plots
fig = plt.figure(figsize=fizsize_with_subplots)

rows = 2
cols = 3
col_names = ('Sex_Val', 'Pclass')

for portIdx in embarked_locs:
 for colIdx in range(0, len(col_names)):
 plt.subplot2grid((rows, cols), (colIdx, portIdx - 1))
 df_train[df_train['Embarked_Val'] == portIdx][col_names[colIdx]] \
 .value_counts().plot(kind='bar')

1
2
3
4
5
6
7
8
9

10
11
12

Leaving Embarked as integers implies ordering in the values, which does not exist. Another way to
represent Embarked without ordering is to create dummy variables:

In [23]:

Feature: Age

The Age column seems like an important feature--unfortunately it is missing many values. We'll need to fill
in the missing values like we did with Embarked.

Filter to view missing Age values:

In [24]:

Determine the Age typical for each passenger class by Sex_Val. We'll use the median instead of the mean
because the Age histogram seems to be right skewed.

In [25]:

Ensure AgeFill does not contain any missing values:

Out[24]:

Sex Pclass Age

5 male 3 NaN

17 male 2 NaN

19 female 3 NaN

26 male 3 NaN

28 female 3 NaN

df_train = pd.concat([df_train, pd.get_dummies(df_train['Embarked_Val'], prefix

df_train[df_train['Age'].isnull()][['Sex', 'Pclass', 'Age']].head()

To keep Age in tact, make a copy of it called AgeFill
that we will use to fill in the missing ages:
df_train['AgeFill'] = df_train['Age']

Populate AgeFill
df_train['AgeFill'] = df_train['AgeFill'] \
 .groupby([df_train['Sex_Val'], df_train['Pclass']]) \
 .apply(lambda x: x.fillna(x.median()))

1

1

1
2
3
4
5
6
7
8

In [26]:

Plot a normalized cross tab for AgeFill and Survived:

In [27]:

Out[26]:

0

Out[27]:

<matplotlib.text.Text at 0x10c4125d0>

len(df_train[df_train['AgeFill'].isnull()])

Set up a grid of plots
fig, axes = plt.subplots(2, 1, figsize=fizsize_with_subplots)

Histogram of AgeFill segmented by Survived
df1 = df_train[df_train['Survived'] == 0]['Age']
df2 = df_train[df_train['Survived'] == 1]['Age']
max_age = max(df_train['AgeFill'])
axes[0].hist([df1, df2],
 bins=max_age / bin_size,
 range=(1, max_age),
 stacked=True)
axes[0].legend(('Died', 'Survived'), loc='best')
axes[0].set_title('Survivors by Age Groups Histogram')
axes[0].set_xlabel('Age')
axes[0].set_ylabel('Count')

Scatter plot Survived and AgeFill
axes[1].scatter(df_train['Survived'], df_train['AgeFill'])
axes[1].set_title('Survivors by Age Plot')
axes[1].set_xlabel('Survived')
axes[1].set_ylabel('Age')

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Unfortunately, the graphs above do not seem to clearly show any insights. We'll keep digging further.

Plot AgeFill density by Pclass:

In [28]:

When looking at AgeFill density by Pclass, we see the first class passengers were generally older then
second class passengers, which in turn were older than third class passengers. We've determined that first
class passengers had a higher survival rate than second class passengers, which in turn had a higher
survival rate than third class passengers.

Out[28]:

<matplotlib.legend.Legend at 0x10be093d0>

for pclass in passenger_classes:
 df_train.AgeFill[df_train.Pclass == pclass].plot(kind='kde')
plt.title('Age Density Plot by Passenger Class')
plt.xlabel('Age')
plt.legend(('1st Class', '2nd Class', '3rd Class'), loc='best')

1
2
3
4
5

In [29]:

Out[29]:

<matplotlib.axes._subplots.AxesSubplot at 0x10d6c22d0>

Set up a grid of plots
fig = plt.figure(figsize=fizsize_with_subplots)
fig_dims = (3, 1)

Plot the AgeFill histogram for Survivors
plt.subplot2grid(fig_dims, (0, 0))
survived_df = df_train[df_train['Survived'] == 1]
survived_df['AgeFill'].hist(bins=max_age / bin_size, range=(1, max_age))

Plot the AgeFill histogram for Females
plt.subplot2grid(fig_dims, (1, 0))
females_df = df_train[(df_train['Sex_Val'] == 0) & (df_train['Survived'] == 1
females_df['AgeFill'].hist(bins=max_age / bin_size, range=(1, max_age))

Plot the AgeFill histogram for first class passengers
plt.subplot2grid(fig_dims, (2, 0))
class1_df = df_train[(df_train['Pclass'] == 1) & (df_train['Survived'] == 1)]
class1_df['AgeFill'].hist(bins=max_age / bin_size, range=(1, max_age))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

In the first graph, we see that most survivors come from the 20's to 30's age ranges and might be
explained by the following two graphs. The second graph shows most females are within their 20's. The
third graph shows most first class passengers are within their 30's.

Feature: Family Size

Feature enginering involves creating new features or modifying existing features which might be
advantageous to a machine learning algorithm.

Define a new feature FamilySize that is the sum of Parch (number of parents or children on board) and
SibSp (number of siblings or spouses):

In [30]:

Plot a histogram of FamilySize:

Out[30]:

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare

0 1 0 3
Braund,

Mr. Owen
Harris

male 22 1 0 A/5 21171 7.2500

1 2 1 1

Cumings,
Mrs. John

Bradley
(Florence

Briggs
Th...

female 38 1 0 PC 17599 71.2833

2 3 1 3
Heikkinen,

Miss.
Laina

female 26 0 0 STON/O2.
3101282 7.9250

3 4 1 1

Futrelle,
Mrs.

Jacques
Heath

(Lily May
Peel)

female 35 1 0 113803 53.1000

4 5 0 3
Allen, Mr.

William
Henry

male 35 0 0 373450 8.0500

df_train['FamilySize'] = df_train['SibSp'] + df_train['Parch']
df_train.head()

1
2

In [31]:

Plot a histogram of AgeFill segmented by Survived:

Out[31]:

<matplotlib.text.Text at 0x10db78590>

df_train['FamilySize'].hist()
plt.title('Family Size Histogram')

1
2

In [32]:

Based on the histograms, it is not immediately obvious what impact FamilySize has on survival. The
machine learning algorithms might benefit from this feature.

Additional features we might want to engineer might be related to the Name column, for example honorrary
or pedestrian titles might give clues and better predictive power for a male's survival.

Final Data Preparation for Machine Learning

Many machine learning algorithms do not work on strings and they usually require the data to be in an
array, not a DataFrame.

Show only the columns of type 'object' (strings):

Out[32]:

<matplotlib.text.Text at 0x10dd85bd0>

Get the unique values of Embarked and its maximum
family_sizes = sorted(df_train['FamilySize'].unique())
family_size_max = max(family_sizes)

df1 = df_train[df_train['Survived'] == 0]['FamilySize']
df2 = df_train[df_train['Survived'] == 1]['FamilySize']
plt.hist([df1, df2],
 bins=family_size_max + 1,
 range=(0, family_size_max),
 stacked=True)
plt.legend(('Died', 'Survived'), loc='best')
plt.title('Survivors by Family Size')

1
2
3
4
5
6
7
8
9

10
11
12

In [33]:

Drop the columns we won't use:

In [34]:

Drop the following columns:

The Age column since we will be using the AgeFill column instead.
The SibSp and Parch columns since we will be using FamilySize instead.
The PassengerId column since it won't be used as a feature.
The Embarked_Val as we decided to use dummy variables instead.

In [35]:

Convert the DataFrame to a numpy array:

Out[33]:

Name object
Sex object
Ticket object
Cabin object
Embarked object
dtype: object

Out[35]:

Survived int64
Pclass int64
Fare float64
Sex_Val int64
Embarked_Val_1 float64
Embarked_Val_2 float64
Embarked_Val_3 float64
AgeFill float64
FamilySize int64
dtype: object

df_train.dtypes[df_train.dtypes.map(lambda x: x == 'object')]

df_train = df_train.drop(['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'],
 axis=1)

df_train = df_train.drop(['Age', 'SibSp', 'Parch', 'PassengerId', 'Embarked_Val'
df_train.dtypes

1

1
2

1
2

In [36]:

Data Wrangling Summary

Below is a summary of the data wrangling we performed on our training data set. We encapsulate this in a
function since we'll need to do the same operations to our test set later.

In [37]:

Out[36]:

array([[0. , 3. , 7.25 , ..., 1. , 22. , 1.
],
 [1. , 1. , 71.2833, ..., 0. , 38. , 1.
],
 [1. , 3. , 7.925 , ..., 1. , 26. , 0.
],
 ...,
 [0. , 3. , 23.45 , ..., 1. , 21.5 , 3.
],
 [1. , 1. , 30. , ..., 0. , 26. , 0.
],
 [0. , 3. , 7.75 , ..., 0. , 32. , 0.
]])

train_data = df_train.values
train_data

def clean_data(df, drop_passenger_id):

 # Get the unique values of Sex
 sexes = sorted(df['Sex'].unique())

 # Generate a mapping of Sex from a string to a number representation
 genders_mapping = dict(zip(sexes, range(0, len(sexes) + 1)))

 # Transform Sex from a string to a number representation
 df['Sex_Val'] = df['Sex'].map(genders_mapping).astype(int)

 # Get the unique values of Embarked
 embarked_locs = sorted(df['Embarked'].unique())

 # Generate a mapping of Embarked from a string to a number representation
 embarked_locs_mapping = dict(zip(embarked_locs,
 range(0, len(embarked_locs) + 1)))

 # Transform Embarked from a string to dummy variables
 df = pd.concat([df, pd.get_dummies(df['Embarked'], prefix='Embarked_Val')],

 # Fill in missing values of Embarked
 # Since the vast majority of passengers embarked in 'S': 3,
 # we assign the missing values in Embarked to 'S':
 if len(df[df['Embarked'].isnull()] > 0):
 df.replace({'Embarked_Val' :
 { embarked_locs_mapping[nan] : embarked_locs_mapping['S'

1
2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Random Forest: Training

Create the random forest object:

In [38]:

Fit the training data and create the decision trees:

 { embarked_locs_mapping[nan] : embarked_locs_mapping['S'
 }
 },
 inplace=True)

 # Fill in missing values of Fare with the average Fare
 if len(df[df['Fare'].isnull()] > 0):
 avg_fare = df['Fare'].mean()
 df.replace({ None: avg_fare }, inplace=True)

 # To keep Age in tact, make a copy of it called AgeFill
 # that we will use to fill in the missing ages:
 df['AgeFill'] = df['Age']

 # Determine the Age typical for each passenger class by Sex_Val.
 # We'll use the median instead of the mean because the Age
 # histogram seems to be right skewed.
 df['AgeFill'] = df['AgeFill'] \
 .groupby([df['Sex_Val'], df['Pclass']]) \
 .apply(lambda x: x.fillna(x.median()))

 # Define a new feature FamilySize that is the sum of
 # Parch (number of parents or children on board) and
 # SibSp (number of siblings or spouses):
 df['FamilySize'] = df['SibSp'] + df['Parch']

 # Drop the columns we won't use:
 df = df.drop(['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], axis=1)

 # Drop the Age column since we will be using the AgeFill column instead.
 # Drop the SibSp and Parch columns since we will be using FamilySize.
 # Drop the PassengerId column since it won't be used as a feature.
 df = df.drop(['Age', 'SibSp', 'Parch'], axis=1)

 if drop_passenger_id:
 df = df.drop(['PassengerId'], axis=1)

 return df

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100)

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3

In [39]:

Random Forest: Predicting

Read the test data:

In [40]:

Note the test data does not contain the column 'Survived', we'll use our trained model to predict these
values.

Out[39]:

'Mean accuracy of Random Forest: 0.980920314254'

Out[40]:

PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

0 892 3 Kelly, Mr.
James male 34.5 0 0 330911 7.8292 NaN

1 893 3

Wilkes,
Mrs.

James
(Ellen

Needs)

female 47.0 1 0 363272 7.0000 NaN

2 894 2
Myles,

Mr.
Thomas
Francis

male 62.0 0 0 240276 9.6875 NaN

3 895 3 Wirz, Mr.
Albert male 27.0 0 0 315154 8.6625 NaN

4 896 3

Hirvonen,
Mrs.

Alexander
(Helga E

Lindqvist)

female 22.0 1 1 3101298 12.2875 NaN

Training data features, skip the first column 'Survived'
train_features = train_data[:, 1:]

'Survived' column values
train_target = train_data[:, 0]

Fit the model to our training data
clf = clf.fit(train_features, train_target)
score = clf.score(train_features, train_target)
"Mean accuracy of Random Forest: {0}".format(score)

df_test = pd.read_csv('../data/titanic/test.csv')
df_test.head()

1
2
3
4
5
6
7
8
9

10

1
2

In [41]:

Take the decision trees and run it on the test data:

In [42]:

Random Forest: Prepare for Kaggle Submission
Create a DataFrame by combining the index from the test data with the output of predictions, then write the
results to the output:

In [43]:

Evaluate Model Accuracy

Submitting to Kaggle will give you an accuracy score. It would be helpful to get an idea of accuracy without
submitting to Kaggle.

We'll split our training data, 80% will go to "train" and 20% will go to "test":

Data wrangle the test set and convert it to a numpy array
df_test = clean_data(df_test, drop_passenger_id=False)
test_data = df_test.values

Get the test data features, skipping the first column 'PassengerId'
test_x = test_data[:, 1:]

Predict the Survival values for the test data
test_y = clf.predict(test_x)

df_test['Survived'] = test_y
df_test[['PassengerId', 'Survived']] \
 .to_csv('../data/titanic/results-rf.csv', index=False)

1
2
3

1
2
3
4
5

1
2
3

In [44]:

Use the new training data to fit the model, predict, and get the accuracy score:

In [45]:

View the Confusion Matrix:

condition True condition false

prediction true True Positive False positive

Prediction False False Negative True Negative

((891, 8), (891,))
((712, 8), (712,))
((179, 8), (179,))

Accuracy = 0.83

from sklearn import metrics
from sklearn.cross_validation import train_test_split

Split 80-20 train vs test data
train_x, test_x, train_y, test_y = train_test_split(train_features,
 train_target,
 test_size=0.20,
 random_state=0)
print (train_features.shape, train_target.shape)
print (train_x.shape, train_y.shape)
print (test_x.shape, test_y.shape)

clf = clf.fit(train_x, train_y)
predict_y = clf.predict(test_x)

from sklearn.metrics import accuracy_score
print ("Accuracy = %.2f" % (accuracy_score(test_y, predict_y)))

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5

In [46]:

Get the model score and confusion matrix:

Out[46]:

from IPython.core.display import Image
Image(filename='../data/confusion_matrix.png', width=800)

1
2

In [47]:

Display the classification report:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

Model Score 0.83

('Confusion Matrix ', array([[98, 12],
 [19, 50]]))
 Predicted
 | 0 | 1 |
 |-----|-----|
 0 | 98 | 12 |
Actual |-----|-----|
 1 | 19 | 50 |
 |-----|-----|

model_score = clf.score(test_x, test_y)
print ("Model Score %.2f \n" % (model_score))

confusion_matrix = metrics.confusion_matrix(test_y, predict_y)
print ("Confusion Matrix ", confusion_matrix)

print (" Predicted")
print (" | 0 | 1 |")
print (" |-----|-----|")
print (" 0 | %3d | %3d |" % (confusion_matrix[0, 0],
 confusion_matrix[0, 1]))
print ("Actual |-----|-----|")
print (" 1 | %3d | %3d |" % (confusion_matrix[1, 0],
 confusion_matrix[1, 1]))
print (" |-----|-----|")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

In [48]:

In [48]:

 precision recall f1-score support

Not Survived 0.84 0.89 0.86 110
 Survived 0.81 0.72 0.76 69

 avg / total 0.83 0.83 0.82 179

from sklearn.metrics import classification_report
print(classification_report(test_y,
 predict_y,
 target_names=['Not Survived', 'Survived']))

1
2
3
4

1

