
 IT Training & Consultancy

Welcome to
GKTCS

Innovations Pvt Ltd

1

18+ Years of Experience (MCA, PGDCS, BSc. [Electronics] ,
CCNA)

 Founder,GKTCS Innovations Pvt. Ltd. Pune [Nov 2009 – Till date]
 500 + Corporate Training for HP, IBM, Cisco,Wipro, Samsung etc.
 Skills

❑ Hadoop, Pig, Hive, Sqoop, Oozie, Spark, PySpark
❑Ruby, Rails,Cucumber, Calabash, Capybara, Rspec, Appium
❑Python, Django, Data Science, Machine Learning, Jython, Selenium
❑UNIX /Linux Shell Scripting, Perl, PHP, CakePHP, System Programming
❑ CA Siteminder, Autosys, SSO, Service Desk, Service Delivery

 Author of 4 Books
 National Paper Presentation Awards at BARC Mumbai

Director, GKTCS Innovations Pvt. Ltd, Pune.

 
Surendra
Panpaliya

2

Day 1
Module 1
Introduction to Spark
What is Apache Spark?
Spark Jobs and APIs
Spark 2.0 architecture
Installation and Configuration

Module 2
Resilient Distributed Datasets
Internal workings of an RDD
Creating RDDs
Global versus local scope
Transformations
Actions
Hands on Session on RDD and Spark
Assignments 1
Best Practices 1

Agenda

3

Day 2
Module 3
DataFrames
Python to RDD communications
Catalyst Optimiser refresh
Speeding up PySpark with DataFrames
Creating DataFrames
Simple DataFrame queries
Interoperating with RDDs
Querying with the DataFrame API
Hands On Session on Pandas DataFrame and PySpark
Assignments 2

Module 4
Prepare Data for Modelling
Checking for duplicates, missing observations, and outliers
Getting familiar with your data Visualisation
Hands on Session Data Modelling
Assignments 3

Agenda

4

Day 3
Module 5
Introducing MLlib
Overview of the package
Loading and transforming the data
Getting to know your data
Creating the final dataset
Predicting infant survival
Hands on Session using PySpark MLib
Assignments 4

Module 6
Introducing the ML Package
Overview of the package
Predicting the chances of infant survival with ML
Parameter hyper-tuning
Other features of PySpark ML in action
Implementation of ML Algorithm
• Random Forest
• Regression
• K-means
Assignments 5

Agenda

5

Day 3
Module 7
GraphFrames
Introducing GraphFrames
Installing GraphFrames
Preparing your flights dataset
Building the graph
Executing simple queries
Understanding vertex degrees
Determining the top transfer airports
Understanding motifs
Determining airport ranking using PageRank
Determining the most popular non-stop flights
Using Breadth-First Search
Visualizing flights using D3
Assignment 6
Conclusion and Summary

Agenda

6

08/29/15 7

SPARK Pyspark

Surendra R. Panpaliya
M:9975072320

surendrarp@gktcs.com
www.gktcs.com

mailto:surendrarp@gktcs.com

Day 1
Module 1
Introduction to Spark
What is Apache Spark?
Spark Jobs and APIs
Spark 2.0 architecture
Installation and Configuration

Module 2
Resilient Distributed Datasets
Internal workings of an RDD
Creating RDDs
Global versus local scope
Transformations
Actions
Hands on Session on RDD and Spark
Assignments 1
Best Practices 1

Agenda

8

Day 1
Module 1
Introduction to Spark
What is Apache Spark?
Spark Jobs and APIs
Spark 2.0 architecture
Installation and Configuration

Agenda

9

Module 1 

Introduction to Spark

08/29/15 10

08/29/15 11

Introduction

Apache Spark is a powerful open source processing engine originally developed
by Matei Zaharia as a part of his PhD thesis while at UC Berkeley.
The first version of Spark was released in 2012.
Since then, in 2013, Zaharia co-founded and has become the CTO at
Databricks;
He also holds a professor position at Stanford, coming from MIT.
At the same time, the Spark codebase was donated to the Apache Software
Foundation.

08/29/15 12

Introduction

Apache Spark is fast, easy to use framework, that allows you to solve a wide
variety of complex data problems whether semi-structured, structured,
streaming, and/or machine learning / data sciences.
It also has become one of the largest open source communities in big data with
more than 1,000 contributors from 250+ organizations and with 300,000+ Spark
Meetup community members in more than 570+ locations worldwide.

Module 1 

What is Apache Spark?

08/29/15 13

08/29/15 14

What is Apache Spark?

• Apache Spark is an open-source powerful distributed querying and
processing engine.

• It provides flexibility and extensibility of MapReduce but at significantly
higher speeds: Up to 100 times faster than Apache Hadoop when data is
stored in memory and up to 10 times when accessing disk.

• Apache Spark allows the user to read, transform, and aggregate data, as
well as train and deploy sophisticated statistical models with ease.

• The Spark APIs are accessible in Java, Scala, Python, R and SQL.

• Apache Spark can be used to build applications or package them up as
libraries to be deployed on a cluster or perform quick analytics
interactively through notebooks (like, for instance, Jupyter, Spark-
Notebook, Databricks notebooks, and Apache Zeppelin).

08/29/15 15

What is Apache Spark?

08/29/15 16

What is Apache Spark?

• Apache Spark exposes a host of libraries familiar to data analysts, data
scientists or researchers who have worked with Python's pandas or R's
data.frames or data.tables.

• It is important to note that while Spark DataFrames will be familiar to
pandas or data.frames / data.tables users, there are some differences so
please temper your expectations.

• Users with more of a SQL background can use the language to shape
their data as well.

• It also include several already implemented and tuned algorithms,
statistical models, and frameworks: MLlib and ML for machine learning,
GraphX and GraphFrames for graph processing, and Spark Streaming
(DStreams and Structured).

• Spark allows the user to combine these libraries seamlessly in the same
application.

08/29/15 17

What does Apache Spark
offer?

• Faster execution
• Spark encourages Hadoop application clusters to

execute 100x faster in memory and 10x faster on disk.
• Owing to its advance DAG execution engine, it also

possesses support for cyclic data flow and in-memory
computing.

08/29/15 18

What is Apache Spark?

• Apache Spark is a lightning-fast cluster computing
technology, designed for fast computation.

• It is based on Hadoop MapReduce and it extends the
MapReduce model to efficiently use it for more types of
computations, which includes interactive queries and
stream processing.

• The main feature of Spark is its in-memory cluster
computing that increases the processing speed of an
application.

08/29/15 19

What is Apache Spark?

08/29/15 20

What is Apache Spark?

• Apache Spark has a well-designed and striking
development API which lets the developers undergo
data iteration with various data science methodologies
which need quick in-memory processing.

• Also, with YARN, Spark can, in parallel be used for
other data related workloads with all of them sharing
the same data set Generality.

08/29/15 21

Spark Architecture

08/29/15 22

What is Apache Spark?

• Spark is one of Hadoop’s sub project developed in 2009 in
UC Berkeley’s AMPLab by Matei Zaharia.

• It was Open Sourced in 2010 under a BSD license.

• It was donated to Apache software foundation in 2013,
and now Apache Spark has become a top level Apache
project from Feb-2014.

• It has proven to be one of the largest communities
contributing to Big Data.

08/29/15 23

What is Apache Spark?

Spark is designed to cover a wide range of workloads such as batch
applications, iterative algorithms, interactive queries and streaming.

08/29/15 24

What does Apache Spark offer?

• Simplicity and Generalisation
• Apache Spark allows writing applications with ease in

Java, Scala or Python. There is availability of over 80
operators and it can used to query data within the
shell. It has a perfect combination of SQL, streaming
and complex analytics.

• There are high level tools like Spark SQL, MLlib
(machine learning), GraphX and SparkStreaming. These
libraries can be seamlessly combined in the same
application.

08/29/15 25

What does Apache Spark
offer?

• Powerful analytics
• There is support for SQL queries, streaming and

complex analytics. These combinations lead to a single
workflow and give out sophisticated analytics.

• Real time processing
• It manages real time streaming and can manipulate

real time data using Spark Streaming. Hence, streaming
is also possible with Hadoop and other frameworks
available.

08/29/15 26

What does Apache Spark
offer?

Supports multiple languages
• Spark provides built-in APIs in Java, Scala, or

Python. Therefore, you can write applications in
different languages. Spark comes up with 80 high-
level operators for interactive querying.

• Advanced Analytics: Spark not only supports ‘Map’
and ‘reduce’. It also supports SQL queries, Streaming
data, Machine learning (ML), and Graph algorithms.  

08/29/15 27

Spark Ecosystem

08/29/15 28

Spark Ecosystem

08/29/15 29

Spark Ecosystem

Apache Spark Core

• Spark Core is the underlying general execution engine
for spark platform that all other functionality is built
upon. It provides In-Memory computing and
referencing datasets in external storage systems.

Spark SQL

• Spark SQL is a component on top of Spark Core that
introduces a new data abstraction called SchemaRDD,
which provides support for structured and semi-
structured data.

08/29/15 30

Spark Ecosystem

Spark Streaming

Spark Streaming leverages Spark Core's fast scheduling capability to
perform streaming analytics. It ingests data in mini-batches and
performs RDD (Resilient Distributed Datasets) transformations on
those mini-batches of data.

MLlib (Machine Learning Library)

MLlib is a distributed machine learning framework above Spark
because of the distributed memory-based Spark architecture. It is,
according to benchmarks, done by the MLlib developers against the
Alternating Least Squares (ALS) implementations. Spark MLlib is nine
times as fast as the Hadoop disk-based version ofApache Mahout
(before Mahout gained a Spark interface).

08/29/15 31

Spark Ecosystem

GraphX

GraphX is a distributed graph-processing framework on top of Spark.
It provides an API for expressing graph computation that can model
the user-defined graphs by using Pregel abstraction API. It also
provides an optimised runtime for this abstraction.

Module 1 

Spark Jobs and APIs

08/29/15 32

08/29/15 33

Execution process

Spark application spins off a single driver process (that can contain multiple
jobs) on the master node that then directs executor processes (that contain
multiple tasks) distributed to a number of worker nodes as noted in the
following diagram:

08/29/15 34

Execution process

The driver process determines the number and the composition of the task
processes directed to the executor nodes based on the graph generated for the
given job.

Note, that any worker node can execute tasks from a number of different jobs.

08/29/15 35

Spark Jobs

A Spark job is associated with a chain of object dependencies organized in a
direct acyclic graph (DAG) such as the following example generated from the
Spark UI. Given this, Spark can optimize the scheduling (for example,
determine the number of tasks and workers required) and execution of these
tasks:

08/29/15 36

DAG Scheduler

DAGScheduler is the scheduling layer of Apache Spark that implements stage-oriented scheduling. It
transforms a logical execution plan (i.e. RDD lineage of dependencies built using RDD transformations)
to a physical execution plan (using stages).
For details of DAG
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-lineage.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-transformations.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-DAGScheduler-Stage.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html

08/29/15 37

DAG Scheduler

After an action has been called, SparkContext hands over a logical plan to DAGScheduler that it in turn
translates to a set of stages that are submitted as TaskSets for execution.
The fundamental concepts of DAGScheduler are jobs and stages (refer to Jobs and Stages
respectively) that it tracks through internal registries and counters.

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-actions.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-SparkContext.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-taskscheduler-tasksets.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler-jobs.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-DAGScheduler-Stage.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html#internal-registries

08/29/15 38

DAG Scheduler

DAGScheduler does three things in Spark as follows:

 • Computes an execution DAG, i.e. DAG of stages, for a job.

 • Determines the preferred locations to run each task on.

 • Handles failures due to shuffle output files being lost. 

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html#preferred-locations

08/29/15 39

Spark Jobs and APIs

Module 1 

Spark 2.0 architecture

08/29/15 40

08/29/15 41

Spark 2.0 Architecture

Apache Spark doesn’t provide any storage (like HDFS) or any Resource Management
capabilities. It is just a unified framework for processing large amount of data near to
real time. In below figure, Apache Spark framework is organized in three major layers.

08/29/15 42

Spark 2.0 Architecture

Spark Core Layer:
As you can see Spark Core is the generalised layer of the framework. Spark core has the
definition of all the basic functions. All other functionalities and extensions are built on
top of Spark Core.

Other Language capabilities:

• Spark is totally written on Scala (a Functional as well as Object Oriented
Programming Language) which runs on top of JVM

• Apart from Scala, Spark also supports languages like Java and Python
• Recently Spark has added the compatibility of statistical computing language R

08/29/15 43

Spark 2.0 Architecture

Spark DataFrame API:

Spark also has real time query engine which is able to query data in a quite real time
manner. To access that engine it has the DataFrame APIs in Scala, Java and Python
language.

Spark Ecosystems Layer:

Spark Ecosystem Components are the additional libraries operating on top of Spark Core
and DataFrames.

These components give the enrichment in the areas of SQL capabilities, machine
learning, real time big data computation etc.

08/29/15 44

Spark 2.0 Architecture

Spark Ecosystems Layer:

Following are the main components of Spark Ecosystem.

Spark SQL:

• Component on top of Spark Core with new RDD abstraction called SchemaRDD.
• Exposes Spark DataFrames through JDBC APIs and supports structured and semi-

structured data
• Provides SQL like interface over DataFrames to query data in CSV, JSON, Sequence

and Parquet file formats

08/29/15 45

Spark 2.0 Architecture

Spark Machine Learning (MLlib):

• A common Machine Learning libraries for distributed, scalable and in memory
computation

• Considerably faster than Apache Mahout in Hadoop MapReduce
• Supports common learning algorithms like dimension reduction, clustering,

classification, regression, collaborative filtering etc..

Spark Streaming:

• Adds capability of processing streaming data near to real time
• Capable of ingesting data in micro batches (in the form of micro RDDs) and

performs transformation on series of micro batches(RDDs)

08/29/15 46

Spark 2.0 Architecture

GraphX (Recently added):

• Provides distributed graph processing APIs on top of Spark Core
• Allows user defined graph modeling with Pregel abstraction API

BlinkDB (Recently added):

• Approximate query engine over large volume data
• Allows to execute interactive SQL over the large volume data which returns

approximate results
• Capable of executing queries faster with potential errors in aggregated values
• Useful in case of data insights where accuracy is not mandatory

08/29/15 47

Spark 2.0 Architecture

Tachyon (Recently added):

• It is an in-memory distributed file system
• Enables faster file sharing across the cluster as there is no overhead of disk IO
• It caches frequently read file in memory so that scheduled job can read shared files

directly from cache and can execute faster
• Can be used for in memory file sharing with MapReduce and Spark jobs

Spark Resource Manager Layer:

Apache Spark doesn’t comes up with Resource Management module like YARN. It manage
resource in standalone mode in single node cluster setup.

But for distributed cluster mode it can be integrated with resource management modules
like YARN or Mesos.

08/29/15 48

Spark 2.0 Architecture

08/29/15 49

Spark 2.0 Architecture

08/29/15 50

Spark 2.0 Architecture

08/29/15 51

Spark Jobs and APIs

08/29/15 52

Spark Jobs and APIs

08/29/15 53

Spark Jobs and APIs

08/29/15 54

Spark Jobs and APIs

08/29/15 55

Spark Jobs and APIs

08/29/15 56

Spark Jobs and APIs

08/29/15 57

PySpark Installation on
Windows

Prerequisites: Anaconda and GOW. If you already have anaconda and GOW installed,
skip to step 5.

1. Download and install Gnu on windows (GOW) from the following link.
Basically, GOW allows you to use linux commands on windows. In this install,
we will need curl, gzip, tar which GOW provides.

https://github.com/bmatzelle/gow/releases/download/v0.8.0/Gow-0.8.0.exe

08/29/15 58

PySpark Installation on
Windows

2. Download and install Anaconda (windows version) from
https://www.continuum.io/downloads

Anaconda 4.4.0

For Windows

Anaconda is BSD licensed which gives you permission to use Anaconda
commercially and for redistribution.

Changelog

1. Download the installer
2. Optional: Verify data integrity with MD5 or SHA-256 More info
3. Double-click the .exe file to install Anaconda and follow the instructions on the

screen
Behind a firewall? Use these zipped Windows installers

https://docs.continuum.io/anaconda/changelog
https://docs.continuum.io/anaconda/hashes/index
http://conda.pydata.org/docs/download.html#what-about-cryptographic-hash-verification
https://repo.continuum.io/archive/.winzip/

08/29/15 59

PySpark Installation on
Windows

3.Select the default options when prompted during the installation of Anaconda.

4. Close and open a new command line (CMD).

5. Go to the Apache Spark website (link)

Download Apache Spark
a) Choose a Spark release

b) Choose a package type

c) Choose a download type: (Direct Download)

d) Download Spark

http://spark.apache.org/downloads.html

08/29/15 60

PySpark Installation on
Windows

6. Move the file to where you want to unzip it.

mkdir C:\opt\spark

mv C:\Users\mgalarny\Downloads\spark-2.1.0-bin-hadoop2.7.tgz C:
\opt\spark\spark-2.1.0-bin-hadoop2.7.tgz

7. Unzip the file. Use the bolded commands below

gzip -d spark-2.1.0-bin-hadoop2.7.tgz

tar xvf spark-2.1.0-bin-hadoop2.7.tar

8. Download winutils.exe into your spark-2.1.0-bin-hadoop2.7\bin

curl -k -L -o winutils.exe https://github.com/steveloughran/winutils/blob/master/
hadoop-2.6.0/bin/winutils.exe?raw=true

https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true

08/29/15 61

PySpark Installation on
Windows

9. Make sure you have Java 7+ installed on your machine.

10. Next, we will edit our environmental variables so we can open a spark notebook
in any directory.

setx SPARK_HOME C:\opt\spark\spark-2.1.0-bin-hadoop2.7

setx HADOOP_HOME C:\opt\spark\spark-2.1.0-bin-hadoop2.7

setx PYSPARK_DRIVER_PYTHON ipython

setx PYSPARK_DRIVER_PYTHON_OPTS notebook

Add ;C:\opt\spark\spark-2.1.0-bin-hadoop2.7\bin to your path.

Notes on the setx command: https://ss64.com/nt/set.html

https://www.java.com/en/
https://ss64.com/nt/set.html

08/29/15 62

PySpark Installation on
Windows

11. Close your terminal and open a new one. Type the command below.

pyspark local

Notes: The PYSPARK_DRIVER_PYTHON parameter and the
PYSPARK_DRIVER_PYTHON_OPTS parameter are used to launch the PySpark
shell in Jupyter Notebook.

The — master parameter is used for setting the master node address. Here we launch
Spark locally on 2 cores for local testing.

Module 2 

Resilient Distributed Datasets

08/29/15 63

08/29/15 64

Resilient Distributed Datasets

RDD is a fundamental data structure of Spark. It is an immutable
distributed collection of JVM objects.

Each dataset in RDD is divided into logical partitions, which may be
computed on different nodes of the cluster.

RDDs can contain any type of Python, Java, or Scala objects,
including user-defined classes.

Formally, an RDD is a read-only, partitioned collection of records.

RDDs can be created through deterministic operations on either data
on stable storage or other RDDs.

RDD is a fault-tolerant collection of elements that can be operated
on in parallel.

08/29/15 65

08/29/15 66

Spark RDD

There are two ways to create RDDs: parallelizing an existing
collection in your driver program, or referencing a dataset in an
external storage system, such as a shared file system, HDFS, HBase,
or any data source offering a Hadoop Input Format.

Spark makes use of the concept of RDD to achieve faster and
efficient MapReduce operations. Let us first discuss how MapReduce
operations take place and why they are not so efficient.

08/29/15 67

Spark RDD

Data sharing is slow in MapReduce due to replication, serialisation,
and disk IO. Most of the Hadoop applications, they spend more than
90% of the time doing HDFS read- write operations.

Recognising this problem, researchers developed a specialised
framework called Apache Spark.

The key idea of spark is Resilient Distributed Datasets (RDD); it
supports in- memory processing computation.

This means, it stores the state of memory as an object across the
jobs and the object is sharable between those jobs. Data sharing in
memory is 10 to 100 times faster than network and Disk.

Let us now try to find out how iterative and interactive operations
take place in Spark RDD.

08/29/15 68

Spark RDD

The transformations to the dataset are lazy.

This means that any transformation is only executed when an action
on a dataset is called.

This helps Spark to optimize the execution.

For instance, consider the following very common steps that an
analyst would normally do to get familiar with a dataset:

• Count the occurrence of distinct values in a certain column.

• Select those that start with an A.

• Print the results to the screen.

08/29/15 69

Spark RDD

First, we order Spark to map the values of A using the .map(lambda v: (v, 1))
method, and then select those records that start with an 'A' (using
the .filter(lambda val: val.startswith('A')) method).

If we call the .reduceByKey(operator.add) method it will reduce the dataset and
add (in this example, count) the number of occurrences of each key.

All of these steps transform the dataset.

Second, we call the .collect() method to execute the steps.

This step is an action on our dataset - it finally counts the distinct elements
of the dataset.  
In effect, the action might reverse the order of transformations and filter the
data first before mapping, resulting in a smaller dataset being passed to the
reducer.

08/29/15 70

Creating RDD

There are two ways to create an RDD in PySpark:

1. you can either .parallelize(...) a collection (list or an array of some elements):

data = sc.parallelize(

[('Amber', 22), ('Alfred', 23), ('Skye',4), ('Albert', 12),

('Amber', 9)])

Or you can reference a file (or files) located either locally or somewhere
externally:

data_from_file = sc.\

textFile(‘/Users/SurendraMac/Documents/PySpark_Data/VS14MORT.txt.gz’, 4)

The last parameter in sc.textFile(..., n) specifies the number of partitions the
dataset is divided into.

08/29/15 71

Creating RDD

Note:

We downloaded the Mortality dataset VS14MORT.txt file from

ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/DVS/
mortality/mort2014us.zip;

the record schema is explained in this document

http://www.cdc.gov/nchs/ data/dvs/Record_Layout_2014.pdf.

We selected this dataset on purpose: For your convenience, we also
host the file here: http://tomdrabas.com/data/VS14MORT. txt.gz

08/29/15 72

Creating RDD

A rule of thumb would be to break your dataset into two-four partitions for each
in your cluster.

Spark can read from a multitude of filesystems: Local ones such as NTFS, FAT,
or Mac OS Extended (HFS+), or distributed filesystems such as HDFS, S3,
Cassandra, among many others.

Be wary where your datasets are read from or saved to:

The path cannot contain special characters [].

Note, that this also applies to paths stored on Amazon S3 or Microsoft Azure
Data Storage.

08/29/15 73

Creating RDD

Multiple data formats are supported: Text, parquet, JSON, Hive tables, and data
from relational databases can be read using a JDBC driver.

Note that Spark can automatically work with compressed datasets (like the
Gzipped one in our preceding example).

Depending on how the data is read, the object holding it will be represented
slightly differently.

The data read from a file is represented as MapPartitionsRDD instead of
ParallelCollectionRDD when we .paralellize(...) a collection.

08/29/15 74

Schema

RDDs are schema-less data structures (unlike DataFrames).

Thus, parallelizing a dataset, such as in the following code snippet, is
perfectly fine with Spark when using RDDs:

data_heterogenous = sc.parallelize([

('Ferrari', 'fast'),

{'Porsche': 100000},

['Spain','visited', 4504]

]).collect()

So, we can mix almost anything: a tuple, a dict, or a list and Spark will not
complain.

08/29/15 75

Schema

Once you .collect() the dataset (that is, run an action to bring it back to the
driver) you can access the data in the object as you would normally do in
Python:

data_heterogenous[1]['Porsche']

It will produce the following:

100000

The .collect() method returns all the elements of the RDD to the driver
where it is serialized as a list.

08/29/15 76

Reading from files

When you read from a text file, each row from the file forms an element of an
RDD.

The data_from_file.take(1) command will produce the following

(somewhat unreadable) output:

To make it more readable, let's create a list of elements so each line
is represented as a list of values.

08/29/15 77

Reading from files

Lambda expressions

In this example, we will extract the useful information from the
cryptic looking record of data_from_file.

data_from_file_conv = data_from_file.map(extractInformation)

data_from_file_conv.map(lambda row: row).take(1)

08/29/15 78

Global versus local scope

Spark can be run in two modes:

Local and cluster. When you run Spark locally your code might not differ to what
you are currently used to with running Python: Changes would most likely be
more syntactic than anything else but with an added twist that data and code
can be copied between separate worker processes.

In the cluster mode, when a job is submitted for execution, the job is sent to
the driver (or a master) node.

The driver node creates a DAG for a job and decides which executor (or worker)
nodes will run specific tasks.

The driver then instructs the workers to execute their tasks and return the
results to the driver when done.

Before that happens, however, the driver prepares each task's closure: A set of
variables and methods present on the driver for the worker to execute its task
on the RDD.

08/29/15 79

Transformations

The .map(...) transformation
It can be argued that you will use the .map(...) transformation most often. The
method is applied to each element of the RDD: In the case of the
data_from_file_ conv dataset, you can think of this as a transformation of each
row.

In this example, we will create a new dataset that will convert year of death into
a numeric value:

data_2014 = data_from_file_conv.map(lambda row: int(row[16]))

Running data_2014.take(10) will yield the following result:

08/29/15 80

Transformations

The .map(...) transformation

You can of course bring more columns over, but you would have to package
them into a tuple, dict, or a list. Let's also include the 17th element of the row
along so that we can confirm our .map(...) works as intended:

data_2014_2 = data_from_file_conv.map(

lambda row: (row[16], int(row[16]):)

data_2014_2.take(5)

The preceding code will produce the following result:

08/29/15 81

Transformations

The .filter(...) transformation

It allows you to select elements from your dataset that fit specified criteria.

As an example, from the data_from_file_conv dataset, let's count how many
people died in an accident in 2014:

data_filtered = data_from_file_conv.filter(lambda row: row[16] == '2014' and
row[21] == '0')

data_filtered.count()

08/29/15 82

Transformations
The .flatMap(...) transformation
The .flatMap(...) method works similarly to .map(...), but it returns a flattened
result instead of a list. If we execute the following code:

data_2014_flat = data_from_file_conv.flatMap(lambda row: (row[16], int(row[16])
+ 1))

data_2014_flat.take(10)

It will yield the following output:

08/29/15 83

Transformations
The .distinct(...) transformation
This method returns a list of distinct values in a specified column. It is extremely
useful if you want to get to know your dataset or validate it. Let's check if the
gender column contains only males and females; that would verify that we
parsed the dataset properly. Let's run the following code:

distinct_gender = data_from_file_conv.map(lambda row: row[5]).distinct()

distinct_gender.collect()

This code will produce the following output:

First, we extract only the column that contains the gender.

Next, we use the .distinct() method to select only the distinct values in the list.

Lastly, we use the .collect() method to return the print of the values on the
screen.

08/29/15 84

Transformations
The .sample(...) transformation
The .sample(...) method returns a randomized sample from the dataset. The first
parameter specifies whether the sampling should be with a replacement, the
second parameter defines the fraction of the data to return, and the third is seed
to the pseudo-random numbers generator:

fraction = 0.1

data_sample = data_from_file_conv.sample(False, fraction, 666)

In this example, we selected a randomized sample of 10% from the original
dataset. To confirm this, let's print the sizes of the datasets:

print('Original dataset: {0}, sample: {1}'\

.format(data_from_file_conv.count(), data_sample.count()))

The preceding command produces the following output:

08/29/15 85

Transformations
The .leftOuterJoin(...) transformation

.leftOuterJoin(...), just like in the SQL world, joins two RDDs based on the values
found in both datasets, and returns records from the left RDD with records from
the right one appended in places where the two RDDs match:

rdd1 = sc.parallelize([('a', 1), ('b', 4), ('c',10)])

rdd2 = sc.parallelize([('a', 4), ('a', 1), ('b', '6'), ('d', 15)])

rdd3 = rdd1.leftOuterJoin(rdd2)

Running .collect(...) on the rdd3 will produce the following:

08/29/15 86

Transformations

The .repartition(...) transformation
Repartitioning the dataset changes the number of partitions that the dataset is
divided into. This functionality should be used sparingly and only when really
necessary as it shuffles the data around, which in effect results in a significant
hit in terms of performance:

rdd1 = rdd1.repartition(4)
len(rdd1.glom().collect())

The preceding code prints out 4 as the new number of partitions.
The .glom() method, in contrast to .collect(), produces a list where each element
is another list of all elements of the dataset present in a specified partition; the
main list returned has as many elements as the number of partitions.

08/29/15 87

Actions
Actions, in contrast to transformations, execute the scheduled task on the dataset;
once you have finished transforming your data you can execute your
transformations.

The .take(...) method

This is most arguably the most useful (and used, such as the .map(...) method). The
method is preferred to .collect(...) as it only returns the n top rows from a single data
partition in contrast to .collect(...), which returns the whole RDD. This is especially
important when you deal with large datasets:

data_first = data_from_file_conv.take(1)

If you want somewhat randomized records you can use .takeSample(...) instead,
which takes three arguments: First whether the sampling should be with
replacement, the second specifies the number of records to return, and the third is a
seed to the pseudo-random numbers generator:

data_take_sampled = data_from_file_conv.takeSample(False, 1, 667)

08/29/15 88

Actions
The .collect(...) method

This method returns all the elements of the RDD to the driver. As we have just
provided a caution about it, we will not repeat ourselves here.

The .reduce(...) method

The .reduce(...) method reduces the elements of an RDD using a specified method.

You can use it to sum the elements of your RDD:

rdd1.map(lambda row: row[1]).reduce(lambda x, y: x + y)

This will produce the sum of 15.

08/29/15 89

Actions
We first create a list of all the values of the rdd1 using the .map(...) transformation,
and then use the .reduce(...) method to process the results. The reduce(...) method,
on each partition, runs the summation method (here expressed as a lambda) and
returns the sum to the driver node where the final aggregation takes place.

The .reduceByKey(...) method works in a similar way to the .reduce(...) method, but it
performs a reduction on a key-by-key basis:

data_key = sc.parallelize(

[('a', 4),('b', 3),('c', 2),('a', 8),('d', 2),('b', 1),

('d', 3)],4)

data_key.reduceByKey(lambda x, y: x + y).collect()

The preceding code produces the following:

08/29/15 90

Actions
The .count(...) method
The .count(...) method counts the number of elements in the RDD. Use the following
code:

data_reduce.count()

This code will produce 6, the exact number of elements in the data_reduce RDD.

The .count(...) method produces the same result as the following method, but it does
not require moving the whole dataset to the driver:

len(data_reduce.collect()) # WRONG -- DON'T DO THIS!

08/29/15 91

Actions

The .saveAsTextFile(...) method
As the name suggests, the .saveAsTextFile(...) the RDD and saves it to text files: Each partition to a
separate file:

data_key.saveAsTextFile('/Users/drabast/Documents/PySpark_Data/data_key.txt')

To read it back, you need to parse it back as all the rows are treated as strings:

def parseInput(row):

import re

pattern = re.compile(r'\(\'([a-z])\', ([0-9])\)')

row_split = pattern.split(row)

return (row_split[1], int(row_split[2]))

data_key_reread = sc .textFile('/Users/drabast/Documents/PySpark_Data/data_key.txt').map(parseInput)

data_key_reread.collect()

The list of keys read matches what we had initially:

08/29/15 92

Actions

The .foreach(...) method
This is a method that applies the same function to each element of the RDD in an
iterative way; in contrast to .map(..), the .foreach(...) method applies a defined
function to each record in a one-by-one fashion.

It is useful when you want to save the data to a database that is not natively
supported by PySpark.

Here, we'll use it to print (to CLI - not the Jupyter Notebook) all the records that
are stored in data_key RDD:

def f(x):

print(x)

08/29/15 93

Iterative Operations on Spark RDD

Apache Spark

 6

Data Sharing using Spark RDD
Data sharing is slow in MapReduce due to replication, serialization, and disk IO. Most
of the Hadoop applications, they spend more than 90% of the time doing HDFS read-
write operations.

Recognizing this problem, researchers developed a specialized framework called Apache
Spark. The key idea of spark is Resilient Distributed Datasets (RDD); it supports in-
memory processing computation. This means, it stores the state of memory as an object
across the jobs and the object is sharable between those jobs. Data sharing in memory
is 10 to 100 times faster than network and Disk.

Let us now try to find out how iterative and interactive operations take place in Spark
RDD.

Iterative Operations on Spark RDD
The illustration given below shows the iterative operations on Spark RDD. It will store
intermediate results in a distributed memory instead of Stable storage (Disk) and make
the system faster.

Note: If the Distributed memory (RAM) is sufficient to store intermediate results (State
of the JOB), then it will store those results on the disk.

Figure: Iterative operations on Spark RDD

Interactive Operations on Spark RDD
This illustration shows interactive operations on Spark RDD. If different queries are run
on the same set of data repeatedly, this particular data can be kept in memory for better
execution times.

Figure: Interactive operations on Spark RDD

The illustration given below shows the iterative operations on Spark RDD. It
will store intermediate results in a distributed memory instead of Stable
storage (Disk) and make the system faster.

08/29/15 94

Interactive Operations on Spark RDD

This illustration shows interactive operations on Spark RDD. If different
queries are run on the same set of data repeatedly, this particular data
can be kept in memory for better execution times.

08/29/15 95

Spark Shell

Spark provides an interactive shell: a powerful tool to analyze data
interactively.

It is available in either Scala or Python language.

Spark’s primary abstraction is a distributed collection of items called a
Resilient Distributed Dataset (RDD).

 RDDs can be created from Hadoop Input Formats (such as HDFS files) or
by transforming other RDDs.

Open Spark Shell
The following command is used to open Spark shell.

$ spark-shell

scala> val inputfile = sc.textFile(“input.txt”)

Module 2 

Resilient Distributed Datasets

08/29/15 96

08/29/15 97

RDD Transformations

The Spark RDD API introduces few Transformations and few
Actions to manipulate RDD.

RDD Transformations
RDD transformations returns pointer to new RDD and allows
you to create dependencies between RDDs.

Each RDD in dependency chain (String of Dependencies) has a
function for calculating its data and has a pointer
(dependency) to its parent RDD.

08/29/15 98

RDD Transformations

Spark is lazy, so nothing will be executed unless you call some
transformation or action that will trigger job creation and
execution.

Therefore, RDD transformation is not a set of data but is a step
in a program (might be the only step) telling Spark how to get
data and what to do with it.

08/29/15 99

Iterative Operations on Spark RDD

08/29/15 100

RDD Transformations
Sr. Transformation and Meaning

1 map(func)

Returns a new distributed dataset, formed by passing each
element of the source through a function func.

2 filter(func)

Returns a new dataset formed by selecting those elements of the
source on which func returns true.

3 flatMap(func)

Similar to map, but each input item can be mapped to 0 or more
output items (so func should return a Seq rather than a single item).

4 mapPartitions(func)

Similar to map, but runs separately on each partition (block) of the
RDD, so func must be of type Iterator<T> => Iterator<U> when
running on an RDD of type T.

08/29/15 101

RDD Transformations

Sr. Transformation and Meaning

5 mapPartitionsWithIndex(func)

Similar to map Partitions, but also provides func with an integer
value representing the index of the partition, so func must be of type
(Int, Iterator<T>) => Iterator<U> when running on an RDD of type
T.

6 sample(withReplacement, fraction, seed)

Sample a fraction of the data, with or without replacement, using a
given random number generator seed.

7 union(otherDataset)

Returns a new dataset that contains the union of the elements in the
so dataset and the argument.

08/29/15 102

RDD Transformations

Sr. Transformation and Meaning

8 intersection(otherDataset)

Returns a new RDD that contains the intersection of elements in the
source dataset and the argument.

9 distinct([numTasks]))

Returns a new dataset that contains the distinct elements of the
source dataset.

10 groupByKey([numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K,
Iterable<V>) pairs. Note: If you are grouping in order to perform an
aggregation (such as a sum or average) over each key, using
reduceByKey or aggregateByKey will yield much better
performance.

08/29/15 103

RDD Transformations
Sr. Transformation and Meaning

11 reduceByKey(func, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs
where the values for each key are aggregated using the given reduce
function func, which must be of type (V, V) => V.

12 aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs
where the values for each key are aggregated using the given combine
functions and a neutral "zero" value. Allows an aggregated value type that is
different from the input value type, while avoiding unnecessary allocations.

13 sortByKey([ascending], [numTasks])

When called on a dataset of (K, V) pairs where K implements Ordered,
returns a dataset of (K, V) pairs sorted by keys in ascending or descending
order, as specified in the Boolean ascending argument.

08/29/15 104

RDD Transformations

Sr. Transformation and Meaning

14 join(otherDataset, [numTasks])

When called on datasets of type (K, V) and (K, W), returns a dataset of (K,
(V, W)) pairs with all pairs of elements for each key. Outer joins are
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

15 cogroup(otherDataset, [numTasks])

When called on datasets of type (K, V) and (K, W), returns a dataset of (K,
(Iterable<V>, Iterable<W>)) tuples. This operation is also called group
With.

16 cartesian(otherDataset)

When called on datasets of types T and U, returns a dataset of (T, U) pairs
(all pairs of elements).

08/29/15 105

RDD Transformations

Sr. Transformation and Meaning
17 pipe(command, [envVars])

Pipe each partition of the RDD through a shell command, e.g. a Perl or bash
script. RDD elements are written to the process's stdin and lines output to its
stdout are returned as an RDD of strings.

18 coalesce(numPartitions)

Decrease the number of partitions in the RDD to numPartitions. Useful for
running operations more efficiently after filtering down a large dataset.

19 repartition(numPartitions)

Reshuffle the data in the RDD randomly to create either more or fewer
partitions and balance it across them. This always shuffles all data over the
network.

20 epartitionAndSortWithinPartitions(partitioner)

Repartition the RDD according to the given partitioner and, within each
resulting partition, sort records by their keys. This is more efficient than
calling repartition and then sorting within each partition because it can push
the sorting down into the shuffle machinery.

Module 2 

RDD Actions

08/29/15 106

08/29/15 107

RDD Actions

Sr. Actions and Meaning
1 reduce(func)

Aggregate the elements of the dataset using a function func (which takes two arguments
and returns one). The function should be commutative and associative so that it can be
computed correctly in parallel.

2 collect()

Returns all the elements of the dataset as an array at the driver program. This is usually
useful after a filter or other operation that returns a sufficiently small subset of the data.

3 count()  
Returns the number of elements in the dataset.

4 first()  
Returns the first element of the dataset (similar to take (1)).

08/29/15 108

RDD Actions

Sr. Actions and Meaning
5 take(n)  

Returns an array with the first n elements of the dataset.

6 takeSample (withReplacement,num, [seed])

Returns an array with a random sample of num elements of the dataset, with or without
replacement, optionally pre-specifying a random number generator seed.

7 takeOrdered(n, [ordering])

Returns the first n elements of the RDD using either their natural order or a custom
comparator.

8 saveAsTextFile(path)

Writes the elements of the dataset as a text file (or set of text files) in a given directory
in the local filesystem, HDFS or any other Hadoop-supported file system. Spark calls
toString on each element to convert it to a line of text in the file.

08/29/15 109

RDD Actions

Sr. Actions and Meaning

9 saveAsSequenceFile(path) (Java and Scala)

Writes the elements of the dataset as a Hadoop SequenceFile in a given path in the local
filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs
of key-value pairs that implement Hadoop's Writable interface. In Scala, it is also
available on types that are implicitly convertible to Writable (Spark includes conversions
for basic types like Int, Double, String, etc).

10 saveAsObjectFile(path) (Java and Scala)

Writes the elements of the dataset in a simple format using Java serialization, which can
then be loaded using SparkContext.objectFile().

11 countByKey()

Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the
count of each key.

12 foreach(func)

Runs a function func on each element of the dataset. This is usually, done for side effects
such as updating an Accumulator or interacting with external storage systems.

08/29/15 110

Programming with RDD

Let us see the implementations of few RDD
transformations and actions in RDD programming
with the help of an example.

Example

Consider a word count example: It counts each
word appearing in a document. Consider the

input.txt: input file.

people are not as beautiful as they look, as they walk or as they
talk.they are only as beautiful as they love, as they care as they
share.

08/29/15 111

Programming with RDD

Follow the procedure given below to execute the given
example.

Open Spark-Shell

The following command is used to open spark shell.
Generally, spark is built using Scala. Therefore, a Spark
program runs on Scala environment.

 $ spark-shell

08/29/15 112

Programming with RDD

Look at the last line of the output “Spark context available as sc”
means the Spark container is automatically created spark context
object with the name sc. Before starting the first step of a program,
the SparkContext object should be created.

Create an RDD
First, we have to read the input file using Spark-Scala API and create
an RDD.

The following command is used for reading a file from given location.
Here, new RDD is created with the name of inputfile. The String which
is given as an argument in the textFile(“”) method is absolute path for
the input file name. However, if only the file name is given, then it
means that the input file is in the current location.

scala> val inputfile = sc.textFile("input.txt")

08/29/15 113

Programming with RDD

Execute Word count Transformation

• Our aim is to count the words in a file.

• Create a flat map for splitting each line into words
(flatMap(line => line.split(“ ”)).

• Next, read each word as a key with a value ‘1’ (<key,
value> = <word,1>)

• using map function (map(word => (word, 1)).

08/29/15 114

Programming with RDD

Finally, reduce those keys by adding values of similar keys
(reduceByKey(_+_)).

The following command is used for executing word count
logic. After executing this, you will not find any output
because this is not an action, this is a transformation;
pointing a new RDD or tell spark to what to do with the
given data)

scala> val counts = inputfile.flatMap(line => line.split("
")).map(word => (word, 1)).reduceByKey(_+_);

08/29/15 115

Programming with RDD

Current RDD
While working with the RDD, if you want to know about current RDD,
then use the following command. It will show you the description
about current RDD and its dependencies for debugging.

scala> counts.toDebugString
Caching the Transformations
You can mark an RDD to be persisted using the persist() or cache()
methods on it. The first time it is computed in an action, it will be
kept in memory on the nodes. Use the following command to store
the intermediate transformations in memory.

scala> counts.cache()

08/29/15 116

Programming with RDD

Applying the Action
Applying an action, like store all the transformations, results
into a text file. The String argument for saveAsTextFile(“ ”)
method is the absolute path of output folder.

Try the following command to save the output in a text file.

In the following example, ‘output’ folder is in current location.

scala> counts.saveAsTextFile("output")

08/29/15 117

Programming with RDD

Checking the Output
Open another terminal to go to home directory (where spark is executed
in the other terminal). Use the following commands for checking output
directory.

[hadoop@localhost ~]$ cd output/
[hadoop@localhost output]$ ls -1
part-00000
part-00001
_SUCCESS

The following command is used to see output from Part-00000 files.

[hadoop@localhost output]$ cat part-00000

08/29/15 118

Programming with RDD

You will see the Output

(people,1)
(are,2)
(not,1)
(as,8)
(beautiful,2)
(they, 7)
(look,1)

08/29/15 119

Programming with RDD

UN Persist the Storage
Before UN-persisting, if you want to see the storage space that
is used for this application, then use the following URL in your
browser.

http://localhost:4040

Scala> counts.unpersist()

verify after unpersist

http://localhost:4040

08/29/15 120

Programming with RDD

SparkWordCount.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark._

object SparkWordCount {
 def main(args: Array[String]) {
 val sc = new SparkContext("local", "Word Count", "/usr/local/spark",
Nil,Map(), Map())
/* local = master URL; Word Count = application name; */  
/* /usr/local/spark = Spark Home; Nil = jars; Map = environment */

 /* Map = variables to work nodes */

/*creating an inputRDD to read text file (in.txt) through Spark context*/

 val input = sc.textFile("in.txt")

08/29/15 121

Programming with RDD

SparkWordCount.scala

 val input = sc.textFile(“in.txt")
/* Transform the inputRDD into countRDD */

val count=input.flatMap(line=>line.split(" "))

 .map(word=>(word, 1))
 .reduceByKey(_ + _)

 /* saveAsTextFile method is an action that effects on the RDD */

 count.saveAsTextFile("outfile")
 System.out.println("OK");
} }

08/29/15 122

Spark-Submit

 $spark-submit [options] <app jar | python file> [app arguments]

Sr. Option Description

1 --master spark://host:port, mesos://host:port, yarn, or local.

2 --deploy-mode Whether to launch the driver program locally

 ("client") or on one of the worker machines inside the cluster
("cluster") (Default: client).
3 --class Your application's main class (for Java / Scala apps).

4 --name A name of your application.

08/29/15 123

Spark-Submit

 $spark-submit [options] <app jar | python file> [app arguments]

Sr. Option Description
5 --jars Comma-separated list of local jars to include on the driver
and executor classpaths.

6 --packages Comma-separated list of maven coordinates of jars to
include on the driver and executor classpaths.

7 --repositories Comma-separated list of additional remote repositories
to search for the maven coordinates given with --packages.

8 --py-files Comma-separated list of .zip, .egg, or .py files to place on the
PYTHON PATH for Python apps.

9 --files Comma-separated list of files to be placed in the working directory
of each executor.

08/29/15 124

Advance Spark Programming
Spark contains two different types of shared variables- one is broadcast variables and second is
accumulators.

� Broadcast variables: used to efficiently, distribute large values.  

� Accumulators: used to aggregate the information of particular collection.  

 . Broadcast variables are created from a variable v by calling SparkContext.broadcast(v). The
broadcast variable is a wrapper around v, and its value can be accessed by calling the value
method. The code given below shows this:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))

08/29/15 125

Advance Spark Programming

. Accumulators  
An accumulator is created from an initial value v by calling
SparkContext.accumulator(v). Tasks running on the cluster can then
add to it using the add method or the += operator (in Scala and Python).
However, they cannot read its value. Only the driver program can read
the accumulator’s value, using its value method. The code given below
shows an accumulator being used to add up the elements of an array:

scala> val accum = sc.accumulator(0)  
scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)

If you want to see the output of above code then use the following command:

scala> accum.value

output

res2: Int = 10

08/29/15 126

Numeric RDD Operations

Spark allows you to do different operations on numeric data, using
one of the predefined API methods. Spark’s numeric operations
are implemented with a streaming algorithm that allows building
the model, one element at a time.

These operations are computed and returned as a StatusCounter
object by calling status() method.

The following is a list of numeric methods available in StatusCounter.

S.No Method & Meaning

1 count() Number of elements in the RDD.

2 Mean() Average of the elements in the RDD.

08/29/15 127

Numeric RDD Operations

S.No Method & Meaning

3 Sum() Total value of the elements in the RDD.

4 Max() Maximum value among all elements in the RDD.

5 Min() Minimum value among all elements in the RDD.

6 Variance() Variance of the elements.

7 Stdev() Standard deviation.

If you want to use only one of these methods, you can call the corresponding
method directly on RDD.

08/29/15 128

Summary

What did we learn today?
Recap and Memory Test.
Question and Answers

Contact Us on:
G K T C S Innovations Pvt. Ltd.
IT Training & Consultancy,

Mobile: +91- 9975072320, 8308761477
Email : surendra@gktcs.com
Web: www.gktcs.com

129

mailto:surendra@gktcs.com
http://www.gktcs.com

