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Introduction

Apache Spark is a powerful open source processing engine originally developed 
by Matei Zaharia as a part of his PhD thesis while at UC Berkeley. 
The first version of Spark was released in 2012.  
Since then, in 2013, Zaharia co-founded and has become the CTO at 
Databricks;  
He also holds a professor position at Stanford, coming from MIT.  
At the same time, the Spark codebase was donated to the Apache Software 
Foundation.



08/29/15 12

Introduction

Apache Spark is fast, easy to use framework, that allows you to solve a wide 
variety of complex data problems whether semi-structured, structured, 
streaming, and/or machine learning / data sciences.  
It also has become one of the largest open source communities in big data with 
more than 1,000 contributors from 250+ organizations and with 300,000+ Spark 
Meetup community members in more than 570+ locations worldwide.
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What is Apache Spark?

• Apache Spark is an open-source powerful distributed querying and 
processing engine.  

• It provides flexibility and extensibility of MapReduce but at significantly 
higher speeds: Up to 100 times faster than Apache Hadoop when data is 
stored in memory and up to 10 times when accessing disk.  

• Apache Spark allows the user to read, transform, and aggregate data, as 
well as train and deploy sophisticated statistical models with ease. 

• The Spark APIs are accessible in Java, Scala, Python, R and SQL. 

• Apache Spark can be used to build applications or package them up as 
libraries to be deployed on a cluster or perform quick analytics 
interactively through notebooks (like, for instance, Jupyter, Spark-
Notebook, Databricks notebooks, and Apache Zeppelin). 
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What is Apache Spark?
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What is Apache Spark?

• Apache Spark exposes a host of libraries familiar to data analysts, data 
scientists or researchers who have worked with Python's pandas or R's 
data.frames or data.tables. 

• It is important to note that while Spark DataFrames will be familiar to 
pandas or data.frames / data.tables  users, there are some differences so 
please temper your expectations. 

•  Users with more of a SQL background can use the language to shape 
their data as well.  

• It also include several already implemented and tuned algorithms, 
statistical models, and frameworks: MLlib and ML for machine learning, 
GraphX and GraphFrames for graph processing, and Spark Streaming 
(DStreams and Structured).  

• Spark allows the user to combine these libraries seamlessly in the same 
application. 
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What does Apache Spark 
offer?

• Faster execution 
• Spark encourages Hadoop application clusters to 

execute 100x faster in memory and 10x faster on disk. 
• Owing to its advance DAG execution engine, it also 

possesses support for cyclic data flow and in-memory 
computing.
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What is Apache Spark?

• Apache Spark is a lightning-fast cluster computing 
technology, designed for fast computation.  

• It is based on Hadoop MapReduce and it extends the 
MapReduce model to efficiently use it for more types of 
computations, which includes interactive queries and 
stream processing.  

• The main feature of Spark is its in-memory cluster 
computing that increases the processing speed of an 
application. 



08/29/15 19

What is Apache Spark?
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What is Apache Spark?

• Apache Spark has a well-designed and striking 
development API which lets the developers undergo 
data iteration with various data science methodologies 
which need quick in-memory processing. 

• Also, with YARN, Spark can, in parallel be used for 
other data related workloads with all of them sharing 
the same data set Generality.
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Spark Architecture
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What is Apache Spark?

• Spark is one of Hadoop’s sub project developed in 2009 in 
UC Berkeley’s AMPLab by Matei Zaharia. 

• It was Open Sourced in 2010 under a BSD license. 

• It was donated to Apache software foundation in 2013, 
and now Apache Spark has become a top level Apache 
project from Feb-2014. 

• It has proven to be one of the largest communities 
contributing to Big Data. 
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What is Apache Spark?

Spark is designed to cover a wide range of workloads such as batch 
applications, iterative algorithms, interactive queries and streaming.
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What does Apache Spark offer?

• Simplicity and Generalisation 
• Apache Spark allows writing applications with ease in 

Java, Scala or Python. There is availability of over 80 
operators and it can used to query data within the 
shell. It has a perfect combination of SQL, streaming 
and complex analytics.  

• There are high level tools like Spark SQL, MLlib 
(machine learning), GraphX and SparkStreaming. These 
libraries can be seamlessly combined in the same 
application.
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What does Apache Spark 
offer?

• Powerful analytics 
• There is support for SQL queries, streaming and 

complex analytics. These combinations lead to a single 
workflow and give out sophisticated analytics. 

• Real time processing 
• It manages real time streaming and can manipulate 

real time data using Spark Streaming. Hence, streaming 
is also possible with Hadoop and other frameworks 
available.
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What does Apache Spark 
offer?

Supports multiple languages 
• Spark provides built-in APIs in Java, Scala, or 

Python. Therefore, you can write applications in 
different languages. Spark comes up with 80 high-
level operators for interactive querying.  

• Advanced Analytics: Spark not only supports ‘Map’ 
and ‘reduce’. It also supports SQL queries, Streaming 
data, Machine learning (ML), and Graph algorithms.  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Spark Ecosystem
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Spark Ecosystem
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Spark Ecosystem

Apache Spark Core  

• Spark Core is the underlying general execution engine 
for spark platform that all other functionality is built 
upon. It provides In-Memory computing and 
referencing datasets in external storage systems.  

Spark SQL  

• Spark SQL is a component on top of Spark Core that 
introduces a new data abstraction called SchemaRDD, 
which provides support for structured and semi-
structured data. 
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Spark Ecosystem

Spark Streaming  

Spark Streaming leverages Spark Core's fast scheduling capability to 
perform streaming analytics. It ingests data in mini-batches and 
performs RDD (Resilient Distributed Datasets) transformations on 
those mini-batches of data.  

MLlib (Machine Learning Library)  

MLlib is a distributed machine learning framework above Spark 
because of the distributed memory-based Spark architecture. It is, 
according to benchmarks, done by the MLlib developers against the 
Alternating Least Squares (ALS) implementations. Spark MLlib is nine 
times as fast as the Hadoop disk-based version ofApache Mahout 
(before Mahout gained a Spark interface).
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Spark Ecosystem

GraphX  

GraphX is a distributed graph-processing framework on top of Spark. 
It provides an API for expressing graph computation that can model 
the user-defined graphs by using Pregel abstraction API. It also 
provides an optimised runtime for this abstraction.  
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Execution process 

Spark application spins off a single driver process (that can contain multiple 
jobs) on the master node that then directs executor processes (that contain 
multiple tasks) distributed to a number of worker nodes as noted in the 
following diagram: 
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Execution process 

The driver process determines the number and the composition of the task 
processes directed to the executor nodes based on the graph generated for the 
given job.  

Note, that any worker node can execute tasks from a number of different jobs.
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Spark Jobs

A Spark job is associated with a chain of object dependencies organized in a 
direct acyclic graph (DAG) such as the following example generated from the 
Spark UI. Given this, Spark can optimize the scheduling (for example, 
determine the number of tasks and workers required) and execution of these 
tasks: 
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DAG Scheduler

DAGScheduler is the scheduling layer of Apache Spark that implements stage-oriented scheduling. It 
transforms a logical execution plan (i.e. RDD lineage of dependencies built using RDD transformations) 
to a physical execution plan (using stages). 
For details of DAG 
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-lineage.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-transformations.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-DAGScheduler-Stage.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html
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DAG Scheduler

After an action has been called, SparkContext hands over a logical plan to DAGScheduler that it in turn 
translates to a set of stages that are submitted as TaskSets for execution. 
The fundamental concepts of DAGScheduler are jobs and stages (refer to Jobs and Stages 
respectively) that it tracks through internal registries and counters.

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-actions.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-SparkContext.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-taskscheduler-tasksets.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler-jobs.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-DAGScheduler-Stage.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html#internal-registries
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DAG Scheduler

DAGScheduler does three things in Spark as follows: 

 • Computes an execution DAG, i.e. DAG of stages, for a job. 

 • Determines the preferred locations to run each task on. 

 • Handles failures due to shuffle output files being lost. 

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html#preferred-locations
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Spark Jobs and APIs



Module 1 

Spark 2.0 architecture 

08/29/15 40



08/29/15 41

Spark 2.0 Architecture

Apache Spark doesn’t provide any storage (like HDFS) or any Resource Management 
capabilities. It is just a unified framework for processing large amount of data near to 
real time. In below figure, Apache Spark framework is organized in three major layers.
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Spark 2.0 Architecture

Spark Core Layer:
As you can see Spark Core is the generalised layer of the framework. Spark core has the 
definition of all the basic functions. All other functionalities and extensions are built on 
top of Spark Core.

Other Language capabilities:

• Spark  is  totally  written  on  Scala  (a  Functional  as  well  as  Object  Oriented 
Programming Language) which runs on top of JVM

• Apart from Scala, Spark also supports languages like Java and Python
• Recently Spark has added the compatibility of statistical computing language R
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Spark 2.0 Architecture

Spark DataFrame API:

Spark also has real time query engine which is able to query data in a quite real time 
manner.  To access  that  engine  it  has  the  DataFrame APIs  in  Scala,  Java  and Python 
language.

Spark Ecosystems Layer:

Spark Ecosystem Components are the additional libraries operating on top of Spark Core 
and DataFrames. 

These  components  give  the  enrichment  in  the  areas  of  SQL capabilities,  machine 
learning, real time big data computation etc. 
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Spark 2.0 Architecture

Spark Ecosystems Layer:

Following are the main components of Spark Ecosystem.

Spark SQL:

• Component on top of Spark Core with new RDD abstraction called SchemaRDD.
• Exposes Spark DataFrames through JDBC APIs and supports structured and semi-

structured data
• Provides SQL like interface over DataFrames to query data in CSV, JSON, Sequence 

and Parquet file formats
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Spark 2.0 Architecture

Spark Machine Learning (MLlib):

• A common  Machine  Learning  libraries  for  distributed,  scalable  and  in  memory 
computation

• Considerably faster than Apache Mahout in Hadoop MapReduce
• Supports  common  learning  algorithms  like  dimension  reduction,  clustering, 

classification, regression, collaborative filtering etc..

Spark Streaming:

• Adds capability of processing streaming data near to real time
• Capable  of  ingesting  data  in  micro  batches  (in  the  form  of  micro  RDDs)  and 

performs transformation on series of micro batches(RDDs)
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Spark 2.0 Architecture

GraphX (Recently added):

• Provides distributed graph processing APIs on top of Spark Core
• Allows user defined graph modeling with Pregel abstraction API

BlinkDB (Recently added):

• Approximate query engine over large volume data
• Allows  to  execute  interactive  SQL  over  the  large  volume  data  which  returns 

approximate results
• Capable of executing queries faster with potential errors in aggregated values
• Useful in case of data insights where accuracy is not mandatory
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Spark 2.0 Architecture

Tachyon (Recently added):

• It is an in-memory distributed file system
• Enables faster file sharing across the cluster as there is no overhead of disk IO
• It caches frequently read file in memory so that scheduled job can read shared files 

directly from cache and can execute faster
• Can be used for in memory file sharing with MapReduce and Spark jobs

Spark Resource Manager Layer:

Apache Spark doesn’t comes up with Resource Management module like YARN. It manage 
resource in standalone mode in single node cluster setup.

But for distributed cluster mode it can be integrated with resource management modules 
like YARN or Mesos.
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Spark 2.0 Architecture
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Spark 2.0 Architecture



08/29/15 50

Spark 2.0 Architecture
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Spark Jobs and APIs
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Spark Jobs and APIs
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Spark Jobs and APIs
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Spark Jobs and APIs
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Spark Jobs and APIs
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Spark Jobs and APIs
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PySpark Installation on 
Windows

Prerequisites: Anaconda and GOW. If you already have anaconda and GOW installed, 
skip to step 5.

1. Download  and  install  Gnu  on  windows  (GOW)  from  the  following  link. 
Basically, GOW allows you to use linux commands on windows. In this install, 
we will need curl, gzip, tar which GOW provides.

https://github.com/bmatzelle/gow/releases/download/v0.8.0/Gow-0.8.0.exe


08/29/15 58

PySpark Installation on 
Windows

2. Download and install Anaconda (windows version) from
https://www.continuum.io/downloads

Anaconda 4.4.0

For Windows

Anaconda is BSD licensed which gives you permission to use Anaconda 
commercially and for redistribution.

Changelog

1. Download the installer 
2. Optional: Verify data integrity with MD5 or SHA-256   More info
3. Double-click the .exe file to install Anaconda and follow the instructions on the 

screen
Behind a firewall? Use these zipped Windows installers

https://docs.continuum.io/anaconda/changelog
https://docs.continuum.io/anaconda/hashes/index
http://conda.pydata.org/docs/download.html#what-about-cryptographic-hash-verification
https://repo.continuum.io/archive/.winzip/
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PySpark Installation on 
Windows

3.Select the default options when prompted during the installation of Anaconda.

4. Close and open a new command line (CMD).

5. Go to the Apache Spark website (link)

Download Apache Spark
a) Choose a Spark release

b) Choose a package type

c) Choose a download type: (Direct Download)

d) Download Spark

http://spark.apache.org/downloads.html
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PySpark Installation on 
Windows

6. Move the file to where you want to unzip it.

mkdir C:\opt\spark

mv C:\Users\mgalarny\Downloads\spark-2.1.0-bin-hadoop2.7.tgz C:
\opt\spark\spark-2.1.0-bin-hadoop2.7.tgz

7. Unzip the file. Use the bolded commands below

gzip -d spark-2.1.0-bin-hadoop2.7.tgz

tar xvf spark-2.1.0-bin-hadoop2.7.tar

8. Download winutils.exe into your spark-2.1.0-bin-hadoop2.7\bin

curl -k -L -o winutils.exe https://github.com/steveloughran/winutils/blob/master/
hadoop-2.6.0/bin/winutils.exe?raw=true

https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
https://github.com/steveloughran/winutils/blob/master/hadoop-2.6.0/bin/winutils.exe?raw=true
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PySpark Installation on 
Windows

9. Make sure you have Java 7+ installed on your machine.

10. Next, we will edit our environmental variables so we can open a spark notebook 
in any directory.

setx SPARK_HOME C:\opt\spark\spark-2.1.0-bin-hadoop2.7

setx HADOOP_HOME C:\opt\spark\spark-2.1.0-bin-hadoop2.7

setx PYSPARK_DRIVER_PYTHON ipython

setx PYSPARK_DRIVER_PYTHON_OPTS notebook

Add ;C:\opt\spark\spark-2.1.0-bin-hadoop2.7\bin to your path.

Notes on the setx command: https://ss64.com/nt/set.html

https://www.java.com/en/
https://ss64.com/nt/set.html
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PySpark Installation on 
Windows

11. Close your terminal and open a new one. Type the command below.

pyspark local

Notes: The PYSPARK_DRIVER_PYTHON parameter and the 
PYSPARK_DRIVER_PYTHON_OPTS parameter are used to launch the PySpark 
shell in Jupyter Notebook. 

The — master parameter is used for setting the master node address. Here we launch 
Spark locally on 2 cores for local testing.
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Resilient Distributed Datasets 

RDD is a fundamental data structure of Spark. It is an immutable 
distributed collection of JVM objects.  

Each dataset in RDD is divided into logical partitions, which may be 
computed on different nodes of the cluster. 

RDDs can contain any type of Python, Java, or Scala objects, 
including user-defined classes.  

Formally, an RDD is a read-only, partitioned collection of records. 

RDDs can be created through deterministic operations on either data 
on stable storage or other RDDs. 

RDD is a fault-tolerant collection of elements that can be operated 
on in parallel. 
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Spark RDD

There are two ways to create RDDs: parallelizing an existing 
collection in your driver program, or referencing a dataset in an 
external storage system, such as a shared file system, HDFS, HBase, 
or any data source offering a Hadoop Input Format.  

Spark makes use of the concept of RDD to achieve faster and 
efficient MapReduce operations. Let us first discuss how MapReduce 
operations take place and why they are not so efficient. 
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Spark RDD

Data sharing is slow in MapReduce due to replication, serialisation, 
and disk IO. Most of the Hadoop applications, they spend more than 
90% of the time doing HDFS read- write operations.  

Recognising this problem, researchers developed a specialised 
framework called Apache Spark.  

The key idea of spark is Resilient Distributed Datasets (RDD); it 
supports in- memory processing computation.  

This means, it stores the state of memory as an object across the 
jobs and the object is sharable between those jobs. Data sharing in 
memory is 10 to 100 times faster than network and Disk.  

Let us now try to find out how iterative and interactive operations 
take place in Spark RDD.  
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Spark RDD

The transformations to the dataset are lazy.  

This means that any transformation is only executed when an action 
on a dataset is called.  

This helps Spark to optimize the execution.  

For instance, consider the following very common steps that an 
analyst would normally do to get familiar with a dataset:  

• Count the occurrence of distinct values in a certain column.  

• Select those that start with an A.  

• Print the results to the screen.
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Spark RDD

First, we order Spark to map the values of A using the .map(lambda v: (v, 1)) 
method, and then select those records that start with an 'A' (using 
the .filter(lambda val: val.startswith('A')) method).  

If we call the .reduceByKey(operator.add) method it will reduce the dataset and 
add (in this example, count) the number of occurrences of each key.  

All of these steps transform the dataset.  

Second, we call the .collect() method to execute the steps.  

This step is an action on our dataset - it finally counts the distinct elements 
of the dataset.  
In effect, the action might reverse the order of transformations and filter the 
data first before mapping, resulting in a smaller dataset being passed to the 
reducer. 



08/29/15 70

Creating RDD

There are two ways to create an RDD in PySpark: 

1. you can either .parallelize(...) a collection (list or an array of some elements):  

data = sc.parallelize(  

[('Amber', 22), ('Alfred', 23), ('Skye',4), ('Albert', 12),  

('Amber', 9)]) 

Or you can reference a file (or files) located either locally or somewhere 
externally:  

data_from_file = sc.\  

textFile( ‘/Users/SurendraMac/Documents/PySpark_Data/VS14MORT.txt.gz’, 4) 

The last parameter in sc.textFile(..., n) specifies the number of partitions the 
dataset is divided into. 
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Creating RDD

Note:  

We downloaded the Mortality dataset VS14MORT.txt file from  

ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/DVS/
mortality/mort2014us.zip;  

the record schema is explained in this document  

http://www.cdc.gov/nchs/ data/dvs/Record_Layout_2014.pdf.  

We selected this dataset on purpose: For your convenience, we also 
host the file here: http://tomdrabas.com/data/VS14MORT. txt.gz  
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Creating RDD

A rule of thumb would be to break your dataset into two-four partitions for each 
in your cluster.  

Spark can read from a multitude of filesystems: Local ones such as NTFS, FAT, 
or Mac OS Extended (HFS+), or distributed filesystems such as HDFS, S3, 
Cassandra, among many others.  

Be wary where your datasets are read from or saved to:  

The path cannot contain special characters []. 

Note, that this also applies to paths stored on Amazon S3 or Microsoft Azure 
Data Storage.  
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Creating RDD

Multiple data formats are supported: Text, parquet, JSON, Hive tables, and data 
from relational databases can be read using a JDBC driver.  

Note that Spark can automatically work with compressed datasets (like the 
Gzipped one in our preceding example).  

Depending on how the data is read, the object holding it will be represented 
slightly differently.  

The data read from a file is represented as MapPartitionsRDD instead of 
ParallelCollectionRDD when we .paralellize(...) a collection.
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Schema

RDDs are schema-less data structures (unlike DataFrames).  

Thus, parallelizing a dataset, such as in the following code snippet, is 
perfectly fine with Spark when using RDDs:  

data_heterogenous = sc.parallelize([  

('Ferrari', 'fast'),  

{'Porsche': 100000},  

['Spain','visited', 4504]  

]).collect()  

So, we can mix almost anything: a tuple, a dict, or a list and Spark will not 
complain. 
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Schema

Once you .collect() the dataset (that is, run an action to bring it back to the 
driver) you can access the data in the object as you would normally do in 
Python:  

data_heterogenous[1]['Porsche']  

It will produce the following:  

100000  

The .collect() method returns all the elements of the RDD to the driver 
where it is serialized as a list. 
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Reading from files 

When you read from a text file, each row from the file forms an element of an 
RDD.  

The data_from_file.take(1) command will produce the following 

(somewhat unreadable) output: 

To make it more readable, let's create a list of elements so each line 
is represented as a list of values.
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Reading from files 

Lambda expressions  

In this example, we will extract the useful information from the 
cryptic looking record of data_from_file. 

data_from_file_conv = data_from_file.map(extractInformation) 

data_from_file_conv.map(lambda row: row).take(1)
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Global versus local scope 

Spark can be run in two modes:  

Local and cluster. When you run Spark locally your code might not differ to what 
you are currently used to with running Python: Changes would most likely be 
more syntactic than anything else but with an added twist that data and code 
can be copied between separate worker processes.  

In the cluster mode, when a job is submitted for execution, the job is sent to 
the driver (or a master) node.  

The driver node creates a DAG for a job and decides which executor (or worker) 
nodes will run specific tasks.  

The driver then instructs the workers to execute their tasks and return the 
results to the driver when done.  

Before that happens, however, the driver prepares each task's closure: A set of 
variables and methods present on the driver for the worker to execute its task 
on the RDD.
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Transformations 

The .map(...) transformation  
It can be argued that you will use the .map(...) transformation most often. The 
method is applied to each element of the RDD: In the case of the 
data_from_file_ conv dataset, you can think of this as a transformation of each 
row.  

In this example, we will create a new dataset that will convert year of death into 
a numeric value:  

data_2014 = data_from_file_conv.map(lambda row: int(row[16])) 

Running data_2014.take(10) will yield the following result:  
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Transformations 

The .map(...) transformation  

You can of course bring more columns over, but you would have to package 
them into a tuple, dict, or a list. Let's also include the 17th element of the row 
along so that we can confirm our .map(...) works as intended:  

data_2014_2 = data_from_file_conv.map(  

lambda row: (row[16], int(row[16]):)  

data_2014_2.take(5)  

The preceding code will produce the following result:  
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Transformations 

The .filter(...) transformation  

It allows you to select elements from your dataset that fit specified criteria.  

As an example, from the data_from_file_conv dataset, let's count how many 
people died in an accident in 2014:  

data_filtered = data_from_file_conv.filter( lambda row: row[16] == '2014' and 
row[21] == '0')  

data_filtered.count() 



08/29/15 82

Transformations 
The .flatMap(...) transformation 
The .flatMap(...) method works similarly to .map(...), but it returns a flattened 
result instead of a list. If we execute the following code:  

data_2014_flat = data_from_file_conv.flatMap(lambda row: (row[16], int(row[16]) 
+ 1))  

data_2014_flat.take(10)  

It will yield the following output:  
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Transformations 
The .distinct(...) transformation 
This method returns a list of distinct values in a specified column. It is extremely 
useful if you want to get to know your dataset or validate it. Let's check if the 
gender column contains only males and females; that would verify that we 
parsed the dataset properly. Let's run the following code:  

distinct_gender = data_from_file_conv.map( lambda row: row[5]).distinct()  

distinct_gender.collect()  

This code will produce the following output: 

First, we extract only the column that contains the gender.  

Next, we use the .distinct() method to select only the distinct values in the list. 

Lastly, we use the .collect() method to return the print of the values on the 
screen. 
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Transformations 
The .sample(...) transformation  
The .sample(...) method returns a randomized sample from the dataset. The first 
parameter specifies whether the sampling should be with a replacement, the 
second parameter defines the fraction of the data to return, and the third is seed 
to the pseudo-random numbers generator:  

fraction = 0.1  

data_sample = data_from_file_conv.sample(False, fraction, 666)  

In this example, we selected a randomized sample of 10% from the original 
dataset. To confirm this, let's print the sizes of the datasets:  

print('Original dataset: {0}, sample: {1}'\  

.format(data_from_file_conv.count(), data_sample.count()))  

The preceding command produces the following output:  
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Transformations 
The .leftOuterJoin(...) transformation  

.leftOuterJoin(...), just like in the SQL world, joins two RDDs based on the values 
found in both datasets, and returns records from the left RDD with records from 
the right one appended in places where the two RDDs match:  

rdd1 = sc.parallelize([('a', 1), ('b', 4), ('c',10)])  

rdd2 = sc.parallelize([('a', 4), ('a', 1), ('b', '6'), ('d', 15)])  

rdd3 = rdd1.leftOuterJoin(rdd2)  

Running .collect(...) on the rdd3 will produce the following: 
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Transformations 

The .repartition(...) transformation  
Repartitioning the dataset changes the number of partitions that the dataset is 
divided into. This functionality should be used sparingly and only when really 
necessary as it shuffles the data around, which in effect results in a significant 
hit in terms of performance:  

rdd1 = rdd1.repartition(4)  
len(rdd1.glom().collect()) 

The preceding code prints out 4 as the new number of partitions.  
The .glom() method, in contrast to .collect(), produces a list where each element 
is another list of all elements of the dataset present in a specified partition; the 
main list returned has as many elements as the number of partitions. 
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Actions 
Actions, in contrast to transformations, execute the scheduled task on the dataset; 
once you have finished transforming your data you can execute your 
transformations.  

The .take(...) method  

This is most arguably the most useful (and used, such as the .map(...) method). The 
method is preferred to .collect(...) as it only returns the n top rows from a single data 
partition in contrast to .collect(...), which returns the whole RDD. This is especially 
important when you deal with large datasets:  

data_first = data_from_file_conv.take(1)  

If you want somewhat randomized records you can use .takeSample(...) instead, 
which takes three arguments: First whether the sampling should be with 
replacement, the second specifies the number of records to return, and the third is a 
seed to the pseudo-random numbers generator:  

data_take_sampled = data_from_file_conv.takeSample(False, 1, 667) 



08/29/15 88

Actions 
The .collect(...) method  

This method returns all the elements of the RDD to the driver. As we have just 
provided a caution about it, we will not repeat ourselves here.  

The .reduce(...) method  

The .reduce(...) method reduces the elements of an RDD using a specified method.  

You can use it to sum the elements of your RDD:  

rdd1.map(lambda row: row[1]).reduce(lambda x, y: x + y)  

This will produce the sum of 15.
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Actions 
We first create a list of all the values of the rdd1 using the .map(...) transformation, 
and then use the .reduce(...) method to process the results. The reduce(...) method, 
on each partition, runs the summation method (here expressed as a lambda) and 
returns the sum to the driver node where the final aggregation takes place.  

The .reduceByKey(...) method works in a similar way to the .reduce(...) method, but it 
performs a reduction on a key-by-key basis:  

data_key = sc.parallelize(  

[('a', 4),('b', 3),('c', 2),('a', 8),('d', 2),('b', 1),  

('d', 3)],4)  

data_key.reduceByKey(lambda x, y: x + y).collect()  

The preceding code produces the following: 



08/29/15 90

Actions 
The .count(...) method  
The .count(...) method counts the number of elements in the RDD. Use the following 
code:  

data_reduce.count()  

This code will produce 6, the exact number of elements in the data_reduce RDD.  

The .count(...) method produces the same result as the following method, but it does 
not require moving the whole dataset to the driver:  

len(data_reduce.collect()) # WRONG -- DON'T DO THIS!  



08/29/15 91

Actions 

The .saveAsTextFile(...) method  
As the name suggests, the .saveAsTextFile(...) the RDD and saves it to text files: Each partition to a 
separate file:  

data_key.saveAsTextFile( '/Users/drabast/Documents/PySpark_Data/data_key.txt')  

To read it back, you need to parse it back as all the rows are treated as strings:  

def parseInput(row):  

import re  

pattern = re.compile(r'\(\'([a-z])\', ([0-9])\)')  

row_split = pattern.split(row)  

return (row_split[1], int(row_split[2]))  

data_key_reread = sc .textFile( '/Users/drabast/Documents/PySpark_Data/data_key.txt').map(parseInput)  

data_key_reread.collect() 

The list of keys read matches what we had initially:  
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Actions 

The .foreach(...) method  
This is a method that applies the same function to each element of the RDD in an 
iterative way; in contrast to .map(..), the .foreach(...) method applies a defined 
function to each record in a one-by-one fashion. 

It is useful when you want to save the data to a database that is not natively 
supported by PySpark.  

Here, we'll use it to print (to CLI - not the Jupyter Notebook) all the records that 
are stored in data_key RDD:  

def f(x):  

print(x)  



08/29/15 93

Iterative Operations on Spark RDD 

Apache Spark 

                                                                                                             6 

 

Data Sharing using Spark RDD  
Data sharing is slow in MapReduce due to replication, serialization, and disk IO. Most 
of the Hadoop applications, they spend more than 90% of the time doing HDFS read-
write operations.   

Recognizing this problem, researchers developed a specialized framework called Apache 
Spark. The key idea of spark is Resilient Distributed Datasets (RDD); it supports in-
memory processing computation. This means, it stores the state of memory as an object 
across the jobs and the object is sharable between those jobs. Data sharing in memory 
is 10 to 100 times faster than network and Disk. 

Let us now try to find out how iterative and interactive operations take place in Spark 
RDD. 

Iterative Operations on Spark RDD 
The illustration given below shows the iterative operations on Spark RDD. It will store 
intermediate results in a distributed memory instead of Stable storage (Disk) and make 
the system faster. 

Note: If the Distributed memory (RAM) is sufficient to store intermediate results (State 
of the JOB), then it will store those results on the disk.  

 

Figure: Iterative operations on Spark RDD 

Interactive Operations on Spark RDD 
This illustration shows interactive operations on Spark RDD. If different queries are run 
on the same set of data repeatedly, this particular data can be kept in memory for better 
execution times. 

 

Figure: Interactive operations on Spark RDD 

The illustration given below shows the iterative operations on Spark RDD. It 
will store intermediate results in a distributed memory instead of Stable 
storage (Disk) and make the system faster. 
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Interactive Operations on Spark RDD 

This illustration shows interactive operations on Spark RDD. If different 
queries are run on the same set of data repeatedly, this particular data 
can be kept in memory for better execution times. 
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Spark Shell

Spark provides an interactive shell: a powerful tool to analyze data 
interactively.  

It is available in either Scala or Python language.  

Spark’s primary abstraction is a distributed collection of items called a 
Resilient Distributed Dataset (RDD). 

 RDDs can be created from Hadoop Input Formats (such as HDFS files) or 
by transforming other RDDs.  

Open Spark Shell 
The following command is used to open Spark shell. 

$ spark-shell

scala> val inputfile = sc.textFile(“input.txt”) 
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Resilient Distributed Datasets 
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RDD Transformations

The Spark RDD API introduces few Transformations  and few 
Actions to manipulate RDD. 

RDD Transformations 
RDD transformations returns pointer to new RDD and allows 
you to create dependencies between RDDs. 

Each RDD in dependency chain (String of Dependencies) has a 
function for calculating its data and has a pointer 
(dependency) to its parent RDD. 
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RDD Transformations

Spark is lazy, so nothing will be executed unless you call some 
transformation or action that will trigger job creation and 
execution. 

Therefore, RDD transformation is not a set of data but is a step 
in a program (might be the only step) telling Spark how to get 
data and what to do with it.  
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Iterative Operations on Spark RDD 
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RDD Transformations
Sr. Transformation and Meaning

1 map(func) 

Returns a new distributed dataset, formed by passing each 
element of the source through a function func. 

2 filter(func) 

Returns  a  new dataset  formed by  selecting  those  elements  of  the 
source on which func returns true. 

3 flatMap(func) 

Similar to map, but each input item can be mapped to 0 or more 
output items (so func should return a Seq rather than a single item). 

4 mapPartitions(func) 

Similar to map, but runs separately on each partition (block) of the 
RDD, so  func  must  be  of  type  Iterator<T> => Iterator<U> when 
running on an RDD of type T. 
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RDD Transformations

Sr. Transformation and Meaning

5 mapPartitionsWithIndex(func) 

Similar  to  map Partitions,  but  also  provides  func  with  an  integer 
value representing the index of the partition, so func must be of type 
(Int, Iterator<T>) => Iterator<U> when running on an RDD of type 
T. 

6 sample(withReplacement, fraction, seed) 

Sample a fraction of the data, with or without replacement, using a 
given random number generator seed. 

7 union(otherDataset) 

Returns a new dataset that contains the union of the elements in the 
so dataset and the argument. 



08/29/15 102

RDD Transformations

Sr. Transformation and Meaning

8 intersection(otherDataset) 

Returns a new RDD that contains the intersection of elements in the 
source dataset and the argument. 

9 distinct([numTasks])) 

Returns  a  new  dataset  that  contains  the  distinct  elements  of  the 
source dataset. 

10 groupByKey([numTasks]) 

When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. Note: If you are grouping in order to perform an 
aggregation  (such  as  a  sum  or  average)  over  each  key,  using 
reduceByKey  or  aggregateByKey  will  yield  much  better 
performance. 
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RDD Transformations
Sr. Transformation and Meaning

11 reduceByKey(func, [numTasks]) 

When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where  the  values  for  each  key  are  aggregated  using  the  given  reduce 
function func, which must be of type (V, V) => V.

12 aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) 

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs 
where  the  values  for  each  key  are  aggregated  using  the  given  combine 
functions and a neutral "zero" value. Allows an aggregated value type that is 
different from the input value type, while avoiding unnecessary allocations.

13 sortByKey([ascending], [numTasks]) 

When called on a dataset  of  (K,  V) pairs  where K implements  Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the Boolean ascending argument. 
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RDD Transformations

Sr. Transformation and Meaning

14 join(otherDataset, [numTasks]) 

When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.  

15 cogroup(otherDataset, [numTasks]) 

When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(Iterable<V>, Iterable<W>)) tuples. This operation is also called group 
With. 

16 cartesian(otherDataset) 

When called on datasets of types T and U, returns a dataset of (T, U) pairs 
(all pairs of elements). 
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RDD Transformations

Sr. Transformation and Meaning
17 pipe(command, [envVars]) 

Pipe each partition of the RDD through a shell command, e.g. a Perl or bash 
script. RDD elements are written to the process's stdin and lines output to its 
stdout are returned as an RDD of strings. 

18 coalesce(numPartitions) 

Decrease the number of partitions in the RDD to numPartitions. Useful for 
running operations more efficiently after filtering down a large dataset. 

19 repartition(numPartitions) 

Reshuffle the data in the RDD randomly to create either more or fewer 
partitions and balance it across them. This always shuffles all data over the 
network. 

20 epartitionAndSortWithinPartitions(partitioner) 

Repartition the RDD according to the given partitioner and, within each 
resulting partition, sort records by their keys. This is more efficient than 
calling repartition and then sorting within each partition because it can push 
the sorting down into the shuffle machinery. 
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RDD Actions

Sr. Actions and Meaning
1 reduce(func) 

Aggregate the elements of the dataset using a function func (which takes two arguments 
and returns one). The function should be commutative and associative so that it can be 
computed correctly in parallel. 

2 collect() 

Returns all the elements of the dataset as an array at the driver program. This is usually 
useful after a filter or other operation that returns a sufficiently small subset of the data. 

3 count()  
Returns the number of elements in the dataset.

4 first()  
Returns the first element of the dataset (similar to take (1)). 
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RDD Actions

Sr. Actions and Meaning
5 take(n)  

Returns an array with the first n elements of the dataset. 

6 takeSample (withReplacement,num, [seed]) 

Returns an array with a random sample of num elements of the dataset, with or without 
replacement, optionally pre-specifying a random number generator seed. 

7 takeOrdered(n, [ordering]) 

Returns the first n elements of the RDD using either their natural order or a custom 
comparator. 

8 saveAsTextFile(path) 

Writes the elements of the dataset as a text file (or set of text files) in a given directory 
in the local filesystem, HDFS or any other Hadoop-supported file system. Spark calls 
toString on each element to convert it to a line of text in the file. 
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RDD Actions

Sr. Actions and Meaning

9 saveAsSequenceFile(path) (Java and Scala) 

Writes the elements of the dataset as a Hadoop SequenceFile in a given path in the local 
filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs 
of key-value pairs that implement Hadoop's Writable interface. In Scala, it is also 
available on types that are implicitly convertible to Writable (Spark includes conversions 
for basic types like Int, Double, String, etc). 

10 saveAsObjectFile(path) (Java and Scala) 

Writes the elements of the dataset in a simple format using Java serialization, which can 
then be loaded using SparkContext.objectFile(). 

11 countByKey() 

Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the 
count of each key. 

12 foreach(func) 

Runs a function func on each element of the dataset. This is usually, done for side effects 
such as updating an Accumulator or interacting with external storage systems.
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Programming with RDD 

Let us see the implementations of few RDD 
transformations and actions in RDD programming 
with the help of an example. 

Example 

Consider a word count example: It counts each 
word appearing in a document. Consider the 

input.txt: input file.  

people are not as beautiful as they look, as they walk or as they 
talk.they are only as beautiful as they love, as they care as they 
share.
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Programming with RDD 

Follow the procedure given below to execute the given 
example. 

Open Spark-Shell 

The following command is used to open spark shell. 
Generally, spark is built using Scala. Therefore, a Spark 
program runs on Scala environment. 

 $ spark-shell
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Programming with RDD 

Look at the last line of the output “Spark context available as sc” 
means the Spark container is automatically created spark context 
object with the name sc. Before starting the first step of a program, 
the SparkContext object should be created. 

Create an RDD 
First, we have to read the input file using Spark-Scala API and create 
an RDD. 

The following command is used for reading a file from given location. 
Here, new RDD is created with the name of inputfile. The String which 
is given as an argument in the textFile(“”) method is absolute path for 
the input file name. However, if only the file name is given, then it 
means that the input file is in the current location. 

scala> val inputfile = sc.textFile("input.txt") 



08/29/15 113

Programming with RDD 

Execute Word count Transformation 

• Our aim is to count the words in a file.  

• Create a flat map for splitting each line into words 
(flatMap(line => line.split(“ ”)). 

• Next, read each word as a key with a value ‘1’ (<key, 
value> = <word,1>) 

• using map function (map(word => (word, 1)). 
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Programming with RDD 

Finally, reduce those keys by adding values of similar keys 
(reduceByKey(_+_)). 

The following command is used for executing word count 
logic. After executing this, you will not find any output 
because this is not an action, this is a transformation; 
pointing a new RDD or tell spark to what to do with the 
given data) 

scala> val counts = inputfile.flatMap(line => line.split(" 
")).map(word => (word, 1)).reduceByKey(_+_); 
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Programming with RDD 

Current RDD 
While working with the RDD, if you want to know about current RDD, 
then use the following command. It will show you the description 
about current RDD and its dependencies for debugging.  

scala> counts.toDebugString
Caching the Transformations 
You can mark an RDD to be persisted using the persist() or cache() 
methods on it. The first time it is computed in an action, it will be 
kept in memory on the nodes. Use the following command to store 
the intermediate transformations in memory. 

scala> counts.cache()
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Programming with RDD 

Applying the Action 
Applying an action, like store all the transformations, results 
into a text file. The String argument for saveAsTextFile(“ ”) 
method is the absolute path of output folder.  

Try the following command to save the output in a text file. 

In the following example, ‘output’ folder is in current location. 

scala> counts.saveAsTextFile("output") 
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Programming with RDD 

Checking the Output 
Open another terminal to go to home directory (where spark is executed 
in the other terminal). Use the following commands for checking output 
directory. 

[hadoop@localhost ~]$ cd output/
[hadoop@localhost output]$ ls -1
part-00000
part-00001
_SUCCESS

The following command is used to see output from Part-00000 files. 

[hadoop@localhost output]$ cat part-00000 
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Programming with RDD 

You will see the Output 

(people,1)
(are,2)
(not,1)
(as,8)
(beautiful,2)
(they, 7)
(look,1)
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Programming with RDD 

UN Persist the Storage 
Before UN-persisting, if you want to see the storage space that 
is used for this application, then use the following URL in your 
browser. 

http://localhost:4040

Scala> counts.unpersist()

verify after unpersist

http://localhost:4040
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Programming with RDD 

SparkWordCount.scala 

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark._

object SparkWordCount {
   def main(args: Array[String]) {
     val sc = new SparkContext( "local", "Word Count", "/usr/local/spark", 
Nil,Map(), Map())
/* local = master URL; Word Count = application name; */  
/* /usr/local/spark = Spark Home; Nil = jars; Map = environment */

 /* Map = variables to work nodes */ 

/*creating an inputRDD to read text file (in.txt) through Spark context*/

     val input = sc.textFile("in.txt")
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Programming with RDD 

SparkWordCount.scala 

     val input = sc.textFile(“in.txt")
/* Transform the inputRDD into countRDD */ 

val count=input.flatMap(line=>line.split(" ")) 

               .map(word=>(word, 1))
               .reduceByKey(_ + _)

      /* saveAsTextFile method is an action that effects on the RDD */

      count.saveAsTextFile("outfile")
      System.out.println("OK");
} } 
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Spark-Submit 

 $spark-submit [options] <app jar | python file> [app arguments] 

Sr.  Option     Description

1    --master    spark://host:port, mesos://host:port, yarn, or local. 

2    --deploy-mode   Whether to launch the driver program locally 

        ("client") or on one of the worker machines inside the cluster    
("cluster") (Default: client). 
3  --class   Your application's main class (for Java / Scala apps). 

4   --name   A name of your application. 
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Spark-Submit 

 $spark-submit [options] <app jar | python file> [app arguments] 

Sr.  Option     Description
5    --jars    Comma-separated list of local jars to include on the driver 
and executor classpaths. 

6    --packages    Comma-separated list of maven coordinates of jars to 
include on the driver and executor classpaths. 

7   --repositories Comma-separated list of additional remote repositories 
to search for the maven coordinates given with --packages. 

8   --py-files  Comma-separated list of .zip, .egg, or .py files to place on the 
PYTHON PATH for Python apps. 

9   --files   Comma-separated list of files to be placed in the working directory 
of each executor. 
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Advance Spark Programming
Spark contains two different types of shared variables- one is broadcast variables and second is 
accumulators. 

�  Broadcast variables: used to efficiently, distribute large values.  

�  Accumulators: used to aggregate the information of particular collection.  

 . Broadcast variables are created from a variable v by calling SparkContext.broadcast(v). The 
broadcast variable is a wrapper around v, and its value can be accessed by calling the value 
method. The code given below shows this: 

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3)) 
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Advance Spark Programming

. Accumulators  
An accumulator is created from an initial value v by calling 
SparkContext.accumulator(v). Tasks running on the cluster can then 
add to it using the add method or the += operator (in Scala and Python). 
However, they cannot read its value. Only the driver program can read 
the accumulator’s value, using its value method. The code given below 
shows an accumulator being used to add up the elements of an array: 

scala> val accum = sc.accumulator(0)  
scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x) 

If you want to see the output of above code then use the following command: 

scala> accum.value

output

res2: Int = 10 
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Numeric RDD Operations 

Spark allows you to do different operations on numeric data, using 
one of the predefined API methods. Spark’s numeric operations 
are implemented with a streaming algorithm that allows building 
the model, one element at a time. 

These operations are computed and returned as a StatusCounter 
object by calling status() method.  

The following is a list of numeric methods available in StatusCounter.

S.No        Method & Meaning  

1 count() Number of elements in the RDD. 

2 Mean() Average of the elements in the RDD.  
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Numeric RDD Operations 

S.No        Method & Meaning  

3 Sum() Total value of the elements in the RDD. 

4 Max() Maximum value among all elements in the RDD.  

5 Min()  Minimum value among all elements in the RDD. 

6 Variance() Variance of the elements. 

7 Stdev() Standard deviation. 

If you want to use only one of these methods, you can call the corresponding 
method directly on RDD. 
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Summary 

What did we learn today? 
Recap and Memory Test. 
Question and Answers
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