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Introducing MLlib 
MLlib stands for Machine Learning Library.  

Even though MLlib is now in a maintenance mode, that is, it is not actively being 
developed (and will most likely be deprecated later), it is warranted that we cover at 
least some of the features of the library.  

In addition, MLlib is currently the only library that supports training models for 
streaming. 

Note: 

Starting with Spark 2.0, ML is the main machine learning library that operates on 
DataFrames instead of RDDs as is the case for MLlib. 

The documentation for MLlib can be found here: 

http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html. 
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Introducing MLlib  

Objectives  

You will learn how to do the following: 

• Prepare the data for modeling with MLlib 

• Perform statistical testing 

• Predict survival chances of infants using logistic regression 

• Select the most predictable features and train a random forest model
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Overview of the package 

At the high level, MLlib exposes three core machine learning functionalities:  

• Data preparation: Feature extraction, transformation, selection, hashing 
of categorical features, and some natural language processing methods  

• Machine learning algorithms: Some popular and advanced regression, 
classification, and clustering algorithms are implemented  

• Utilities: Statistical methods such as descriptive statistics, chi-square 
testing, linear algebra (sparse and dense matrices and vectors), and 
model evaluation methods.
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Overview of the package 

The main concepts in Spark ML are:

• DataFrame: The ML API uses DataFrames from Spark SQL as an ML dataset.
• Transformer: A Transformer is an algorithm which transforms one DataFrame 

into another DataFrame. For example, turning a DataFrame with features into a 
DataFrame with predictions.

• Estimator: An Estimator is an algorithm which can be fit on a DataFrame to 
produce a Transformer. For example, training/tuning on a DataFrame and 
producing a model.

• Pipeline: A Pipeline chains multiple Transformers and Estimators together to 
specify a ML workflow.

• ParamMaps: Parameters to choose from, sometimes called a “parameter grid” 
to search over.

• Evaluator: Metric to measure how well a fitted Model does on held-out test data.
• CrossValidator: Identifies the best ParamMap and re-fits the Estimator using the 

best ParamMap and the entire dataset.
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Overview of the package 
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Overview of the package 
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Overview of the package 
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Overview of the package 
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Overview of the package 
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Overview of the package 

PySpark Mllib  
http://spark.apache.org/docs/2.0.0/api/python/pyspark.mllib.html 

PySpark ml 

http://spark.apache.org/docs/2.0.0/api/python/pyspark.ml.html 

PySpark streaming 

http://spark.apache.org/docs/2.0.0/api/python/pyspark.streaming.html 

PySpark sql 

http://spark.apache.org/docs/2.0.0/api/python/pyspark.sql.html 

http://spark.apache.org/docs/2.0.0/api/python/pyspark.ml.html
http://spark.apache.org/docs/2.0.0/api/python/pyspark.streaming.html
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Overview of the package 

http://spark.apache.org/docs/2.0.0/api/python/pyspark 

http://spark.apache.org/docs/2.0.0/api/python/pyspark


08/29/15  20

Overview of the package 

pyspark.ml package 
▪ ML Pipeline APIs 
▪ Transformer 
▪ Estimator 
▪ Model 
▪ Pipeline 
▪ PipelineModel 

▪ pyspark.ml.param module 
▪ Param 
▪ Params 
▪ TypeConverters
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Overview of the package 

pyspark.ml.feature module 
▪ Binarizer 
▪ Bucketizer 
▪ ChiSqSelectorE 
▪ ChiSqSelectorModelE 
▪ CountVectorizer 
▪ CountVectorizerModel 
▪ DCT 
▪ ElementwiseProduct 
▪ HashingTF 
▪ IDF 
▪ IDFModel 
▪ IndexToString 
▪ MaxAbsScalerE 
▪ MaxAbsScalerModelE 
▪ MinMaxScaler 
▪ MinMaxScalerModel
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Overview of the package 

pyspark.ml.feature module 
▪ NGram 
▪ Normalizer 
▪ OneHotEncoder 
▪ PCA 
▪ PCAModel 
▪ PolynomialExpansion 
▪ QuantileDiscretizerE 
▪ RegexTokenizer 
▪ RFormulaE 
▪ RFormulaModelE 
▪ SQLTransformer 
▪ StandardScaler 
▪ StandardScalerModel 
▪ StopWordsRemover 
▪ StringIndexer 
▪ StringIndexerModel 
▪ Tokenizer 
▪ VectorAssembler 
▪ VectorIndexer 
▪ VectorIndexerModel 
▪ VectorSlicer 
▪ Word2Vec 
▪ Word2VecModel
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Overview of the package 

pyspark.ml.classification module 
▪ LogisticRegression 
▪ LogisticRegressionModel 
▪ LogisticRegressionSummaryE 
▪ LogisticRegressionTrainingSummaryE 
▪ BinaryLogisticRegressionSummaryE 
▪ BinaryLogisticRegressionTrainingSummaryE 
▪ DecisionTreeClassifier 
▪ DecisionTreeClassificationModel 
▪ GBTClassifier 
▪ GBTClassificationModel 
▪ RandomForestClassifier 
▪ RandomForestClassificationModel 
▪ NaiveBayes 
▪ NaiveBayesModel 
▪ MultilayerPerceptronClassifierE 
▪ MultilayerPerceptronClassificationModelE 
▪ OneVsRestE 
▪ OneVsRestModelE
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Overview of the package 

pyspark.ml.clustering module 
▪ BisectingKMeansE 
▪ BisectingKMeansModelE 
▪ KMeans 
▪ KMeansModel 
▪ GaussianMixtureE 
▪ GaussianMixtureModelE 
▪ LDAE 
▪ LDAModelE 
▪ LocalLDAModelE 
▪ DistributedLDAModelE
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Overview of the package 

▪ pyspark.ml.linalg module 
▪ Vector 
▪ DenseVector 
▪ SparseVector 
▪ Vectors 
▪ Matrix 
▪ DenseMatrix 
▪ SparseMatrix 
▪ Matrices 

▪ pyspark.ml.recommendation module 
▪ ALS 
▪ ALSModel
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Overview of the package 

pyspark.ml.regression module 
▪ AFTSurvivalRegressionE 
▪ AFTSurvivalRegressionModelE 
▪ DecisionTreeRegressor 
▪ DecisionTreeRegressionModel 
▪ GBTRegressor 
▪ GBTRegressionModel 
▪ GeneralizedLinearRegressionE 
▪ GeneralizedLinearRegressionModelE 
▪ GeneralizedLinearRegressionSummaryE 
▪ GeneralizedLinearRegressionTrainingSummaryE 
▪ IsotonicRegression 
▪ IsotonicRegressionModel 
▪ LinearRegression 
▪ LinearRegressionModel 
▪ LinearRegressionSummaryE 
▪ LinearRegressionTrainingSummaryE 
▪ RandomForestRegressor 
▪ RandomForestRegressionModel
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Overview of the package 

▪ pyspark.ml.tuning module 
▪ ParamGridBuilder 
▪ CrossValidator 
▪ CrossValidatorModel 
▪ TrainValidationSplitE 
▪ TrainValidationSplitModelE 

▪ pyspark.ml.evaluation module 
▪ Evaluator 
▪ BinaryClassificationEvaluatorE 
▪ RegressionEvaluatorE 
▪ MulticlassClassificationEvaluatorE
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Overview of the package 

•  pyspark.streaming module 
▪  Module contents 

▪  StreamingContext 
▪  DStream 
▪  StreamingListener 

▪  Java 
▪  pyspark.streaming.kafka module 

▪  Broker 
▪  KafkaMessageAndMetadata 
▪  KafkaUtils 
▪  OffsetRange 
▪  TopicAndPartition 
▪  utf8_decoder 

▪  pyspark.streaming.kinesis module 
▪  KinesisUtils 
▪  InitialPositionInStream 
▪  utf8_decoder 

▪  pyspark.streaming.flume.module 
▪  FlumeUtils 
▪  utf8_decoder
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Overview of the package 

pyspark.mllib package 
▪ pyspark.mllib.classification module 
▪ LogisticRegressionModel 
▪ LogisticRegressionWithSGDD 
▪ LogisticRegressionWithLBFGS 
▪ SVMModel 
▪ SVMWithSGD 
▪ NaiveBayesModel 
▪ NaiveBayes 
▪ StreamingLogisticRegressionWithSGD
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Overview of the package 

pyspark.mllib.clustering module 
▪ BisectingKMeansModel 
▪ BisectingKMeans 
▪ KMeansModel 
▪ KMeans 
▪ GaussianMixtureModel 
▪ GaussianMixture 
▪ PowerIterationClusteringModel 
▪ PowerIterationClustering 

▪ Assignment 
▪ StreamingKMeans 
▪ StreamingKMeansModel 
▪ LDA 
▪ LDAModel
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Overview of the package 

▪ pyspark.mllib.evaluation module 
▪ BinaryClassificationMetrics 
▪ RegressionMetrics 
▪ MulticlassMetrics 
▪ RankingMetrics 

▪ pyspark.mllib.feature module 
▪ Normalizer 
▪ StandardScalerModel 
▪ StandardScaler 
▪ HashingTF 
▪ IDFModel 
▪ IDF 
▪ Word2Vec 
▪ Word2VecModel 
▪ ChiSqSelector 
▪ ChiSqSelectorModel 
▪ ElementwiseProduct
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Overview of the package 

▪ pyspark.mllib.fpm module 
▪ FPGrowth 

▪ FreqItemset 
▪ FPGrowthModel 
▪ PrefixSpan 

▪ FreqSequence 
▪ PrefixSpanModel 

▪ pyspark.mllib.linalg module 
▪ Vector 
▪ DenseVector 
▪ SparseVector 
▪ Vectors 
▪ Matrix 
▪ DenseMatrix 
▪ SparseMatrix 
▪ Matrices 
▪ QRDecomposition
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Overview of the package 

▪ pyspark.mllib.linalg.distributed module 
▪ DistributedMatrix 
▪ RowMatrix 
▪ IndexedRow 
▪ IndexedRowMatrix 
▪ MatrixEntry 
▪ CoordinateMatrix 
▪ BlockMatrix 

▪ pyspark.mllib.random module 
▪ RandomRDDs
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Overview of the package 

▪ pyspark.mllib.recommendation module 
▪ MatrixFactorizationModel 
▪ ALS 
▪ Rating 

▪ pyspark.mllib.regression module 
▪ LabeledPoint 
▪ LinearModel 
▪ LinearRegressionModel 
▪ LinearRegressionWithSGDD 
▪ RidgeRegressionModel 
▪ RidgeRegressionWithSGDD 
▪ LassoModel 
▪ LassoWithSGDD 
▪ IsotonicRegressionModel 
▪ IsotonicRegression 
▪ StreamingLinearAlgorithm 
▪ StreamingLinearRegressionWithSGD



08/29/15  35

Overview of the package 

▪ pyspark.mllib.stat module 
▪ Statistics 
▪ MultivariateStatisticalSummary 
▪ ChiSqTestResult 
▪ MultivariateGaussian 
▪ KernelDensity 

▪ pyspark.mllib.tree module 
▪ DecisionTreeModel 
▪ DecisionTree 
▪ RandomForestModel 
▪ RandomForest 
▪ GradientBoostedTreesModel 
▪ GradientBoostedTrees
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Overview of the package 

▪ pyspark.mllib.util module 
▪ JavaLoader 
▪ JavaSaveable 
▪ LinearDataGenerator 
▪ Loader 
▪ MLUtils 
▪ Saveable
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Overview of the package 

We will build two classification models:  

a linear regression and  

a random forest.  

We will use a portion of the US 2014 and 2015 birth data we downloaded 
from http://www.cdc.gov/nchs/data_access/vitalstatsonline.htm;  
from the total of 300 variables we selected 85 features that we will use to 
build our models. 

 Also, out of the total of almost 7.99 million records, we selected a balanced 
sample of 45,429 records: 22,080 records where infants were reported dead 
and 23,349 records with infants alive.  

The dataset we will use in this module can be downloaded from 

http:// www.tomdrabas.com/data/LearningPySpark/births_train. csv.gz.  
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Loading and transforming the data 

Even though MLlib is designed with RDDs and DStreams in focus, for ease 
of transforming the data we will read the data and convert it to a 
DataFrame.  

The DStreams are the basic data abstraction for Spark Streaming (see http://bit.ly/2jIDT2A)  

We first specify the schema of our dataset. 

Note that here (for brevity), we only present a handful of features. You should always 
check our GitHub account for this book for the latest version of the code: https://
github.com/drabastomek/ learningPySpark.  
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Loading and transforming the data 

Here's the code:  

import pyspark.sql.types as typ  

labels = [  

('INFANT_ALIVE_AT_REPORT', typ.StringType()),  

('BIRTH_YEAR', typ.IntegerType()),  

('BIRTH_MONTH', typ.IntegerType()),  

('BIRTH_PLACE', typ.StringType()),  

('MOTHER_AGE_YEARS', typ.IntegerType()),  

('MOTHER_RACE_6CODE', typ.StringType()),  

('MOTHER_EDUCATION', typ.StringType()),  

('FATHER_COMBINED_AGE', typ.IntegerType()),  

('FATHER_EDUCATION', typ.StringType()),  

('MONTH_PRECARE_RECODE', typ.StringType()),  

...  

('INFANT_BREASTFED', typ.StringType())  

]
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Loading and transforming the data 

...  

('INFANT_BREASTFED', typ.StringType())  

] 

schema = typ.StructType([  

typ.StructField(e[0], e[1], False) for e in labels  

])  

Next, we load the data. The .read.csv(...) method can read either uncompressed or (as in our case) 
GZipped comma-separated values. The header parameter set to True indicates that the first row 
contains the header, and we use the schema to specify the correct data types:  

births = spark.read.csv('births_train.csv.gz',  

header=True,  

schema=schema) 
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Loading and transforming the data 

There are plenty of features in our dataset that are strings. These are mostly 
categorical variables that we need to somehow convert to a numeric form.  

You can glimpse over the original file schema specification here: ftp://ftp.cdc.gov/pub/
Health_Statistics/NCHS/Dataset_ Documentation/DVS/natality/UserGuide2015.pdf. 

We will first specify our recode dictionary:  

recode_dictionary = {  

'YNU': {  

'Y': 1,  

'N': 0,  

'U': 0  

}  

}  
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Loading and transforming the data 

Our goal in this Module is to predict whether the 'INFANT_ALIVE_AT_REPORT' is either 1 or 0. Thus, 
we will drop all of the features that relate to the infant and will try to predict the infant's chances of 
surviving only based on the features related to its mother, father, and the place of birth  

selected_features = [  

' I N F A N T _ A L I V E _ AT _ R E P O R T ' , ' B I R T H _ P L A C E ' , ' M O T H E R _ A G E _ Y E A R S ' , 
'FATHER_COMBINED_AGE',  

'C IG_BEFORE' , 'C IG_1_TRI ' , 'C IG_2_TRI ' , 'C IG_3_TRI ' , 'MOTHER_HEIGHT_IN' , 
'MOTHER_PRE_WEIGHT',  

'MOTHER_DELIVERY_WEIGHT', ’MOTHER_WEIGHT_GAIN', 'DIABETES_PRE', 'DIABETES_GEST',  

'HYP_TENS_PRE', 'HYP_TENS_GEST', 'PREV_BIRTH_PRETERM'  

] 

births_trimmed = births.select(selected_features) 
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Loading and transforming the data 

In our dataset, there are plenty of features with Yes/No/Unknown values; we will only 
code Yes to 1; everything else will be set to 0.  

There is also a small problem with how the number of cigarettes smoked by the 
mother was coded:  

as 0 means the mother smoked no cigarettes before or during the pregnancy, 

between 1-97 states the actual number of cigarette smoked,  

98 indicates either 98 or more,  

whereas 99 identifies the unknown;  

we will assume the unknown is 0 and recode accordingly.
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Loading and transforming the data 

So next we will specify our recoding methods:  

import pyspark.sql.functions as func  

def recode(col, key):  

return recode_dictionary[key][col]  

def correct_cig(feat):  

return func \  

.when(func.col(feat) != 99, func.col(feat))\  

.otherwise(0)  

rec_integer = func.udf(recode, typ.IntegerType()) 
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Loading and transforming the data 

The recode method looks up the correct key from the recode_dictionary (given the 
key) and returns the corrected value.  

The correct_cig method checks when the value of the feature feat is not equal to 99 
and (for that situation) returns the value of the feature; if the value is equal to 99, we 
get 0 otherwise.  

We cannot use the recode function directly on a DataFrame; it needs to be converted 
to a UDF that Spark will understand. 

The rec_integer is such a function: by passing our specified recode function and 
specifying the return value data type, we can use it then to encode our Yes/No/
Unknown features. 
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Loading and transforming the data 

So, let's get to it. First, we'll correct the features related to the number of cigarettes 
smoked:  

births_transformed = births_trimmed \  

.withColumn('CIG_BEFORE', correct_cig('CIG_BEFORE'))\  

.withColumn('CIG_1_TRI', correct_cig('CIG_1_TRI'))\  

.withColumn('CIG_2_TRI', correct_cig('CIG_2_TRI'))\  

.withColumn('CIG_3_TRI', correct_cig('CIG_3_TRI'))  

The .withColumn(...) method takes the name of the column as its first parameter and 
the transformation as the second one.  

In the previous cases, we do not create new columns, but reuse the same ones 
instead. 



08/29/15  47

Loading and transforming the data 

Now we will focus on correcting the Yes/No/Unknown features. First, we will figure 
out which these are with the following snippet:  

cols = [(col.name, col.dataType) for col in births_trimmed.schema]  

YNU_cols = []  

for i, s in enumerate(cols):  

if s[1] == typ.StringType():  

dis = births.select(s[0]).distinct().rdd.map(lambda row: row[0]) .collect()  

if 'Y' in dis:  

YNU_cols.append(s[0]) 
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Loading and transforming the data 

First, we created a list of tuples (cols) that hold column names and corresponding data 
types. Next, we loop through all of these and calculate distinct values of all string columns; 
if a 'Y' is within the returned list, we append the column name to the YNU_cols list.  

DataFrames can transform the features in bulk while selecting features. To present the 
idea, consider the following example:  

births.select([  

'INFANT_NICU_ADMISSION',  

rec_integer(  

'INFANT_NICU_ADMISSION', func.lit('YNU')  

) \  

.alias('INFANT_NICU_ADMISSION_RECODE')]  

).take(5) 
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Loading and transforming the data 

We select the 'INFANT_NICU_ADMISSION' column and we pass the name of the feature to the 
r e c _ i n t e g e r m e t h o d . W e a l s o a l i a s t h e n e w l y t r a n s f o r m e d c o l u m n a s 
'INFANT_NICU_ADMISSION_RECODE'. This way we will also confirm that our UDF works as 
intended.  

So, to transform all the YNU_cols in one go, we will create a list of such transformations, as 
shown here:  

exprs_YNU = [  

rec_integer(x, func.lit('YNU')).alias(x)  

if x in YNU_cols  

else x  

for x in births_transformed.columns  

] 

births_transformed = births_transformed.select(exprs_YNU) 
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Loading and transforming the data 

Let's check if we got it correctly:  

births_transformed.select(YNU_cols[-5:]).show(5) 

Here's what we get:  

Looks like everything worked as we wanted it to work, so let's get to know our data 
better. 
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Getting to know your data 

In order to build a statistical model in an informed way, an intimate knowledge of the 
dataset is necessary.  

Without knowing the data it is possible to build a successful model, but it is then a 
much more arduous task, or it would require more technical resources to test all the 
possible combinations of features.  

Therefore, after spending the required 80% of the time cleaning the data, we spend 
the next 15% getting to know it! 
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Descriptive statistics 

I normally start with descriptive statistics. Even though the DataFrames expose 
the .describe() method, since we are working with MLlib, we will use the .colStats(...) 
method.  

Note A word of warning: the .colStats(...) calculates the descriptive statistics based 
on a sample. For real world datasets this should not really matter but if your dataset 
has less than 100 observations you might get some strange results.  

The method takes an RDD of data to calculate the descriptive statistics of and return 
a MultivariateStatisticalSummary object that contains the following descriptive 
statistics:  

• count(): This holds a row count  

• max(): This holds maximum value in the column  

• mean(): This holds the value of the mean for the values in the column
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Descriptive statistics 

• min(): This holds the minimum value in the column  

• normL1(): This holds the value of the L1-Norm for the values in the column  

• normL2(): This holds the value of the L2-Norm for the values in the column  

• numNonzeros(): This holds the number of nonzero values in the column  

• variance(): This holds the value of the variance for the values in the column  

You can read more about the L1- and L2-norms here http://bit.ly/2jJJPJ0 
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Descriptive statistics 

We recommend checking the documentation of Spark to learn more about these. 
The following is a snippet that calculates the descriptive statistics of the numeric 
features:  

import pyspark.mllib.stat as st  

import numpy as np  

numeric_cols = ['MOTHER_AGE_YEARS','FATHER_COMBINED_AGE',  

'CIG_BEFORE','CIG_1_TRI','CIG_2_TRI','CIG_3_TRI',  

'MOTHER_HEIGHT_IN','MOTHER_PRE_WEIGHT',  

'MOTHER_DELIVERY_WEIGHT','MOTHER_WEIGHT_GAIN'  

]  
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Descriptive statistics 

numeric_rdd = births_transformed\  

.select(numeric_cols)\  

.rdd \  

.map(lambda row: [e for e in row])  

mllib_stats = st.Statistics.colStats(numeric_rdd) 

for col, m, v in zip(numeric_cols,  

mllib_stats.mean(),  

mllib_stats.variance()):  

print('{0}: \t{1:.2f} \t {2:.2f}'.format(col, m, np.sqrt(v))) 
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Descriptive statistics 

The preceding code produces the following result: 
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Descriptive statistics 

As you can see, mothers, compared to fathers, are younger: the average age of 
mothers was 28 versus over 44 for fathers. A good indication (at least for some of the 
infants) was that many mothers quit smoking while being pregnant; it is horrifying, 
though, that there still were some that continued smoking.  

For the categorical variables, we will calculate the frequencies of their values:  

categorical_cols = [e for e in births_transformed.columns  

if e not in numeric_cols]  

categorical_rdd = births_transformed\  

.select(categorical_cols)\  

.rdd \  

.map(lambda row: [e for e in row]) 
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Descriptive statistics 

for i, col in enumerate(categorical_cols):  

agg = categorical_rdd \  

.groupBy(lambda row: row[i]) \  

.map(lambda row: (row[0], len(row[1])))  

print(col, sorted(agg.collect(),  

key=lambda el: el[1],  

reverse=True))  

Here is what the results look like:  

Most of the deliveries happened in hospital (BIRTH_PLACE equal to 1). Around 550 deliveries happened at home: some intentionally 
('BIRTH_PLACE' equal to 3), and some not ('BIRTH_PLACE' equal to 4).  
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Correlations

Correlations help to identify collinear numeric features and handle them 
appropriately. Let's check the correlations between our features:  

corrs = st.Statistics.corr(numeric_rdd)  

for i, el in enumerate(corrs > 0.5):  

correlated = [  

(numeric_cols[j], corrs[i][j])  

for j, e in enumerate(el)  

if e == 1.0 and j != i]  

if len(correlated) > 0: 

for e in correlated:  

print('{0}-to-{1}: {2:.2f}’.format(numeric_cols[i], e[0], e[1]))  
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Correlations

The preceding code will calculate the correlation matrix and will print only those 
features that have a correlation coefficient greater than 0.5: the corrs > 0.5 part takes 
care of that.  

Here's what we get:  
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Correlations

As you can see, the 'CIG_...' features are highly correlated, so we can drop most of 
them. Since we want to predict the survival chances of an infant as soon as possible, 
we will keep only the 'CIG_1_TRI'. Also, as expected, the weight features are also 
highly correlated and we will only keep the 'MOTHER_PRE_WEIGHT':  

features_to_keep = [  

'INFANT_ALIVE_AT_REPORT', 'BIRTH_PLACE', 'MOTHER_AGE_YEARS',  

'FATHER_COMBINED_AGE' , 'C IG_1_TRI ' , 'MOTHER_HEIGHT_IN ' , 
'MOTHER_PRE_WEIGHT',  

'DIABETES_PRE', 'DIABETES_GEST', 'HYP_TENS_PRE',  

'HYP_TENS_GEST', 'PREV_BIRTH_PRETERM'  

] 

births_transformed = births_transformed.select([e for e in features_ to_keep])
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Statistical testing 

We cannot calculate correlations for the categorical features. However, we can run a 
Chi-square test to determine if there are significant differences.  

Here's how you can do it using the .chiSqTest(...) method of MLlib:  

import pyspark.mllib.linalg as ln  

for cat in categorical_cols[1:]:  

agg = births_transformed \  

.groupby('INFANT_ALIVE_AT_REPORT') .pivot(cat) .count()  

agg_rdd = agg.rdd.map(lambda row: (row[1:]))\ 

.flatMap(lambda row: [0 if e == None else e for e in row]) .collect() 
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Statistical testing 

row_length = len(agg.collect()[0]) - 1  

agg = ln.Matrices.dense(row_length, 2, agg_rdd)  

test = st.Statistics.chiSqTest(agg)  

print(cat, round(test.pValue, 4))  

We loop through all the categorical variables and pivot them by the 'INFANT_ALIVE_ 
AT_REPORT' feature to get the counts. 

Next, we transform them into an RDD, so we can then convert them into a matrix 
using the pyspark.mllib.linalg module. 

The first parameter to the .Matrices.dense(...) method specifies the number of rows 
in the matrix; in our case, it is the length of distinct values of the categorical feature. 
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Statistical testing 

The second parameter specifies the number of columns: we have two as our 
'INFANT_ALIVE_AT_REPORT' target variable has only two values.  

The last parameter is a list of values to be transformed into a matrix.  

Here's an example that shows this more clearly:  

print(ln.Matrices.dense(3,2, [1,2,3,4,5,6]))  

The preceding code produces the following matrix:
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Statistical testing 

Once we have our counts in a matrix form, we can use the .chiSqTest(...) to calculate 
our test.  

Here's what we get in return:  

Our tests reveal that all the features should be significantly different and should help 
us predict the chance of survival of an infant. 
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Creating the final dataset 

Therefore, it is time to create our final dataset that we will use to build our models. 
We will convert our DataFrame into an RDD of LabeledPoints.  

A LabeledPoint is a MLlib structure that is used to train the machine learning models. 
It consists of two attributes: label and features.  

The label is our target variable and features can be a NumPy array, list, 
pyspark.mllib.linalg.SparseVector, pyspark.mllib.linalg.DenseVector, or scipy.sparse 
column matrix.  
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Creating an RDD of LabeledPoints 

Before we build our final dataset, we first need to deal with one final obstacle: our 'BIRTH_PLACE' 
feature is still a string. While any of the other categorical variables can be used as is (as they are now 
dummy variables), we will use a hashing trick to encode the 'BIRTH_PLACE' feature:  

import pyspark.mllib.feature as ft  

import pyspark.mllib.regression as reg  

hashing = ft.HashingTF(7)  

births_hashed = births_transformed.rdd .map(lambda row: [  

list(hashing.transform(row[1]).toArray())  

if col == 'BIRTH_PLACE'  

else row[i]  

for i, col  
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Creating an RDD of LabeledPoints 

for i, col in enumerate(features_to_keep)]) \  

.map(lambda row: [[e] if type(e) == int else e  

for e in row]).map(lambda row: [item for sublist in row  

for item in sublist]).map(lambda row: reg.LabeledPoint( row[0],  

ln.Vectors.dense(row[1:]))  )  

First, we create the hashing model. Our feature has seven levels, so we use as 
many features as that for the hashing trick. 

Next, we actually use the model to convert our 'BIRTH_PLACE' feature into a 
SparseVector; such a data structure is preferred if your dataset has many columns 
but in a row only a few of them have non-zero values. We then combine all the 
features together and finally create a LabeledPoint.  
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Splitting into training and testing 

Before we move to the modeling stage, we need to split our dataset into two sets: 
one we'll use for training and the other for testing.  

Luckily, RDDs have a handy method to do just that:  

.randomSplit(...).  

The method takes a list of proportions that are to be used to randomly split the 
dataset.  

Here is how it is done:  

births_train, births_test = births_hashed.randomSplit([0.6, 0.4]) 
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Predicting infant survival 

Finally, we can move to predicting the infants' survival chances. 

In this section, we will build two models:  

a linear classifier—the logistic regression, and  

a non-linear one—a random forest.  

For the former one, we will use all the features at our disposal, 

whereas for the latter one, we will employ a ChiSqSelector(...) method to select the 
top four features. 
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Logistic regression in MLlib 

Logistic regression is somewhat a benchmark to build any classification model.  

MLlib used to provide a logistic regression model estimated using a stochastic 
gradient descent (SGD) algorithm. 

Th i s mode l has been dep reca ted i n Spa rk 2 .0 i n f avo r o f t he 
LogisticRegressionWithLBFGS model. 

The LogisticRegressionWithLBFGS model uses the Limited-memory Broyden– 
Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm. It is a quasi-Newton 
method that approximates the BFGS algorithm.  

Note : For those of you who are mathematically adept and interested in this, we suggest 
perusing this blog post that is a nice walk-through of the optimization algorithms: 
http://aria42.com/blog/2014/12/ understanding-lbfgs.  
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Logistic regression in MLlib 
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Logistic regression in MLlib 

First, we train the model on our data:  

from pyspark.mllib.classification \  

import LogisticRegressionWithLBFGS  

LR_Model = LogisticRegressionWithLBFGS \  

.train(births_train, iterations=10)  

Training the model is very simple: we just need to call the .train(...) method. The 
required parameters are the RDD with LabeledPoints; we also specified the number 
of iterations so it does not take too long to run. 
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Logistic regression in MLlib 

Having trained the model using the births_train dataset, let's use the model to predict 
the classes for our testing set:  

LR_results = (  

births_test.map(lambda row: row.label) \  

.zip(LR_Model \  

.predict(births_test\  

.map(lambda row: row.features)))  

).map(lambda row: (row[0], row[1] * 1.0))  
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Logistic regression in MLlib 

The preceding snippet creates an RDD where each element is a tuple, with the first 
element being the actual label and the second one, the model's prediction.  

MLlib provides an evaluation metric for classification and regression. Let's check how 
well or how bad our model performed:  

import pyspark.mllib.evaluation as ev  

LR_evaluation = ev.BinaryClassificationMetrics(LR_results)  

print('Area under PR: {0:.2f}' \  

.format(LR_evaluation.areaUnderPR))  

print('Area under ROC: {0:.2f}' \  

.format(LR_evaluation.areaUnderROC))  

LR_evaluation.unpersist()



08/29/15  76

Logistic regression in MLlib 

Here's what we got:  

The model performed reasonably well! The 85% area under the Precision-Recall 
curve indicates a good fit. In this case, we might be getting slightly more predicted 
deaths (true and false positives). In this case, this is actually a good thing as it would 
allow doctors to put the expectant mother and the infant under special care.  

The area under Receiver-Operating Characteristic (ROC) can be understood as a 
probability of the model ranking higher than a randomly chosen positive instance 
compared to a randomly chosen negative one. A 63% value can be thought of as 
acceptable.  

For more on these metr ics, we point interested readers to http:/ /
stats.stackexchange.com/questions/7207/ roc-vs-precision-and-recall-curves and 
http://gim. unmc.edu/dxtests/roc3.htm.  
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Selecting only the most 
predictable features 

Any model that uses less features to predict a class accurately should always be 
preferred to a more complex one. MLlib allows us to select the most predictable 
features using a Chi-Square selector.  

Here's how you do it:  

selector = ft.ChiSqSelector(4).fit(births_train)  

topFeatures_train = (  

births_train.map(lambda row: row.label) \  

.zip(selector \  

.transform(births_train \  

.map(lambda row: row.features)))  

).map(lambda row: reg.LabeledPoint(row[0], row[1]))  
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Selecting only the most 
predictable features 

topFeatures_test = (  

births_test.map(lambda row: row.label) \  

.zip(selector \  

.transform(births_test \  

.map(lambda row: row.features)))  

).map(lambda row: reg.LabeledPoint(row[0], row[1])) 

We asked the selector to return the four most predictive features from the dataset 
and train the selector using the births_train dataset. We then used the model to 
extract only those features from our training and testing datasets.  

The .ChiSqSelector(...) method can only be used for numerical features; categorical 
variables need to be either hashed or dummy coded before the selector can be used. 



08/29/15  79

Random forest in MLlib 

We are now ready to build the random forest model.  

The following code shows you how to do it:  

from pyspark.mllib.tree import RandomForest  

RF_model = RandomForest \  

.trainClassifier(data=topFeatures_train,  

numClasses=2,  

categoricalFeaturesInfo={},  

numTrees=6,  

featureSubsetStrategy='all',  

seed=666) 
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Random forest in MLlib 

The first parameter to the .trainClassifier(...) method specifies the training dataset. 

The numClasses one indicates how many classes our target variable has.  

As the third parameter, you can pass a dictionary where the key is the index of a 
categorical feature in our RDD and the value for the key indicates the number of 
levels that the categorical feature has.  

The numTrees specifies the number of trees to be in the forest.  

The next parameter tells the model to use all the features in our dataset instead of 
keeping only the most descriptive ones, while the last one specifies the seed for the 
stochastic part of the model. 
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Random forest in MLlib 

Let's see how well our model did:  

RF_results = (  

topFeatures_test.map(lambda row: row.label) \  

.zip(RF_model \  

.predict(topFeatures_test \  

.map(lambda row: row.features)))  

)  

RF_evaluation = ev.BinaryClassificationMetrics(RF_results)  

print('Area under PR: {0:.2f}' \  

.format(RF_evaluation.areaUnderPR))
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Random forest in MLlib 

print('Area under ROC: {0:.2f}' \  

.format(RF_evaluation.areaUnderROC))  

model_evaluation.unpersist()  

Here are the results:  

As you can see, the Random Forest model with fewer features performed even 
better than the logistic regression model. Let's see how the logistic regression would 
perform with a reduced number of features:  

LR_Model_2 = LogisticRegressionWithLBFGS \ 
.train(topFeatures_train, iterations=10) 
LR_results_2 = ( topFeatures_test.map(lambda row: row.label).zip(LR_Model_2 \ 
.predict(topFeatures_test.map(lambda row: row.features))) 
).map(lambda row: (row[0], row[1] * 1.0)) 
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LR_evaluation_2 = ev.BinaryClassificationMetrics(LR_results_2)  

print('Area under PR: {0:.2f}' \  

.format(LR_evaluation_2.areaUnderPR))  

print('Area under ROC: {0:.2f}' \  

.format(LR_evaluation_2.areaUnderROC))  

LR_evaluation_2.unpersist()  

The results might surprise you:  

As you can see, both models can be simplified and still attain the same level of 
accuracy.  

Having said that, you should always opt for a model with fewer variables.
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LR_evaluation_2 = ev.BinaryClassificationMetrics(LR_results_2)  

print('Area under PR: {0:.2f}' \  

.format(LR_evaluation_2.areaUnderPR))  

print('Area under ROC: {0:.2f}' \  

.format(LR_evaluation_2.areaUnderROC))  

LR_evaluation_2.unpersist()  

The results might surprise you:  

As you can see, both models can be simplified and still attain the same level of 
accuracy.  

Having said that, you should always opt for a model with fewer variables.
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• In this Module we looked at the capabilities of the MLlib package of PySpark.  

• Even though the package is currently in a maintenance mode and is not actively 
being worked on, it is still good to know how to use it. 

•  Also, for now it is the only package available to train models while streaming data.  

• We used MLlib to clean up, transform, and get familiar with the dataset of infant 
deaths. 

• Using that knowledge we then successfully built two models that aimed at 
predicting the chance of infant survival given the information about its mother, 
father, and place of birth. 

Summary 
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In the previous module, we worked with the MLlib package in Spark that operated 
strictly on RDDs.  

In this module, we move to the ML part of Spark that operates strictly on 
DataFrames.  

Also, according to the Spark documentation, the primary machine learning API for 
Spark is now the DataFrame-based set of models contained in the spark.ml package. 

So, let's get to it! 

In this module, we will reuse a portion of the dataset we played within the previous 
module.  

The data can be downloaded from http://www.tomdrabas.com/data/LearningPySpark/
births_transformed.csv.gz. 

Introducing the ML Package
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Introducing the ML Package

Objectives  
You will learn how to do the following: 

• Prepare transformers, estimators, and pipelines 

• Predict the chances of infant survival using models available in the ML package 

• Evaluate the performance of the model 

• Perform parameter hyper-tuning 

• Use other machine-learning models available in the package
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Overview of the package

At the top level, the package exposes three main abstract classes:  

• a Transformer,  

• an Estimator, and  

• a Pipeline.  

Transformer  

The Transformer class, like the name suggests, transforms your data by (normally) 
appending a new column to your DataFrame.  

At the high level, when deriving from the Transformer abstract class, each and every 
new Transformer needs to implement a .transform(...) method.  

The method, as a first and normally the only obligatory parameter, requires passing a 
DataFrame to be transformed.  
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Transformer 

This, of course, varies method-by-method in the ML package: other popular 
parameters are inputCol and outputCol; these, however, frequently default to some 
predefined values, such as, for example, 'features' for the inputCol parameter.  

There are many Transformers offered in the spark.ml.feature and we will briefly 
describe them here:  

Binarizer: Given a threshold, the method takes a continuous variable and transforms 
it into a binary one.  

Bucketizer: Similar to the Binarizer, this method takes a list of thresholds (the splits 
parameter) and transforms a continuous variable into a multinomial one.  

ChiSqSelector: For the categorical target variables (think classification models), this 
feature allows you to select a predefined number of features (parameterized by the 
numTopFeatures parameter) that explain the variance in the target the best.  



08/29/15  92

Transformer 

This, of course, varies method-by-method in the ML package: other popular 
parameters are inputCol and outputCol; these, however, frequently default to some 
predefined values, such as, for example, 'features' for the inputCol parameter.  

There are many Transformers offered in the spark.ml.feature and we will briefly 
describe them here:  

Binarizer: Given a threshold, the method takes a continuous variable and transforms 
it into a binary one.  

Bucketizer: Similar to the Binarizer, this method takes a list of thresholds (the splits 
parameter) and transforms a continuous variable into a multinomial one.  

ChiSqSelector: For the categorical target variables (think classification models), this 
feature allows you to select a predefined number of features (parameterized by the 
numTopFeatures parameter) that explain the variance in the target the best. 

More information on Chi-squares can be found here: 

http:// ccnmtl.columbia.edu/projects/qmss/the_chisquare_test/ about_the_chisquare_test.html.  
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Transformer 

ChiSqSelector: The selection is done, as the name of the method suggests, using a 
Chi-Square test. It is one of the two-step methods:  

first, you need to .fit(...) your data (so the method can calculate the Chi-square tests).  

Calling the .fit(...) method (you pass your DataFrame as a parameter) returns a 
ChiSqSelectorModel object that you can then use to transform your DataFrame 
using the .transform(...) method.  

CountVectorizer: This is useful for a tokenized text (such as [['Learning', 'PySpark', 
'with', 'us'],['us', 'us', 'us']]). It is one of two-step methods:  

first, you need to .fit(...), that is, learn the patterns from your dataset, before you 
can .transform(...) with the CountVectorizerModel returned by the .fit(...) method. 

The output from this transformer, for the tokenized text presented previously, would 
look similar to this: [(4, [0, 1, 2, 3], [1.0, 1.0, 1.0, 1.0]),(4, [3], [3.0])]. 
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Transformer 

DCT: The Discrete Cosine Transform takes a vector of real values and returns a 
vector of the same length, but with the sum of cosine functions oscillating at different 
frequencies.  

Such transformations are useful to extract some underlying frequencies in your data 
or in data compression.  

• ElementwiseProduct: A method that returns a vector with elements that are 
products of the vector passed to the method, and a vector passed as the scalingVec 
parameter.  

For example, if you had a [10.0, 3.0, 15.0] vector and your scalingVec was [0.99, 
3.30, 0.66], then the vector you would get would look as follows: [9.9, 9.9, 9.9].  
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Transformer 

HashingTF: A hashing trick transformer that takes a list of tokenized text and 
returns a vector (of predefined length) with counts. 

 From PySpark's documentation:  

"Since a simple modulo is used to transform the hash function to a column index, it is 
advisable to use a power of two as the numFeatures parameter; otherwise the 
features will not be mapped evenly to the columns."  

IDF: This method computes an Inverse Document Frequency for a list of 
documents. Note that the documents need to already be represented as a vector (for 
example, using either the HashingTF or CountVectorizer).  

IndexToString: A complement to the StringIndexer method. It uses the encoding 
from the StringIndexerModel object to reverse the string index to original values. As 
an aside, please note that this sometimes does not work and you need to specify the 
values from the StringIndexer.  
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Transformer 

MaxAbsScaler: Rescales the data to be within the [-1.0, 1.0] range (thus, it does not 
shift the center of the data).  

• MinMaxScaler: This is similar to the MaxAbsScaler with the difference that it scales 
the data to be in the [0.0, 1.0] range.  

• NGram: This method takes a list of tokenized text and returns n-grams: pairs, 
triples, or n-mores of subsequent words. For example, if you had a ['good', 'morning', 
'Robin', 'Williams'] vector you would get the following output: ['good morning', 
'morning Robin', 'Robin Williams'].  

Normalizer: This method scales the data to be of unit norm using the p-norm value 
(by default, it is L2).  

• OneHotEncoder: This method encodes a categorical column to a column of binary 
vectors.  

• PCA: Performs the data reduction using principal component analysis. 
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Transformer 

PolynomialExpansion: Performs a polynomial expansion of a vector. For example, 
if you had a vector symbolically written as [x, y, z], the method would produce the 
following expansion: [x, x*x, y, x*y, y*y, z, x*z, y*z, z*z].  

• QuantileDiscretizer: Similar to the Bucketizer method, but instead of passing the 
splits parameter, you pass the numBuckets one. The method then decides, by 
calculating approximate quantiles over your data, what the splits should be.  

• RegexTokenizer: This is a string tokenizer using regular expressions.  

• RFormula: For those of you who are avid R users, you can pass a formula such as 
vec ~ alpha * 3 + beta (assuming your DataFrame has the alpha and beta columns) 
and it will produce the vec column given the expression.  

SQLTransformer: Similar to the previous, but instead of R-like formulas, you can 
use SQL syntax.  
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Transformer 

StandardScaler: Standardizes the column to have a 0 mean and standard deviation 
equal to 1.  

StopWordsRemover: Removes stop words (such as 'the' or 'a') from a tokenized 
text.  

StringIndexer: Given a list of all the words in a column, this will produce a vector of 
indices.  

Tokenizer: This is the default tokenizer that converts the string to lower case and 
then splits on space(s).  

VectorAssembler: This is a highly useful transformer that collates multiple numeric 
(vectors included) columns into a single column with a vector representation. 
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Transformer 

VectorAssembler: For example, if you had three columns in your DataFrame:  

df = spark.createDataFrame(  

[(12, 10, 3), (1, 4, 2)],  

['a', 'b', 'c'])  

The output of calling:  

ft.VectorAssembler(inputCols=['a', 'b', 'c'],  

outputCol='features').transform(df).select(‘features').collect()  

It would look as follows:  

[Row(features=DenseVector([12.0, 10.0, 3.0])),  

Row(features=DenseVector([1.0, 4.0, 2.0]))] 
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Transformer 

VectorIndexer: This is a method for indexing categorical columns into a vector of 
indices. It works in a column-by-column fashion, selecting distinct values from the 
column, sorting and returning an index of the value from the map instead of the 
original value.  

VectorSlicer: Works on a feature vector, either dense or sparse: given a list of 
indices, it extracts the values from the feature vector.  

Word2Vec: This method takes a sentence (string) as an input and transforms it into 
a map of {string, vector} format, a representation that is useful in natural language 
processing.  
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Estimators 

Estimators can be thought of as statistical models that need to be estimated to 
make predictions or classify your observations.  

If deriving from the abstract Estimator class, the new model has to implement 
the .fit(...) method that fits the model given the data found in a DataFrame and some 
default or user-specified parameters.  

There are a lot of estimators available in PySpark and we will now shortly discuss the 
models available in Spark 2.0. 
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Classification 

The ML package provides a data scientist with seven classification models to choose 
from.  

LogisticRegression: The benchmark model for classification. The logistic 
regression uses a logit function to calculate the probability of an observation 
belonging to a particular class. 

DecisionTreeClassifier: A classifier that builds a decision tree to predict a class for 
an observation. Specifying the maxDepth parameter limits the depth the tree grows, 
the minInstancePerNode determines the minimum number of observations in the 
tree node required to further split, the maxBins parameter specifies the maximum 
number of bins the continuous variables will be split into, and the impurity specifies 
the metric to measure and calculate the information gain from the split.  

GBTClassifier: A Gradient Boosted Trees model for classification. The model 
belongs to the family of ensemble models: models that combine multiple weak 
predictive models to form a strong one. At the moment, the GBTClassifier model 
supports binary labels, and continuous and categorical features.  
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Classification 

RandomForestClassifier: This model produces multiple decision trees (hence the name—
forest) and uses the mode output of those decision trees to classify observations. The 
RandomForestClassifier supports both binary and multinomial labels.  

• NaiveBayes: Based on the Bayes' theorem, this model uses conditional probability theory to 
classify observations. The NaiveBayes model in PySpark ML supports both binary and 
multinomial labels.  

• MultilayerPerceptronClassifier: A classifier that mimics the nature of a human brain. Deeply 
rooted in the Artificial Neural Networks theory, the model is a black-box, that is, it is not easy to 
interpret the internal parameters of the model.  

The model consists, at a minimum, of three, fully connected layers (a parameter that needs to 
be specified when creating the model object) of artificial neurons:  

• the input layer (that needs to be equal to the number of features in your dataset), 

•  a number of hidden layers (at least one), and  

• an output layer with the number of neurons equal to the number of categories in your label. All 
the neurons in the input and hidden layers have a sigmoid activation function, whereas the 
activation function of the neurons in the output layer is softmax.  
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Classification 

OneVsRest: A reduction of a multiclass classification to a binary one. For example, 
in the case of a multinomial label, the model can train multiple binary logistic 
regression models. For example, if label == 2, the model will build a logistic 
regression where it will convert the label == 2 to 1 (all remaining label values would 
be set to 0) and then train a binary model. All the models are then scored and the 
model with the highest probability wins. 
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Regression  

There are seven models available for regression tasks in the PySpark ML package. 
As with classification, these range from some basic ones (such as the obligatory 
linear regression) to more complex ones:  

AFTSurvivalRegression: Fits an Accelerated Failure Time regression model. It is a 
parametric model that assumes that a marginal effect of one of the features 
accelerates or decelerates a life expectancy (or process failure). It is highly 
applicable for the processes with well-defined stages.  

DecisionTreeRegressor: Similar to the model for classification with an obvious 
distinction that the label is continuous instead of binary (or multinomial).  

GBTRegressor: As with the DecisionTreeRegressor, the difference is the data type 
of the label.  



08/29/15  106

Regression  

GeneralizedLinearRegression: A family of linear models with differing kernel 
functions (link functions). In contrast to the linear regression that assumes normality 
of error terms, the GLM allows the label to have different error term distributions: the 
GeneralizedLinearRegression model from the PySpark ML package supports 
gaussian, binomial, gamma, and poisson families of error distributions with a host of 
different link functions.  

IsotonicRegression: A type of regression that fits a free-form, non-decreasing line to 
your data. It is useful to fit the datasets with ordered and increasing observations.  

LinearRegression: The most simple of regression models, it assumes a linear 
relationship between features and a continuous label, and normality of error terms.  

RandomForestRegressor: Similar to either DecisionTreeRegressor or 
GBTRegressor, the RandomForestRegressor fits a continuous label instead of a 
discrete one.  
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Clustering is a family of unsupervised models that are used to find underlying 
patterns in your data. The PySpark ML package provides the four most popular 
models at the moment:  

BisectingKMeans: A combination of the k-means clustering method and hierarchical 
clustering. The algorithm begins with all observations in a single cluster and 
iteratively splits the data into k clusters. 

Check out this website for more information on pseudo-algorithms:  

http://minethedata.blogspot.com/2012/08/bisecting-k-means.html.  

KMeans: This is the famous k-mean algorithm that separates data into k clusters, 
iteratively searching for centroids that minimize the sum of square distances between 
each observation and the centroid of the cluster it belongs to.  
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GaussianMixture: This method uses k Gaussian distributions with unknown 
parameters to dissect the dataset. Using the Expectation-Maximization algorithm, the 
parameters for the Gaussians are found by maximizing the log-likelihood function. 

Note: Beware that for datasets with many features this model might perform poorly 
due to the curse of dimensionality and numerical issues with Gaussian distributions.  

LDA: This model is used for topic modeling in natural language processing 
applications.  



08/29/15  109

Pipeline   

A Pipeline in PySpark ML is a concept of an end-to-end transformation-estimation 
process (with distinct stages) that ingests some raw data (in a DataFrame form), 
performs the necessary data carpentry (transformations), and finally estimates a 
statistical model (estimator).  

Note: A Pipeline can be purely transformative, that is, consisting of Transformers 
only.  

A Pipeline can be thought of as a chain of multiple discrete stages. When a .fit(...) 
method is executed on a Pipeline object, all the stages are executed in the order 
they were specified in the stages parameter; the stages parameter is a list of 
Transformer and Estimator objects. The .fit(...) method of the Pipeline object 
executes the .transform(...) method for the Transformers and the .fit(...) method for 
the Estimators. 

Normally, the output of a preceding stage becomes the input for the following stage: 
when deriving from either the Transformer or Estimator abstract classes, one needs 
to implement the .getOutputCol() method that returns the value of the outputCol 
parameter specified when creating an object.  
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Predicting the chances of 
infant survival with ML    

Loading the data  
First, we load the data with the help of the following code:  

import pyspark.sql.types as typ 
labels = [ 
('INFANT_ALIVE_AT_REPORT', typ.IntegerType()), 
('BIRTH_PLACE', typ.StringType()), 
('MOTHER_AGE_YEARS', typ.IntegerType()), 
('FATHER_COMBINED_AGE', typ.IntegerType()), 
('CIG_BEFORE', typ.IntegerType()), 
('CIG_1_TRI', typ.IntegerType()), 
('CIG_2_TRI', typ.IntegerType()), 
('CIG_3_TRI', typ.IntegerType()), 
('MOTHER_HEIGHT_IN', typ.IntegerType()), 
('MOTHER_PRE_WEIGHT', typ.IntegerType()), 
('MOTHER_DELIVERY_WEIGHT', typ.IntegerType()), 
('MOTHER_WEIGHT_GAIN', typ.IntegerType()), 
('DIABETES_PRE', typ.IntegerType()), 
('DIABETES_GEST', typ.IntegerType()), 
('HYP_TENS_PRE', typ.IntegerType()), 
('HYP_TENS_GEST', typ.IntegerType()), 
('PREV_BIRTH_PRETERM', typ.IntegerType()) ]
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infant survival with ML    

Loading the data … 

schema = typ.StructType([  

typ.StructField(e[0], e[1], False) for e in labels  

])  

births = spark.read.csv('births_transformed.csv.gz', header=True,  

schema=schema)  

We specify the schema of the DataFrame; our severely limited dataset now only has 
17 columns.  

Note: http://www.tomdrabas.com/data/ LearningPySpark/births_transformed.csv.gz.  
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Creating transformers 

Before we can use the dataset to estimate a model, we need to do some 
transformations. Since statistical models can only operate on numeric data, we will 
have to encode the BIRTH_PLACE variable.  

Before we do any of this, since we will use a number of different feature 
transformations ,let’s import them all:  

import pyspark.ml.feature as ft  

To encode the BIRTH_PLACE column, we will use the OneHotEncoder method. 
However, the method cannot accept StringType columns; it can only deal with 
numeric types so first we will cast the column to an IntegerType:  

births = births.withColumn('BIRTH_PLACE_INT', births['BIRTH_PLACE'] \  

.cast(typ.IntegerType()))  

Having done this, we can now create our first Transformer: 
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Creating transformers 

e n c o d e r = f t . O n e H o t E n c o d e r ( i n p u t C o l = ' B I R T H _ P L A C E _ I N T ' , 
outputCol='BIRTH_PLACE_VEC')  

Let's now create a single column with all the features collated together. We will use 
the VectorAssembler method:  

featuresCreator = ft.VectorAssembler(  

inputCols=[ col[0]  

for col in labels[2:]] + [encoder.getOutputCol()], outputCol='features'  

) 

The inputCols parameter passed to the VectorAssembler object is a list of all the columns 
to be combined together to form the outputCol—the 'features'.  

Note that we use the output of the encoder object (by calling the .getOutputCol() method), 
so we do not have to remember to change this parameter's value should we change the 
name of the output column in the encoder object at any point. 



08/29/15  114

Creating an estimator 

import pyspark.ml.classification as cl  

Once loaded, let's create the model by using the following code:  

logistic = cl.LogisticRegression( maxIter=10, regParam=0.01,  

labelCol='INFANT_ALIVE_AT_REPORT')  

We would not have to specify the labelCol parameter if our target column had the 
name 'label'.  

Also, if the output of our featuresCreator was not called 'features', we would have to 
specify the featuresCol by (most conveniently) calling the getOutputCol() method on 
the featuresCreator object. 
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Creating a pipeline 

First, let's load the Pipeline from the ML package:  

from pyspark.ml import Pipeline  

Creating a Pipeline is really easy. Here's how our pipeline should look like 
conceptually: 

Converting this structure into a Pipeline is a walk in the park:  

pipeline = Pipeline(stages=[ encoder, featuresCreator, logistic ])  

That's it! Our pipeline is now created so we can (finally!) estimate the model. 
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Fitting the model 

Before you fit the model, we need to split our dataset into training and testing datasets. 
Conveniently, the DataFrame API has the .randomSplit(...) method:  

births_train, births_test = births.randomSplit([0.7, 0.3], seed=666)  

The first parameter is a list of dataset proportions that should end up in, respectively, births_train 
and births_test subsets.  

The seed parameter provides a seed to the randomizer.  

Note: You can also split the dataset into more than two subsets as long as the elements of the 
list sum up to 1, and you unpack the output into as many subsets.  

For example, we could split the births dataset into three subsets like this:  

train, test, val = births.randomSplit([0.7, 0.2, 0.1], seed=666)  

The preceding code would put a random 70% of the births dataset into the train object, 20% 
would go to the test, and the val DataFrame would hold the remaining 10%.  
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Fitting the model 

Now it is about time to finally run our pipeline and estimate our model:  

model = pipeline.fit(births_train)  

test_model = model.transform(births_test)  

The .fit(...) method of the pipeline object takes our training dataset as an input. Under 
the hood, the births_train dataset is passed first to the encoder object. The 
DataFrame that is created at the encoder stage then gets passed to the 
featuresCreator that creates the 'features' column. Finally, the output from this stage 
is passed to the logistic object that estimates the final model. 
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Fitting the model 

The .fit(...) method returns the PipelineModel object (the model object in the 
preceding snippet) that can then be used for prediction; we attain this by calling 
the .transform(...) method and passing the testing dataset created earlier. Here's 
what the test_model looks like in the following command:  

test_model.take(1)  

It generates the following output:  
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Fitting the model 

The .fit(...) method returns the PipelineModel object (the model object in the 
preceding snippet) that can then be used for prediction; we attain this by calling 
the .transform(...) method and passing the testing dataset created earlier. Here's 
what the test_model looks like in the following command:  

test_model.take(1)  

It generates the following output:  
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Evaluating the performance of 
the model 

Obviously, we would like to now test how well our model did.  

PySpark exposes a number of evaluation methods for classification and regression 
in the .evaluation section of the package:  

import pyspark.ml.evaluation as ev  

We will use the BinaryClassficationEvaluator to test how well our model performed:  

evaluator = ev.BinaryClassificationEvaluator(  

rawPredictionCol='probability',  

labelCol='INFANT_ALIVE_AT_REPORT')  

The rawPredictionCol can either be the rawPrediction column produced by the 
estimator or the probability.
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Evaluating the performance of 
the model 

Let's see how well our model performed:  

print(evaluator.evaluate(test_model,  

{evaluator.metricName: 'areaUnderROC'}))  

print(evaluator.evaluate(test_model,  

{evaluator.metricName: 'areaUnderPR'}))  

The preceding code produces the following result:  

The area under the ROC of 74% and area under PR of 71% shows a well-defined 
model, but nothing out of extraordinary; if we had other features, we could drive this 
up, but this is not the purpose of this chapter (nor the book, for that matter).  
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Saving the model 

PySpark allows you to save the Pipeline definition for later use. It not only saves the 
pipeline structure, but also all the definitions of all the Transformers and Estimators:  

pipelinePath = './infant_oneHotEncoder_Logistic_Pipeline'  

pipeline.write().overwrite().save(pipelinePath)  

So, you can load it up later and use it straight away to .fit(...) and predict:  

loadedPipeline = Pipeline.load(pipelinePath)  

loadedPipeline.fit(births_train).transform(births_test).take(1)  

The preceding code produces the same result (as expected):
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Saving the model 

To save your model, see the following the example:  

from pyspark.ml import PipelineModel  

modelPath = './infant_oneHotEncoder_Logistic_PipelineModel'  

model.write().overwrite().save(modelPath)  

loadedPipelineModel = PipelineModel.load(modelPath)  

test_reloadedModel = loadedPipelineModel.transform(births_test)  

The preceding script uses the .load(...) method, a class method of the PipelineModel 
class, to reload the estimated model.  

You can compare the result of test_reloadedModel.take(1) with the output of 
test_model.take(1) we presented earlier. 
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Parameter hyper-tuning 

Rarely, our first model would be the best we can do. By simply looking at our metrics 
and accepting the model because it passed our pre-conceived performance 
thresholds is hardly a scientific method for finding the best model.  

A concept of parameter hyper-tuning is to find the best parameters of the model: for 
example, the maximum number of iterations needed to properly estimate the logistic 
regression model or maximum depth of a decision tree.  

In this section, we will explore two concepts that allow us to find the best parameters 
for our models: grid search and train-validation splitting. 
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Grid search 

Grid search is an exhaustive algorithm that loops through the list of defined 
parameter values, estimates separate models, and chooses the best one given some 
evaluation metric. 

A note of caution should be stated here: if you define too many parameters you want 
to optimize over, or too many values of these parameters, it might take a lot of time 
to select the best model as the number of models to estimate would grow very 
quickly as the number of parameters and parameter values grow.  

For example, if you want to fine-tune two parameters with two parameter values, you 
would have to fit four models. Adding one more parameter with two values would 
require estimating eight models, whereas adding one more additional value to our 
two parameters (bringing it to three values for each) would require estimating nine 
models.  

As you can see, this can quickly get out of hand if you are not careful. See the 
following chart to inspect this visually:  
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Grid search 

As you can see, this can quickly get out of hand if you are not careful. See the 
following chart to inspect this visually:  
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Grid search 

Next, we need some way of comparing the models:  

evaluator = ev.BinaryClassificationEvaluator(  

rawPredictionCol='probability',  

labelCol='INFANT_ALIVE_AT_REPORT')  

So, once again, we'll use the BinaryClassificationEvaluator. It is time now to create the logic that will do 
the validation work for us:  

cv = tune.CrossValidator( estimator=logistic, estimatorParamMaps=grid,  

evaluator=evaluator  

)  

The CrossValidator needs the estimator, the estimatorParamMaps, and the evaluator to do its job. The 
model loops through the grid of values, estimates the models, and compares their performance using 
the evaluator. 
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We cannot use the data straight away (as the births_train and births_test still have the BIRTHS_PLACE column not encoded) so 
we create a purely transforming Pipeline:  

pipeline = Pipeline(stages=[encoder ,featuresCreator])  

data_transformer = pipeline.fit(births_train) 

Having done this, we are ready to find the optimal combination of parameters for our model:  

cvModel = cv.fit(data_transformer.transform(births_train))  

The cvModel will return the best model estimated. We can now use it to see if it performed better than our previous model:  

data_train = data_transformer.transform(births_test)  

results = cvModel.transform(data_train)  

print(evaluator.evaluate(results,  

{evaluator.metricName: 'areaUnderROC'}))  

print(evaluator.evaluate(results,  

{evaluator.metricName: 'areaUnderPR'}))  

The preceding code will produce the following result:  
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As you can see, we got a slightly better result. What parameters does the best model have? The answer is a 
little bit convoluted, but here's how you can extract it:  

results = [ ( [ {key.name: paramValue}  

for key, paramValue in zip(  

params.keys(), params.values())  

], metric )  

for params, metric  

in zip( cvModel.getEstimatorParamMaps(),  

cvModel.avgMetrics  

) ] 

sorted(results,  

key=lambda el: el[1],  

reverse=True)[0]
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Train-validation splitting 

The TrainValidationSplit model, to select the best model, performs a random split of the input dataset (the 
training dataset) into two subsets: smaller training and validation subsets. The split is only performed once.  

In this example, we will also use the ChiSqSelector to select only the top five features, thus limiting the 
complexity of our model:  

selector = ft.ChiSqSelector( numTopFeatures=5,  

featuresCol=featuresCreator.getOutputCol(),  

outputCol='selectedFeatures',  

labelCol='INFANT_ALIVE_AT_REPORT' )  

The numTopFeatures specifies the number of features to return. We will put the selector after the 
featuresCreator, so we call the .getOutputCol() on the featuresCreator.  

We covered creating the LogisticRegression and Pipeline earlier, so we will not explain how these are created 
again here:  

logistic = cl.LogisticRegression( labelCol='INFANT_ALIVE_AT_REPORT', featuresCol='selectedFeatures' ) 

pipeline = Pipeline(stages=[encoder, featuresCreator, selector])  

data_transformer = pipeline.fit(births_train) 
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Train-validation splitting 

The TrainValidationSplit object gets created in the same fashion as the CrossValidator model:  

tvs = tune.TrainVal idat ionSpl i t ( est imator=logist ic, est imatorParamMaps=grid, 
evaluator=evaluator ) 

As before, we fit our data to the model, and calculate the results:  

tvsModel = tvs.fit( data_transformer.transform(births_train) ) 

data_train = data_transformer.transform(births_test)  

results = tvsModel.transform(data_train)  

p r in t (eva lua to r.eva lua te ( resu l ts , {eva lua to r.met r i cName: 'a reaUnderROC' } ) ) 
print(evaluator.evaluate(results,  

{evaluator.metricName: 'areaUnderPR'}))  

The preceding code prints out the following output:  
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Feature extraction  

NLP - related feature extractors  

As described earlier, the NGram model takes a list of tokenized text and produces 
pairs (or n-grams) of words.  

In this example, we will take an excerpt from PySpark's documentation and present 
how to clean up the text before passing it to the NGram model. Here's how our 
dataset looks like (abbreviated for brevity): 

Note: Download the code from GitHub repository:  

https://github. com/drabastomek/learningPySpark.  
http://spark.apache.org/docs/latest/ ml-pipeline.html#dataframe.  
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text_data = spark.createDataFrame([  

['''Machine learning can be applied to a wide variety  

of data types, such as vectors, text, images, and  

structured data. This API adopts the DataFrame from  

Spark SQL in order to support a variety of data  

types.'''],  

(...)  

['''Columns in a DataFrame are named. The code examples  

below use names such as "text," "features," and  

"label."''']  

], ['input']) 
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Each row in our single-column DataFrame is just a bunch of text.  

First, we need to tokenize this text. To do so we will use the RegexTokenizer instead 
of just the Tokenizer as we can specify the pattern(s) we want the text to be broken 
at:  

tokenizer = ft.RegexTokenizer(  

inputCol='input',  

outputCol='input_arr',  

pattern='\s+|[,.\"]') 
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The pattern here splits the text on any number of spaces, but also removes commas, 
full stops, backslashes, and quotation marks. A single row from the output of the tokenizer 

looks similar to this:  

As you can see, the RegexTokenizer not only splits the sentences in to words, but 
also normalizes the text so each word is in small-caps.
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However, there is still plenty of junk in our text: words such as be, a, or to normally 
provide us with nothing useful when analyzing a text. Thus, we will remove these so 
called stopwords using nothing else other than the StopWordsRemover(...):  

stopwords = ft.StopWordsRemover(  

inputCol=tokenizer.getOutputCol(),  

outputCol='input_stop')  

The output of the method looks as follows:  
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Now we only have the useful words. So, let's build our NGram model and the Pipeline:  

ngram = ft.NGram(n=2,  

inputCol=stopwords.getOutputCol(),  

outputCol="nGrams")  

pipeline = Pipeline(stages=[tokenizer, stopwords, ngram])  

Now that we have the pipeline, we follow in a very similar fashion as before:  

data_ngram = pipeline \  

.fit(text_data) \  

.transform(text_data)  

data_ngram.select('nGrams').take(1)  

The preceding code produces the following output: 
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Discretizing continuous variables 

Ever so often, we deal with a continuous feature that is highly non-linear and really 
hard to fit in our model with only one coefficient.  

In such a situation, it might be hard to explain the relationship between such a 
feature and the target with just one coefficient. Sometimes, it is useful to band the 
values into discrete buckets.  

First, let's create some fake data with the help of the following code:  

import numpy as np  

x = np.arange(0, 100)  

x = x / 100.0 * np.pi * 4  

y = x * np.sin(x / 1.764) + 20.1234 
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Discretizing continuous variables 

Now, we can create a DataFrame by using the following code:  

schema = typ.StructType([  

typ.StructField('continuous_var',  

typ.DoubleType(),  

False  

)  

])  

data = spark.createDataFrame(  

[[float(e), ] for e in y],  

schema=schema)
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Discretizing continuous variables 
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Discretizing continuous variables 

Next, we will use the QuantileDiscretizer model to split our continuous variable into 
five buckets (the numBuckets parameter):  

discretizer = ft.QuantileDiscretizer(  

numBuckets=5,  

inputCol='continuous_var',  

outputCol='discretized')  

Let's see what we have got:  

data_discretized = discretizer.fit(data).transform(data)  

Our function now looks as follows: 
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Discretizing continuous variables 
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Standardizing continuous variables 

Standardizing continuous variables helps not only in better understanding the 
relationships between the features (as interpreting the coefficients becomes easier), 
but it also aids computational efficiency and protects from running into some 
numerical traps. Here's how you do it with PySpark ML. 

First, we need to create a vector representation of our continuous variable (as it is 
only a single float):  

vectorizer = ft.VectorAssembler(  

inputCols=['continuous_var'],  

outputCol= 'continuous_vec')  
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Standardizing continuous variables 

Next, we build our normalizer and the pipeline. By setting the withMean and withStd 
to True, the method will remove the mean and scale the variance to be of unit length:  

normalizer = ft.StandardScaler(  

inputCol=vectorizer.getOutputCol(),  

outputCol='normalized',  

withMean=True,  

withStd=True  

) 

pipeline = Pipeline(stages=[vectorizer, normalizer])  

data_standardized = pipeline.fit(data).transform(data) 
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Standardizing continuous variables 

Here's what the transformed data would look like:  
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Classification 

So far we have only used the LogisticRegression model from PySpark ML. 

In this section, we will use the RandomForestClassfier to, once again, model the 
chances of survival for an infant.  

Before we can do that, though, we need to cast the label feature to DoubleType:  

import pyspark.sql.functions as func  

births = births.withColumn(  

'INFANT_ALIVE_AT_REPORT',  

func.col('INFANT_ALIVE_AT_REPORT').cast(typ.DoubleType())  

) 

births_train, births_test = births \  

.randomSplit([0.7, 0.3], seed=666) 
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Classification 

Now that we have the label converted to double, we are ready to build our model. We 
progress in a similar fashion as before with the distinction that we will reuse the 
encoder and featureCreator from earlier in the chapter. The numTrees parameter 
specifies how many decision trees should be in our random forest, and the 
maxDepth parameter limits the depth of the trees:  

classifier = cl.RandomForestClassifier( numTrees=5, maxDepth=5,  

labelCol='INFANT_ALIVE_AT_REPORT')  

pipeline = Pipeline( stages=[ encoder, featuresCreator, classifier])  

model = pipeline.fit(births_train)  

test = model.transform(births_test)  
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Classification 

Let's now see how the RandomForestClassifier model performs compared to the 
LogisticRegression:  

evaluator = ev.BinaryClassificationEvaluator(  

labelCol='INFANT_ALIVE_AT_REPORT')  

print(evaluator.evaluate(test,  

{evaluator.metricName: "areaUnderROC"}))  

print(evaluator.evaluate(test,  

{evaluator.metricName: “areaUnderPR"})) 

We get the following results:  
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Classification 

Well, as you can see, the results are better than the logistic regression model by 
roughly 3 percentage points. Let's test how well would a model with one tree do:  
classifier = cl.DecisionTreeClassifier(  

maxDepth=5,  

labelCol='INFANT_ALIVE_AT_REPORT')  

pipeline = Pipeline(stages=[ encoder, featuresCreator, classifier])  

model = pipeline.fit(births_train)  

test = model.transform(births_test)  

evaluator = ev.BinaryClassificationEvaluator( labelCol='INFANT_ALIVE_AT_REPORT')  

print(evaluator.evaluate(test,  

{evaluator.metricName: "areaUnderROC"}))  

print(evaluator.evaluate(test,  

{evaluator.metricName: "areaUnderPR"})) 
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Clustering  

Clustering is another big part of machine learning: quite often, in the real world, we 
do not have the luxury of having the target feature, so we need to revert to an 
unsupervised learning paradigm, where we try to uncover patterns in the data. 

Finding clusters in the births dataset  

In this example, we will use the k-means model to find similarities in the births data:  

import pyspark.ml.clustering as clus  

kmeans = clus.KMeans(k = 5, featuresCol='features')  

pipeline = Pipeline(stages=[ assembler, featuresCreator, kmeans]  

) 

model = pipeline.fit(births_train) 
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Clustering  

Having estimated the model, let's see if we can find some differences between clusters:  

test = model.transform(births_test)  

test.groupBy('prediction').agg({ '*': 'count', 'MOTHER_HEIGHT_IN': 'avg' }).collect()  

The preceding code produces the following output:  

Well, the MOTHER_HEIGHT_IN is significantly different in cluster 2. Going through 
the results (which we will not do here for obvious reasons) would most likely uncover 
more differences and allow us to understand the data better. 
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Topic mining   

Clustering models are not limited to numeric data only. In the field of NLP, problems such as topic 
extraction rely on clustering to detect documents with similar topics. We will go through such an 
example. 

First, let's create our dataset. The data is formed from randomly selected paragraphs found on the 
Internet: three of them deal with topics of nature and national parks, the remaining three cover 
technology.  

text_data = spark.createDataFrame([ 
['''To make a computer do anything, you have to write a 
computer program. To write a computer program, you have 
to tell the computer, step by step, exactly what you want 
it to do. The computer then "executes" the program, 
following each step mechanically, to accomplish the end 
goal. When you are telling the computer what to do, you 
also get to choose how it's going to do it. That's where 
computer algorithms come in. The algorithm is the basic 
technique used to get the job done. Let's follow an 
example to help get an understanding of the algorithm 
concept.'''], 
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(...), 
['''Australia has over 500 national parks. Over 28 
million hectares of land is designated as national 
parkland, accounting for almost four per cent of 
Australia's land areas. In addition, a further six per 
cent of Australia is protected and includes state 
forests, nature parks and conservation reserves.National 
parks are usually large areas of land that are protected 
because they have unspoilt landscapes and a diverse 
number of native plants and animals. This means that 
commercial activities such as farming are prohibited and 
human activity is strictly monitored.'''] 
], ['documents']) 
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First, we will once again use the RegexTokenizer and the StopWordsRemover 
models:  

tokenizer = ft.RegexTokenizer(  

inputCol='documents',  

outputCol='input_arr',  

pattern='\s+|[,.\"]')  

stopwords = ft.StopWordsRemover(  

inputCol=tokenizer.getOutputCol(),  

outputCol='input_stop')
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Next in our pipeline is the CountVectorizer: a model that counts words in a document 
and returns a vector of counts. The length of the vector is equal to the total number 
of distinct words in all the documents, which can be seen in the following snippet:  

stringIndexer = ft.CountVectorizer(  

inputCol=stopwords.getOutputCol(),  

outputCol="input_indexed")  

tokenized = stopwords \  

.transform( tokenizer.transform(text_data)  

) 
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As you can see, there are 262 distinct words in the text, and each document is now 
represented by a count of each word occurrence.  

It's now time to start predicting the topics. For that purpose we will use the LDA 
model—the Latent Dirichlet Allocation model:  

clustering = clus.LDA(k=2,  

optimizer='online',  

featuresCol=stringIndexer.getOutputCol())  

The k parameter specifies how many topics we expect to see, the optimizer 
parameter can be either 'online' or 'em' (the latter standing for the Expectation 
Maximization algorithm).
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stringIndexer.fit(tokenized).transform(tokenized).select('input_indexed').take(2)  

The preceding code will produce the following output:  
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As you can see, there are 262 distinct words in the text, and each document is now 
represented by a count of each word occurrence.  

It's now time to start predicting the topics. For that purpose we will use the LDA 
model—the Latent Dirichlet Allocation model:  

clustering = clus.LDA(k=2, optimizer='online',  

featuresCol=stringIndexer.getOutputCol())  

The k parameter specifies how many topics we expect to see, the optimizer 
parameter can be either 'online' or 'em' (the latter standing for the Expectation 
Maximization algorithm).
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Putting these puzzles together results in, so far, the longest of our pipelines:  

pipeline = ml.Pipeline(stages=[ tokenizer, stopwords, stringIndexer, clustering] )  

Have we properly uncovered the topics? Well, let's see:  

topics = pipeline.fit(text_data) .transform(text_data)  

topics.select('topicDistribution').collect()  

Here's what we get: 
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Regression 

We will try to predict the MOTHER_WEIGHT_GAIN given some of the features 
described here; these are contained in the features listed here:  

features = ['MOTHER_AGE_YEARS','MOTHER_HEIGHT_IN',  

'MOTHER_PRE_WEIGHT','DIABETES_PRE',  

'DIABETES_GEST','HYP_TENS_PRE',  

'HYP_TENS_GEST', 'PREV_BIRTH_PRETERM',  

'CIG_BEFORE','CIG_1_TRI', 'CIG_2_TRI',  

'CIG_3_TRI'  

]
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First, since all the features are numeric, we will collate them together and use the 
ChiSqSelector to select only the top six most important features:  

featuresCreator = ft.VectorAssembler(  

inputCols=[col for col in features[1:]],  

outputCol='features'  

) 

selector = ft.ChiSqSelector(  

numTopFeatures=6, outputCol="selectedFeatures",  

labelCol='MOTHER_WEIGHT_GAIN'  

) 
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In order to predict the weight gain, we will use the gradient boosted trees regressor:  

import pyspark.ml.regression as reg  

regressor = reg.GBTRegressor(  

maxIter=15,  

maxDepth=3,  

labelCol='MOTHER_WEIGHT_GAIN')  

Finally, again, we put it all together into a Pipeline:  

pipeline = Pipeline(stages=[ featuresCreator, selector, regressor])  

weightGain = pipeline.fit(births_train) 
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Having created the weightGain model, let's see if it performs well on our testing data:  

evaluator = ev.RegressionEvaluator(  

predictionCol="prediction",  

labelCol='MOTHER_WEIGHT_GAIN')  

print(evaluator.evaluate(  

weightGain.transform(births_test),  

{evaluator.metricName: 'r2'}))  

We get the following output:  

Sadly, the model is no better than a flip of a coin. It looks that without additional independent features that are 
better correlated with the MOTHER_WEIGHT_GAIN label, we will not be able to explain its variance sufficiently. 
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Summary 

• In This Module, We went into details of how to use PySpark ML: the official main 
machine learning library for PySpark. 

• We explained what the Transformer and Estimator are, and showed their role in 
another concept introduced in the ML library: the Pipeline. Subsequently,  

• we also presented how to use some of the methods to fine-tune the hyper 
parameters of models.  

• Finally, we gave some examples of how to use some of the feature extractors and 
models from the library.  

• In the next Module, we will delve into graph theory and GraphFrames that help in 
tackling machine learning problems better represented as graphs.
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Objectives  
You will learn how to do the following: 

• Why use graphs? 

• Understanding the classic graph problem: the flights dataset 

• Understanding the graph vertices and edges 

• Simple queries 

• Using motif finding 

• Using breadth first search 

• Using PageRank 

• Visualizing flights using D3 

Agenda
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Whether traversing social networks or restaurant recommendations, it is easier to 
understand these data problems within the context of graph structures: vertices, 
edges, and properties: 

GraphFrames
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For example, within the context of social networks, the vertices are the people while 
the edges are the connections between them. 

Within the context of restaurant recommendations, the vertices (for example) involve 
the location, cuisine type, and restaurants while the edges are the connections 
between them (for example, these three restaurants are in Vancouver, BC, but only 
two of them serve ramen).  

While the two graphs are seemingly disconnected, you can in fact create a social 
network + restaurant recommendation graph based on the reviews of friends within a 
social circle, as noted in the following figure: 

GraphFrames
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For example, if Isabella wants to find a great ramen restaurant in Vancouver, 
traversing her friends' reviews, she will most likely choose Kintaro Ramen, as both 
Samantha and Juliette have rated the restaurant favorably: 

GraphFrames
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Another classic graph problem is the analysis of flight data:  

Airports are represented by vertices and flights between those airports are 
represented by edges. 

Also, there are numerous properties associated with these flights, including, but not 
limited to, departure delays, plane type, and carrier:

GraphFrames
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In this module, we will use GraphFrames to quickly and easily analyze flight 
performance data organized in graph structures.  

Because we're using graph structures, we can easily ask many questions that are 
not as intuitive as tabular structures, such as finding structural motifs, airport ranking 
using PageRank, and shortest paths between cities.  

GraphFrames leverages the distribution and expression capabilities of the 
DataFrame API to both simplify your queries and leverage the performance 
optimizations of the Apache Spark SQL engine.  

In addition, with GraphFrames, graph analysis is available in Python, Scala, and 
Java. 

Just as important, you can leverage your existing Apache Spark skills to solve graph 
problems (in addition to machine learning, streaming, and SQL) instead of making a 
paradigm shift to learn a new framework. 

GraphFrames

 172



GraphFrames utilizes the power of Apache Spark DataFrames to support general 
graph processing.  

Specifically, the vertices and edges are represented by DataFrames allowing us to 
store arbitrary data with each vertex and edge.  

While GraphFrames is similar to Spark's GraphX library, there are some key 
differences, including:  

• GraphFrames leverage the performance optimizations and simplicity of the 
DataFrame API.  

• By using the DataFrame API, GraphFrames now have Python, Java, and Scala 
APIs. GraphX is only accessible through Scala; now all its algorithms are 
available in Python and Java.  

• Note, at the time of writing, there was a bug preventing GraphFrames from 
working with Python3.x, hence we will be using Python2.x. 

Introducing GraphFrames 

 173



At the time of writing, GraphFrames is on version 0.3 and available as a Spark 
package (http://spark-packages.org) at  

https://spark-packages.org/package/graphframes/graphframes.  

For more information about GraphFrames, please refer to Introducing GraphFrames 
at  

https://databricks.com/blog/2016/03/03/ introducing-graphframes.html.  

Introducing GraphFrames 
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If you are running your job from a Spark CLI (for example, spark-shell, pyspark, 
spark-sql, spark-submit), you can use the –-packages command, which will extract, 
compile, and execute the necessary code for you to use the GraphFrames package. 

For example, to use the latest GraphFrames package (version 0.3) with Spark 2.0 
and Scala 2.11 with spark-shell, the command is:  

> $SPARK_HOME/bin/spark-shell --packages graphframes:graphframes:0.3.0- spark2.0-s_2.11  

If you are using a notebook service, you may need to install the package first. 

For example, the following section shows the steps to install the GraphFrames library within the free 
Databricks Community Edition (http://databricks.com/try-databricks). 

Installing GraphFrames 
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For this flights sample scenario, we will make use of two sets of data:  

Airline On-Time Performance and Causes of Flight Delays: [http://bit. ly/2ccJPPM] 
This dataset contains scheduled and actual departure and arrival times, and delay 
causes as reported by US air carriers. The data is collected by the Office of Airline 
Information, Bureau of Transportation Statistics (BTS).  

Open Flights: Airports and airline data: [http://openflights.org/data. html] This dataset 
contains the list of US airport data including the IATA code, airport name, and airport 
location.  

Preparing your flights dataset 
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We will create two DataFrames – airports and departureDelays–which will make up 
our vertices and edges of our GraphFrame, respectively.  

We will be creating this flights sample application using Python.  

As we are using a Databricks notebook for our example, we can make use of the /
databricks-datasets/location, which contains numerous sample datasets.  

You can also download the data from:  

departureDelays.csv: http://bit.ly/2ejPr8k  

airportCodes: http://bit.ly/2ePAdKT  

Preparing your flights dataset 

 177



We are creating two variables denoting the file paths for our Airports and Departure 
Delays data, respectively.  

Then we will load these datasets and create the respective Spark DataFrames; note 
for both of these files, we can easily infer the schema:  

# Set File Paths  

tripdelaysFilePath = "/databricks-datasets/flights/departuredelays. csv"  

airportsnaFilePath = "/databricks-datasets/flights/airport-codes-na. txt"  

# Obtain airports dataset  

# Note, this dataset is tab-delimited with a header  

airportsna = spark.read.csv(airportsnaFilePath, header='true', inferSchema='true', 
sep='\t')  

airportsna.createOrReplaceTempView("airports_na")  

Preparing your flights dataset 
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# Obtain departure Delays data  

# Note, this dataset is comma-delimited with a header  

departureDelays = spark.read.csv(tripdelaysFilePath, header='true')  

departureDelays.createOrReplaceTempView("departureDelays")  

departureDelays.cache() 

Once we loaded the departureDelays DataFrame, we also cache it so we can 
include some additional filtering of the data in a performant manner:  

# Available IATA codes from the departuredelays sample dataset  

tripIATA = spark.sql("select distinct iata from (select distinct origin as iata from 
departureDelays union all select distinct destination as iata from departureDelays) 
a")  

tripIATA.createOrReplaceTempView("tripIATA") 

Preparing your flights dataset 
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The preceding query allows us to build a distinct list with origin city IATA codes (for 
example, Seattle = 'SEA', San Francisco = 'SFO', New York JFK = 'JFK', and so on). 
Next, we only include airports that had a trip occur within the departureDelays 
DataFrame:  

# Only include airports with atleast one trip from the  

# `departureDelays` dataset  

airports = spark.sql("select f.IATA, f.City, f.State, f.Country from airports_na f join 
tripIATA t on t.IATA = f.IATA")  

airports.createOrReplaceTempView("airports")  

airports.cache() 

Preparing your flights dataset 

 180



Once we loaded the departureDelays DataFrame, we also cache it so we can include 
some additional filtering of the data in a performant manner:  

# Available IATA codes from the departuredelays sample dataset  

tripIATA = spark.sql("select distinct iata from (select distinct origin as iata from 
departureDelays union all select distinct destination as iata from departureDelays) 
a")  

tripIATA.createOrReplaceTempView("tripIATA") 

Preparing your flights dataset 
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The preceding query allows us to build a distinct list with origin city IATA codes (for 
example, Seattle = 'SEA', San Francisco = 'SFO', New York JFK = 'JFK', and so on). 
Next, we only include airports that had a trip occur within the departureDelays 
DataFrame:  

# Only include airports with atleast one trip from the  

# `departureDelays` dataset  

airports = spark.sql("select f.IATA, f.City, f.State, f.Country from airports_na f join 
tripIATA t on t.IATA = f.IATA")  

airports.createOrReplaceTempView("airports")  

airports.cache() 

Preparing your flights dataset 
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By building the distinct list of origin airport codes, we can build the airports 
DataFrame to contain only the airport codes that exist in the departureDelays 
dataset. The following code snippet generates a new DataFrame (departureDelays_ 
geo) that is comprised of key attributes including date of flight, delays, distance, and 
airport information (origin, destination):  
# Build `departureDelays_geo` DataFrame  

# Obtain key attributes such as Date of flight, delays, distance,  

# and airport information (Origin, Destination)  

departureDelays_geo = spark.sql("select cast(f.date as int) as tripid, 
cast(concat(concat(concat(concat(concat(concat('2014-', concat(concat(substr(cast(f.date as string), 1, 2), '-')), 
substr(cast(f.date as string), 3, 2)), ''), substr(cast(f.date as string), 5, 2)), ':'), substr(cast(f.date as string), 7, 2)), 
':00') as timestamp) as `localdate`, cast(f.delay as int), cast(f.distance as int), f.origin as src, f.destination as dst, 
o.city as city_src, d.city as city_dst, o.state as state_src, d.state as state_dst from departuredelays f join 
airports o on o.iata = f.origin join airports d on d.iata = f.destination")  

# Create Temporary View and cache  

departureDelays_geo.createOrReplaceTempView("departureDelays_geo")  

departureDelays_geo.cache()

Preparing your flights dataset 
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To take a quick peek into this data, you can run the show method as shown here:  

# Review the top 10 rows of the `departureDelays_geo` DataFrame  

departureDelays_geo.show(10)  

Preparing your flights dataset 
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Now that we've imported our data, let's build our graph. To do this, we're going to 
build the structure for our vertices and edges. At the time of writing, GraphFrames 
requires a specific naming convention for vertices and edges:  

The column representing the vertices needs to have the name ofid. In our case, the 
vertices of our flight data are the airports. Therefore, we will need to rename the IATA 
airport code to id in our airports DataFrame.  

The columns representing the edges need to have a source (src) and destination 
(dst). For our flight data, the edges are the flights, therefore the src and dst are the 
origin and destination columns from the departureDelays_geo DataFrame.  

Building the graph 

 185



To simplify the edges for our graph, we will create the tripEdges DataFrame with a 
subset of the columns available within the departureDelays_Geo DataFrame. As 
well, we created a tripVertices DataFrame that simply renames the IATA column to id 
to match the GraphFrame naming convention:  

# Note, ensure you have already installed  

# the GraphFrames spark-package  

from pyspark.sql.functions import *  

from graphframes import * 

# Create Vertices (airports) and Edges (flights)  

tripVertices = airports.withColumnRenamed("IATA", "id").distinct()  

tripEdges = departureDelays_geo.select("tripid", "delay", "src", "dst", "city_dst", 
"state_dst")  

# Cache Vertices and Edges  

tripEdges.cache()  

tripVertices.cache() 

Building the graph 
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Within Databricks, you can query the data using the display command. For example, 
to view the tripEdges DataFrame, the command is as follows:  

display(tripEdges)  

The output is as follows:  

Now that we have the two DataFrames, we can create a GraphFrame using the 
GraphFrame command:  

tripGraph = GraphFrame(tripVertices, tripEdges) 

Building the graph 
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Let's start with a set of simple graph queries to understand flight performance and 
departure delays. 

Determining the number of airports and trips  

For example, to determine the number of airports and trips, you can run the following 
commands:  

print "Airports: %d" % tripGraph.vertices.count()  

print "Trips: %d" % tripGraph.edges.count()  

As you can see from the results, there are 279 airports with 1.36 million trips:  

Executing simple queries 
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Determining the longest delay in this dataset  

To determine the longest delayed flight in the dataset, you can run the following 
query with the result of 1,642 minutes (that's more than 27 hours!):  

tripGraph.edges.groupBy().max("delay")  

# Output  

+----------+  

|max(delay)|  

+----------+  

| 1642|  

+----------+ 

Executing simple queries 
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Determining the number of delayed versus on-time/early flights  

To determine the number of delayed versus on-time (or early) flights, you can run the 
following queries:  

print "On-time / Early Flights: %d" % tripGraph.edges.filter("delay <= 0").count()  

print "Delayed Flights: %d" % tripGraph.edges.filter("delay > 0"). count()

Executing simple queries 
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Determining the number of delayed versus on-time/early flights  

To determine the number of delayed versus on-time (or early) flights, you can run the 
following queries:  

print "On-time / Early Flights: %d" % tripGraph.edges.filter("delay <= 0").count()  

print "Delayed Flights: %d" % tripGraph.edges.filter("delay > 0"). count() 

with the results nothing that almost 43% of the flights were delayed! 

Executing simple queries 
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What flights departing Seattle are most likely to have significant delays?  
Digging further in this data, let's find out the top five destinations for flights departing from 
Seattle that are most likely to have significant delays. This can be achieved through the following 
query:  

tripGraph.edges.filter("src = 'SEA' and delay > 0").groupBy("src", "dst")\  

.avg(“delay").sort(desc("avg(delay)")).show(5)  

As you can see in the following results: Philadelphia (PHL), Colorado Springs (COS), Fresno 
(FAT), Long Beach (LGB), and Washington D.C (IAD) are the top five cities with flights delayed 
originating from Seattle:

Executing simple queries 
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What states tend to have significant delays departing from Seattle?  
Let's find which states have the longest cumulative delays (with individual delays > 
100 minutes) originating from Seattle. This time we will use the display command to 
review the data:  

# States with the longest cumulative delays (with individual  

# delays > 100 minutes) (origin: Seattle)  

display(tripGraph.edges.filter("src = 'SEA' and delay > 100"))  

Executing simple queries 
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Using the Databricks display command, we can also quickly change from this table 
view to a map view of the data. As can be seen in the following figure, the state with 
the most cumulative delays originating from Seattle (in this dataset) is California: 

Executing simple queries 
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Within the context of graph theory, the degrees around a vertex are the number of 
edges around the vertex. In our flights example, the degrees are then the total 
number of edges (that is, flights) to the vertex (that is, airports). Therefore, if we were 
to obtain the top 20 vertex degrees (in descending order) from our graph, then we 
would be asking for the top 20 busiest airports (most flights in and out) from our 
graph. This can be quickly determined using the following query:  

display(tripGraph.degrees.sort(desc("degree")).limit(20))  

Because we're using the display command, we can quickly view a bar graph of this 
data: 

Understanding vertex degrees 
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Diving into more details, here are the top 20 inDegrees (that is, incoming flights):  

display(tripGraph.inDegrees.sort(desc("inDegree")).limit(20))

Understanding vertex degrees 
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While here are the top 20 outDegrees (that is, outgoing flights):  

display(tripGraph.outDegrees.sort(desc("outDegree")).limit(20))  

Interestingly, while the top 10 airports (Atlanta/ATL to Charlotte/CLT) are ranked the 
same for incoming and outgoing flights, the ranks of the next 10 airports change (for 
example, Seattle/SEA is 17th for incoming flights, but 18th for outgoing). 

Understanding vertex degrees 
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Determining the top transfer airports  
An extension of understanding vertex degrees for airports is to determine the top 
transfer airports. Many airports are used as transfer points instead of being the final 
destination. An easy way to calculate this is by calculating the ratio of inDegrees (the 
number of flights to the airport) and / outDegrees (the number of flights leaving the 
airport). Values close to 1 may indicate many transfers, whereas values <1 indicate 
many outgoing flights and values >1 indicate many incoming flights.  

Note that this is a simple calculation that does not consider timing or scheduling of 
flights, just the overall aggregate number within the dataset:  

# Calculate the inDeg (flights into the airport) and  

# outDeg (flights leaving the airport)  

inDeg = tripGraph.inDegrees  

outDeg = tripGraph.outDegrees 

Understanding vertex degrees 
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# Calculate the degreeRatio (inDeg/outDeg)  

degreeRatio = inDeg.join(outDeg, inDeg.id == outDeg.id) \  

.drop(outDeg.id) \  

.selectExpr("id", "double(inDegree)/double(outDegree) as degreeRatio") \  

.cache()  

# Join back to the 'airports' DataFrame  

# (instead of registering temp table as above) 

transferAirports = degreeRatio.join(airports, degreeRatio.id == airports.IATA) \  

.selectExpr("id", "city", "degreeRatio") \  

.filter("degreeRatio between 0.9 and 1.1")  

Understanding vertex degrees 
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# List out the top 10 transfer city airports  

display(transferAirports.orderBy("degreeRatio").limit(10))  

The output of this query is a bar chart of the top 10 transfer city airports (that is, hub airports):  

This makes sense since these airports are major hubs for national airlines (for example, Delta uses 
Minneapolis and Salt Lake City as its hub, Frontier uses Denver, American uses Dallas and Phoenix, 
United uses Houston, Chicago, and San Francisco, and Hawaiian Airlines uses Kahului and Honolulu 
as its hubs). 

Understanding vertex degrees 
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To easily understand the complex relationship of city airports and the flights between 
each other, we can use motifs to find patterns of airports (for example, vertices) 
connected by flights (that is, edges). The result is a DataFrame in which the column 
names are given by the motif keys. Note that motif finding is one of the new graph 
algorithms supported as part of GraphFrames.  

For example, let's determine the delays that are due to San Francisco International 
Airport (SFO):  

# Generate motifs  

motifs = tripGraphPrime.find("(a)-[ab]->(b); (b)-[bc]->(c)")\  

.filter("(b.id = 'SFO') and (ab.delay > 500 or bc.delay > 500) and bc.tripid > ab.tripid 
and bc.tripid < ab.tripid + 10000”) 

# Display motifs  

display(motifs)  

Breaking down the preceding query, the (x) represents the vertex (that is, airport) 
while the [xy] represents the edge (that is, flights between airports). 

Understanding motifs 
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Therefore, to determine the delays that are due to SFO, use the following:  

The vertex (b) represents the airport in the middle (that is, SFO)  

The vertex(a)represents the origin airport (within the dataset)  

The vertex (c) represents the destination airport (within the dataset)  

The edge [ab] represents the flight between (a) (that is, origin) and (b) (that is, SFO)  

The edge [bc] represents the flight between (b) (that is, SFO) and (c) (that is, 
destination)  

Within the filter statement, we put in some rudimentary constraints (note that this is 
an over simplistic representation of flight paths):  

b.id = 'SFO' denotes that the middle vertex (b) is limited to just SFO airport  

(ab.delay > 500 or bc.delay > 500) denotes that we are limited to flights that have 
delays greater than 500 minutes 

Understanding motifs 
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(bc.tripid > ab.tripid and bc.tripid < ab.tripid + 10000) denotes that the (ab) flight must 
be before the (bc) trip and within the same day. The tripid was derived from the date 
time, thus explaining why it could be simplified this way  

The output of this query is noted in the following figure:

Understanding motifs 
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Because GraphFrames is built on top of GraphX, there are several algorithms that 
we can immediately leverage.  

PageRank was popularized by the Google Search Engine and created by Larry 
Page.  

To quote Wikipedia:  

"PageRank works by counting the number and quality of links to a page to determine 
a rough estimate of how important the website is. The underlying assumption is that 
more important websites are likely to receive more links from other websites."  

While the preceding example refers to web pages, this concept readily applies to any 
graph structure whether it is created from web pages, bike stations, or airports.  

Yet the interface via GraphFrames is as simple as calling a method. 

GraphFrames.PageRank will return the PageRank results as a new column 
appended to the vertices DataFrame to simplify our downstream analysis.

Determining airport ranking 
using PageRank 
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As there are many flights and connections through the various airports included in 
this dataset, we can use the PageRank algorithm to have Spark traverse the graph 
iteratively to compute a rough estimate of how important each airport is:  

# Determining Airport ranking of importance using 'pageRank'  

ranks = tripGraph.pageRank(resetProbability=0.15, maxIter=5)  

# Display the pageRank output  

display(ranks.vertices.orderBy(ranks.vertices.pagerank.desc()). limit(20))  

Note that resetProbability = 0.15 represents the probability of resetting to a random 
vertex (this is the default value) while maxIter = 5 is a set number of iterations. 

For more information on PageRank parameters, please refer to Wikipedia > Page 
Rank at https://en.wikipedia.org/wiki/PageRank.  

Determining airport ranking 
using PageRank 
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The results of the PageRank are noted in the following bar graph:  

In terms of airport ranking, the PageRank algorithm has determined that ATL (Hartsfield-Jackson 
Atlanta International Airport) is the most important airport in the United States. 

This observation makes sense as ATL is not only the busiest airport in the United States (http://
bit.ly/2eTGHs4), but it is also the busiest airport in the world (2000-2015) (http://bit.ly/2eTGDsy).

Determining airport ranking 
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Determining the most popular non-stop flights  
Expanding upon our tripGraph GraphFrame, the following query will allow us to find 
the most popular non-stop flights in the US (for this dataset):  

# Determine the most popular non-stop flights  

import pyspark.sql.functions as func  

topTrips = tripGraph \  

.edges \  

.groupBy("src", "dst") \  

.agg(func.count("delay").alias("trips"))  

# Show the top 20 most popular flights (single city hops)  

display(topTrips.orderBy(topTrips.trips.desc()).limit(20)) 

Determining airport ranking 
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Note, while we are using the delay column, we're just actually doing a count of the 
number of trips. Here's the output:  

As can be observed from this query, the two most frequent non-stop flights are between LAX (Los Angeles) 
and SFO (San Francisco). The fact that these flights are so frequent indicates their importance in the airline 
market. As noted in the New York Times article from April 4, 2016, Alaska Air Sees Virgin America as Key to 
West Coast (http://nyti.ms/2ea1uZR), acquiring slots at these two airports was one of the reasons why Alaska 
Airlines purchased Virgin Airlines. Graphs are not just fun but also contain potentially powerful business 
insight!

Determining airport ranking 
using PageRank 
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The Breadth-first search (BFS) is a new algorithm as part of GraphFrames that 
finds the shortest path from one set of vertices to another.  

In this section, we will use BFS to traverse our tripGraph to quickly find the desired 
vertices (that is, airports) and edges (that is, flights). Let's try to find the shortest 
number of connections between cities based on the dataset. Note that these 
examples do not consider time or distance, just hops between cities. For example, to 
find the number of direct flights between Seattle and San Francisco, you can run the 
following query:  

# Obtain list of direct flights between SEA and SFO  

filteredPaths = tripGraph.bfs(  

fromExpr = "id = 'SEA'",  

toExpr = "id = 'SFO'",  

maxPathLength = 1)  

# display list of direct flights  

display(filteredPaths) 

Using Breadth-First Search 
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fromExpr and toExpr are the expressions indicating the origin and destination 
airports (that is, SEA and SFO, respectively). The maxPathLength = 1 indicates that 
we only want one edge between the two vertices, that is, a non-stop flight between 
Seattle and San Francisco. As noted in the following results, there are many direct 
flights between Seattle and San Francisco:  

Using Breadth-First Search 
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But how about if we want to determine the number of direct flights between San 
Francisco and Buffalo? Running the following query will note that there are no 
results, that is, no direct flights between the two cities:  

# Obtain list of direct flights between SFO and BUF  

filteredPaths = tripGraph.bfs(  

fromExpr = "id = 'SFO'",  

toExpr = "id = 'BUF'",  

maxPathLength = 1)  

# display list of direct flights  

display(filteredPaths)

Using Breadth-First Search 
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Once we modify the preceding query to maxPathLength = 2, that is, one layover, 
then you will see a lot more flight options:  

# display list of one-stop flights between SFO and BUF  

filteredPaths = tripGraph.bfs(  

fromExpr = "id = 'SFO'",  

toExpr = "id = 'BUF'",  

maxPathLength = 2)  

# display list of flights  

display(filteredPaths) 

Using Breadth-First Search 
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But now that I have my list of airports, how can I determine which layover airports are 
more popular between SFO and BUF? To determine this, you can now run the following 
query:  

# Display most popular layover cities by descending count  

display(filteredPaths.groupBy("v1.id", "v1.City").count(). orderBy(desc("count")).limit(10))  

The output is shown in the following bar chart: 

Using Breadth-First Search 
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To get a powerful and fun visualization of the flight paths and connections in this 
dataset, we can leverage the Airports D3 visualization (https://mbostock.github. io/d3/
talk/20111116/airports.html) within our Databricks notebook. By connecting our 
GraphFrames, DataFrames, and D3 visualizations, we can visualize the scope of all 
the flight connections as noted for all on-time or early departing flights within this 
dataset.  

The blue circles represent the vertices (that is, airports) where the size of the circle 
represents the number of edges (that is, flights) in and out of those airports. The 
black lines are the edges themselves (that is, flights) and their respective 
connections to the other vertices (that is, airports). Note for any edges that go 
offscreen, they are representing vertices (that is, airports) in the states of Hawaii and 
Alaska. 

Visualizing flights using D3 
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For this to work, we first create a scala package called d3a that is embedded in our 
notebook (you can download it from here: http://bit.ly/2kPkXkc). Because we're using 
Databricks notebooks, we can make Scala calls within our PySpark notebook:  

%scala  

// On-time and Early Arrivals  

import d3a._  

graphs.force(  

height = 800,  

width = 1200,  

clicks = sql("""select src, dst as dest, count(1) as count from departureDelays_geo where 
delay <= 0 group by src, dst""").as[Edge])  

Visualizing flights using D3 
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The results of the preceding query for on-time and early arrivals flights are visualized in 
the following screenshot: 

Visualizing flights using D3 
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You can hover over the airports (blue circle, vertex) in the airports D3 visualization where 
the lines are the edges (flights). The preceding visualization is a snapshot when hovering 
over Seattle (SEA) airport; while the following visualization is a snapshot when hovering 
over Los Angeles (LAX) airport: 

Visualizing flights using D3 
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As you can see in this module, you can easily perform a lot of powerful data analysis by 
executing queries against graph structures. With GraphFrames, you can leverage the 
power, simplicity, and performance of the DataFrame API against your graph problems.  

For more information on GraphFrames, please refer to the following resources:  

Introducing GraphFrames (http://bit.ly/2dBPhKn)  

On-Time Flight Performance with GraphFrames for Apache Spark (http://bit.ly/2c804ZD)  

On-Time Flight Performance with GraphFrames for Apache Spark (Spark 2.0) Notebook 
(http://bit.ly/2kPkXkc)  

GraphFrames Overview (http://graphframes.github.io/)  

Pygraphframes documentation (http://graphframes.github.io/api/ python/graphframes.html)  

GraphX Programming Guide (http://spark.apache.org/docs/latest/ graphx-programming-
guide.html)  

Summary 
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