
 IT Training & Consultancy

Welcome to
GKTCS

Innovations Pvt Ltd

 1

18+ Years of Experience (MCA, PGDCS, BSc. [Electronics] ,
CCNA)

 Founder,GKTCS Innovations Pvt. Ltd. Pune [Nov 2009 – Till date]
 500 + Corporate Training for HP, IBM, Cisco,Wipro, Samsung etc.
 Skills

❑ Hadoop, Pig, Hive, Sqoop, Oozie, Spark, PySpark
❑Ruby, Rails,Cucumber, Calabash, Capybara, Rspec, Appium
❑Python, Django, Data Science, Machine Learning, Jython, Selenium
❑UNIX /Linux Shell Scripting, Perl, PHP, CakePHP, System Programming
❑ CA Siteminder, Autosys, SSO, Service Desk, Service Delivery

 Author of 4 Books
 National Paper Presentation Awards at BARC Mumbai

Director, GKTCS Innovations Pvt. Ltd, Pune.

 
Surendra
Panpaliya

 2

Day 1
Module 1
Introduction to Spark
What is Apache Spark?
Spark Jobs and APIs
Spark 2.0 architecture
Installation and Configuration

Module 2
Resilient Distributed Datasets
Internal workings of an RDD
Creating RDDs
Global versus local scope
Transformations
Actions
Hands on Session on RDD and Spark
Assignments 1
Best Practices 1

Agenda

 3

Day 2
Module 3
DataFrames
Python to RDD communications
Catalyst Optimiser refresh
Speeding up PySpark with DataFrames
Creating DataFrames
Simple DataFrame queries
Interoperating with RDDs
Querying with the DataFrame API
Hands On Session on Pandas DataFrame and PySpark
Assignments 2

Module 4
Prepare Data for Modelling
Checking for duplicates, missing observations, and outliers
Getting familiar with your data Visualisation
Hands on Session Data Modelling
Assignments 3

Agenda

 4

Day 3
Module 5
Introducing MLlib
Overview of the package
Loading and transforming the data
Getting to know your data
Creating the final dataset
Predicting infant survival
Hands on Session using PySpark MLib
Assignments 4

Module 6
Introducing the ML Package
Overview of the package
Predicting the chances of infant survival with ML
Parameter hyper-tuning
Other features of PySpark ML in action
Implementation of ML Algorithm
• Random Forest
• Regression
• K-means
Assignments 5

Agenda

 5

Day 3
Module 7
GraphFrames
Introducing GraphFrames
Installing GraphFrames
Preparing your flights dataset
Building the graph
Executing simple queries
Understanding vertex degrees
Determining the top transfer airports
Understanding motifs
Determining airport ranking using PageRank
Determining the most popular non-stop flights
Using Breadth-First Search
Visualizing flights using D3
Assignment 6
Conclusion and Summary

Agenda

 6

08/29/15 7

SPARK Pyspark

Surendra R. Panpaliya
M:9975072320

surendra@gktcs.com
www.gktcs.com

mailto:surendra@gktcs.com

Module 5 

Introducing MLlib

08/29/15 8

08/29/15 9

Introducing MLlib
MLlib stands for Machine Learning Library.

Even though MLlib is now in a maintenance mode, that is, it is not actively being
developed (and will most likely be deprecated later), it is warranted that we cover at
least some of the features of the library.

In addition, MLlib is currently the only library that supports training models for
streaming.

Note:

Starting with Spark 2.0, ML is the main machine learning library that operates on
DataFrames instead of RDDs as is the case for MLlib.

The documentation for MLlib can be found here:

http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html.

08/29/15 10

Introducing MLlib

Objectives

You will learn how to do the following:

• Prepare the data for modeling with MLlib

• Perform statistical testing

• Predict survival chances of infants using logistic regression

• Select the most predictable features and train a random forest model

08/29/15 11

Overview of the package

At the high level, MLlib exposes three core machine learning functionalities:

• Data preparation: Feature extraction, transformation, selection, hashing
of categorical features, and some natural language processing methods

• Machine learning algorithms: Some popular and advanced regression,
classification, and clustering algorithms are implemented

• Utilities: Statistical methods such as descriptive statistics, chi-square
testing, linear algebra (sparse and dense matrices and vectors), and
model evaluation methods.

08/29/15 12

Overview of the package

The main concepts in Spark ML are:

• DataFrame: The ML API uses DataFrames from Spark SQL as an ML dataset.
• Transformer: A Transformer is an algorithm which transforms one DataFrame

into another DataFrame. For example, turning a DataFrame with features into a
DataFrame with predictions.

• Estimator: An Estimator is an algorithm which can be fit on a DataFrame to
produce a Transformer. For example, training/tuning on a DataFrame and
producing a model.

• Pipeline: A Pipeline chains multiple Transformers and Estimators together to
specify a ML workflow.

• ParamMaps: Parameters to choose from, sometimes called a “parameter grid”
to search over.

• Evaluator: Metric to measure how well a fitted Model does on held-out test data.
• CrossValidator: Identifies the best ParamMap and re-fits the Estimator using the

best ParamMap and the entire dataset.

08/29/15 13

Overview of the package

08/29/15 14

Overview of the package

08/29/15 15

Overview of the package

08/29/15 16

Overview of the package

08/29/15 17

Overview of the package

08/29/15 18

Overview of the package

PySpark Mllib
http://spark.apache.org/docs/2.0.0/api/python/pyspark.mllib.html

PySpark ml

http://spark.apache.org/docs/2.0.0/api/python/pyspark.ml.html

PySpark streaming

http://spark.apache.org/docs/2.0.0/api/python/pyspark.streaming.html

PySpark sql

http://spark.apache.org/docs/2.0.0/api/python/pyspark.sql.html

http://spark.apache.org/docs/2.0.0/api/python/pyspark.ml.html
http://spark.apache.org/docs/2.0.0/api/python/pyspark.streaming.html

08/29/15 19

Overview of the package

http://spark.apache.org/docs/2.0.0/api/python/pyspark

http://spark.apache.org/docs/2.0.0/api/python/pyspark

08/29/15 20

Overview of the package

pyspark.ml package
▪ ML Pipeline APIs
▪ Transformer
▪ Estimator
▪ Model
▪ Pipeline
▪ PipelineModel

▪ pyspark.ml.param module
▪ Param
▪ Params
▪ TypeConverters

08/29/15 21

Overview of the package

pyspark.ml.feature module
▪ Binarizer
▪ Bucketizer
▪ ChiSqSelectorE
▪ ChiSqSelectorModelE
▪ CountVectorizer
▪ CountVectorizerModel
▪ DCT
▪ ElementwiseProduct
▪ HashingTF
▪ IDF
▪ IDFModel
▪ IndexToString
▪ MaxAbsScalerE
▪ MaxAbsScalerModelE
▪ MinMaxScaler
▪ MinMaxScalerModel

08/29/15 22

Overview of the package

pyspark.ml.feature module
▪ NGram
▪ Normalizer
▪ OneHotEncoder
▪ PCA
▪ PCAModel
▪ PolynomialExpansion
▪ QuantileDiscretizerE
▪ RegexTokenizer
▪ RFormulaE
▪ RFormulaModelE
▪ SQLTransformer
▪ StandardScaler
▪ StandardScalerModel
▪ StopWordsRemover
▪ StringIndexer
▪ StringIndexerModel
▪ Tokenizer
▪ VectorAssembler
▪ VectorIndexer
▪ VectorIndexerModel
▪ VectorSlicer
▪ Word2Vec
▪ Word2VecModel

08/29/15 23

Overview of the package

pyspark.ml.classification module
▪ LogisticRegression
▪ LogisticRegressionModel
▪ LogisticRegressionSummaryE
▪ LogisticRegressionTrainingSummaryE
▪ BinaryLogisticRegressionSummaryE
▪ BinaryLogisticRegressionTrainingSummaryE
▪ DecisionTreeClassifier
▪ DecisionTreeClassificationModel
▪ GBTClassifier
▪ GBTClassificationModel
▪ RandomForestClassifier
▪ RandomForestClassificationModel
▪ NaiveBayes
▪ NaiveBayesModel
▪ MultilayerPerceptronClassifierE
▪ MultilayerPerceptronClassificationModelE
▪ OneVsRestE
▪ OneVsRestModelE

08/29/15 24

Overview of the package

pyspark.ml.clustering module
▪ BisectingKMeansE
▪ BisectingKMeansModelE
▪ KMeans
▪ KMeansModel
▪ GaussianMixtureE
▪ GaussianMixtureModelE
▪ LDAE
▪ LDAModelE
▪ LocalLDAModelE
▪ DistributedLDAModelE

08/29/15 25

Overview of the package

▪ pyspark.ml.linalg module
▪ Vector
▪ DenseVector
▪ SparseVector
▪ Vectors
▪ Matrix
▪ DenseMatrix
▪ SparseMatrix
▪ Matrices

▪ pyspark.ml.recommendation module
▪ ALS
▪ ALSModel

08/29/15 26

Overview of the package

pyspark.ml.regression module
▪ AFTSurvivalRegressionE
▪ AFTSurvivalRegressionModelE
▪ DecisionTreeRegressor
▪ DecisionTreeRegressionModel
▪ GBTRegressor
▪ GBTRegressionModel
▪ GeneralizedLinearRegressionE
▪ GeneralizedLinearRegressionModelE
▪ GeneralizedLinearRegressionSummaryE
▪ GeneralizedLinearRegressionTrainingSummaryE
▪ IsotonicRegression
▪ IsotonicRegressionModel
▪ LinearRegression
▪ LinearRegressionModel
▪ LinearRegressionSummaryE
▪ LinearRegressionTrainingSummaryE
▪ RandomForestRegressor
▪ RandomForestRegressionModel

08/29/15 27

Overview of the package

▪ pyspark.ml.tuning module
▪ ParamGridBuilder
▪ CrossValidator
▪ CrossValidatorModel
▪ TrainValidationSplitE
▪ TrainValidationSplitModelE

▪ pyspark.ml.evaluation module
▪ Evaluator
▪ BinaryClassificationEvaluatorE
▪ RegressionEvaluatorE
▪ MulticlassClassificationEvaluatorE

08/29/15 28

Overview of the package

• pyspark.streaming module
▪ Module contents

▪ StreamingContext
▪ DStream
▪ StreamingListener

▪ Java
▪ pyspark.streaming.kafka module

▪ Broker
▪ KafkaMessageAndMetadata
▪ KafkaUtils
▪ OffsetRange
▪ TopicAndPartition
▪ utf8_decoder

▪ pyspark.streaming.kinesis module
▪ KinesisUtils
▪ InitialPositionInStream
▪ utf8_decoder

▪ pyspark.streaming.flume.module
▪ FlumeUtils
▪ utf8_decoder

08/29/15 29

Overview of the package

pyspark.mllib package
▪ pyspark.mllib.classification module
▪ LogisticRegressionModel
▪ LogisticRegressionWithSGDD
▪ LogisticRegressionWithLBFGS
▪ SVMModel
▪ SVMWithSGD
▪ NaiveBayesModel
▪ NaiveBayes
▪ StreamingLogisticRegressionWithSGD

08/29/15 30

Overview of the package

pyspark.mllib.clustering module
▪ BisectingKMeansModel
▪ BisectingKMeans
▪ KMeansModel
▪ KMeans
▪ GaussianMixtureModel
▪ GaussianMixture
▪ PowerIterationClusteringModel
▪ PowerIterationClustering

▪ Assignment
▪ StreamingKMeans
▪ StreamingKMeansModel
▪ LDA
▪ LDAModel

08/29/15 31

Overview of the package

▪ pyspark.mllib.evaluation module
▪ BinaryClassificationMetrics
▪ RegressionMetrics
▪ MulticlassMetrics
▪ RankingMetrics

▪ pyspark.mllib.feature module
▪ Normalizer
▪ StandardScalerModel
▪ StandardScaler
▪ HashingTF
▪ IDFModel
▪ IDF
▪ Word2Vec
▪ Word2VecModel
▪ ChiSqSelector
▪ ChiSqSelectorModel
▪ ElementwiseProduct

08/29/15 32

Overview of the package

▪ pyspark.mllib.fpm module
▪ FPGrowth

▪ FreqItemset
▪ FPGrowthModel
▪ PrefixSpan

▪ FreqSequence
▪ PrefixSpanModel

▪ pyspark.mllib.linalg module
▪ Vector
▪ DenseVector
▪ SparseVector
▪ Vectors
▪ Matrix
▪ DenseMatrix
▪ SparseMatrix
▪ Matrices
▪ QRDecomposition

08/29/15 33

Overview of the package

▪ pyspark.mllib.linalg.distributed module
▪ DistributedMatrix
▪ RowMatrix
▪ IndexedRow
▪ IndexedRowMatrix
▪ MatrixEntry
▪ CoordinateMatrix
▪ BlockMatrix

▪ pyspark.mllib.random module
▪ RandomRDDs

08/29/15 34

Overview of the package

▪ pyspark.mllib.recommendation module
▪ MatrixFactorizationModel
▪ ALS
▪ Rating

▪ pyspark.mllib.regression module
▪ LabeledPoint
▪ LinearModel
▪ LinearRegressionModel
▪ LinearRegressionWithSGDD
▪ RidgeRegressionModel
▪ RidgeRegressionWithSGDD
▪ LassoModel
▪ LassoWithSGDD
▪ IsotonicRegressionModel
▪ IsotonicRegression
▪ StreamingLinearAlgorithm
▪ StreamingLinearRegressionWithSGD

08/29/15 35

Overview of the package

▪ pyspark.mllib.stat module
▪ Statistics
▪ MultivariateStatisticalSummary
▪ ChiSqTestResult
▪ MultivariateGaussian
▪ KernelDensity

▪ pyspark.mllib.tree module
▪ DecisionTreeModel
▪ DecisionTree
▪ RandomForestModel
▪ RandomForest
▪ GradientBoostedTreesModel
▪ GradientBoostedTrees

08/29/15 36

Overview of the package

▪ pyspark.mllib.util module
▪ JavaLoader
▪ JavaSaveable
▪ LinearDataGenerator
▪ Loader
▪ MLUtils
▪ Saveable

08/29/15 37

Overview of the package

We will build two classification models:

a linear regression and

a random forest.

We will use a portion of the US 2014 and 2015 birth data we downloaded
from http://www.cdc.gov/nchs/data_access/vitalstatsonline.htm;
from the total of 300 variables we selected 85 features that we will use to
build our models.

 Also, out of the total of almost 7.99 million records, we selected a balanced
sample of 45,429 records: 22,080 records where infants were reported dead
and 23,349 records with infants alive.

The dataset we will use in this module can be downloaded from

http:// www.tomdrabas.com/data/LearningPySpark/births_train. csv.gz.

08/29/15 38

Loading and transforming the data

Even though MLlib is designed with RDDs and DStreams in focus, for ease
of transforming the data we will read the data and convert it to a
DataFrame.

The DStreams are the basic data abstraction for Spark Streaming (see http://bit.ly/2jIDT2A)

We first specify the schema of our dataset.

Note that here (for brevity), we only present a handful of features. You should always
check our GitHub account for this book for the latest version of the code: https://
github.com/drabastomek/ learningPySpark.

08/29/15 39

Loading and transforming the data

Here's the code:

import pyspark.sql.types as typ

labels = [

('INFANT_ALIVE_AT_REPORT', typ.StringType()),

('BIRTH_YEAR', typ.IntegerType()),

('BIRTH_MONTH', typ.IntegerType()),

('BIRTH_PLACE', typ.StringType()),

('MOTHER_AGE_YEARS', typ.IntegerType()),

('MOTHER_RACE_6CODE', typ.StringType()),

('MOTHER_EDUCATION', typ.StringType()),

('FATHER_COMBINED_AGE', typ.IntegerType()),

('FATHER_EDUCATION', typ.StringType()),

('MONTH_PRECARE_RECODE', typ.StringType()),

...

('INFANT_BREASTFED', typ.StringType())

]

08/29/15 40

Loading and transforming the data

...

('INFANT_BREASTFED', typ.StringType())

]

schema = typ.StructType([

typ.StructField(e[0], e[1], False) for e in labels

])

Next, we load the data. The .read.csv(...) method can read either uncompressed or (as in our case)
GZipped comma-separated values. The header parameter set to True indicates that the first row
contains the header, and we use the schema to specify the correct data types:

births = spark.read.csv('births_train.csv.gz',

header=True,

schema=schema)

08/29/15 41

Loading and transforming the data

There are plenty of features in our dataset that are strings. These are mostly
categorical variables that we need to somehow convert to a numeric form.

You can glimpse over the original file schema specification here: ftp://ftp.cdc.gov/pub/
Health_Statistics/NCHS/Dataset_ Documentation/DVS/natality/UserGuide2015.pdf.

We will first specify our recode dictionary:

recode_dictionary = {

'YNU': {

'Y': 1,

'N': 0,

'U': 0

}

}

08/29/15 42

Loading and transforming the data

Our goal in this Module is to predict whether the 'INFANT_ALIVE_AT_REPORT' is either 1 or 0. Thus,
we will drop all of the features that relate to the infant and will try to predict the infant's chances of
surviving only based on the features related to its mother, father, and the place of birth

selected_features = [

' I N F A N T _ A L I V E _ AT _ R E P O R T ' , ' B I R T H _ P L A C E ' , ' M O T H E R _ A G E _ Y E A R S ' ,
'FATHER_COMBINED_AGE',

'C IG_BEFORE' , 'C IG_1_TRI ' , 'C IG_2_TRI ' , 'C IG_3_TRI ' , 'MOTHER_HEIGHT_IN' ,
'MOTHER_PRE_WEIGHT',

'MOTHER_DELIVERY_WEIGHT', ’MOTHER_WEIGHT_GAIN', 'DIABETES_PRE', 'DIABETES_GEST',

'HYP_TENS_PRE', 'HYP_TENS_GEST', 'PREV_BIRTH_PRETERM'

]

births_trimmed = births.select(selected_features)

08/29/15 43

Loading and transforming the data

In our dataset, there are plenty of features with Yes/No/Unknown values; we will only
code Yes to 1; everything else will be set to 0.

There is also a small problem with how the number of cigarettes smoked by the
mother was coded:

as 0 means the mother smoked no cigarettes before or during the pregnancy,

between 1-97 states the actual number of cigarette smoked,

98 indicates either 98 or more,

whereas 99 identifies the unknown;

we will assume the unknown is 0 and recode accordingly.

08/29/15 44

Loading and transforming the data

So next we will specify our recoding methods:

import pyspark.sql.functions as func

def recode(col, key):

return recode_dictionary[key][col]

def correct_cig(feat):

return func \

.when(func.col(feat) != 99, func.col(feat))\

.otherwise(0)

rec_integer = func.udf(recode, typ.IntegerType())

08/29/15 45

Loading and transforming the data

The recode method looks up the correct key from the recode_dictionary (given the
key) and returns the corrected value.

The correct_cig method checks when the value of the feature feat is not equal to 99
and (for that situation) returns the value of the feature; if the value is equal to 99, we
get 0 otherwise.

We cannot use the recode function directly on a DataFrame; it needs to be converted
to a UDF that Spark will understand.

The rec_integer is such a function: by passing our specified recode function and
specifying the return value data type, we can use it then to encode our Yes/No/
Unknown features.

08/29/15 46

Loading and transforming the data

So, let's get to it. First, we'll correct the features related to the number of cigarettes
smoked:

births_transformed = births_trimmed \

.withColumn('CIG_BEFORE', correct_cig('CIG_BEFORE'))\

.withColumn('CIG_1_TRI', correct_cig('CIG_1_TRI'))\

.withColumn('CIG_2_TRI', correct_cig('CIG_2_TRI'))\

.withColumn('CIG_3_TRI', correct_cig('CIG_3_TRI'))

The .withColumn(...) method takes the name of the column as its first parameter and
the transformation as the second one.

In the previous cases, we do not create new columns, but reuse the same ones
instead.

08/29/15 47

Loading and transforming the data

Now we will focus on correcting the Yes/No/Unknown features. First, we will figure
out which these are with the following snippet:

cols = [(col.name, col.dataType) for col in births_trimmed.schema]

YNU_cols = []

for i, s in enumerate(cols):

if s[1] == typ.StringType():

dis = births.select(s[0]).distinct().rdd.map(lambda row: row[0]) .collect()

if 'Y' in dis:

YNU_cols.append(s[0])

08/29/15 48

Loading and transforming the data

First, we created a list of tuples (cols) that hold column names and corresponding data
types. Next, we loop through all of these and calculate distinct values of all string columns;
if a 'Y' is within the returned list, we append the column name to the YNU_cols list.

DataFrames can transform the features in bulk while selecting features. To present the
idea, consider the following example:

births.select([

'INFANT_NICU_ADMISSION',

rec_integer(

'INFANT_NICU_ADMISSION', func.lit('YNU')

) \

.alias('INFANT_NICU_ADMISSION_RECODE')]

).take(5)

08/29/15 49

Loading and transforming the data

We select the 'INFANT_NICU_ADMISSION' column and we pass the name of the feature to the
r e c _ i n t e g e r m e t h o d . W e a l s o a l i a s t h e n e w l y t r a n s f o r m e d c o l u m n a s
'INFANT_NICU_ADMISSION_RECODE'. This way we will also confirm that our UDF works as
intended.

So, to transform all the YNU_cols in one go, we will create a list of such transformations, as
shown here:

exprs_YNU = [

rec_integer(x, func.lit('YNU')).alias(x)

if x in YNU_cols

else x

for x in births_transformed.columns

]

births_transformed = births_transformed.select(exprs_YNU)

08/29/15 50

Loading and transforming the data

Let's check if we got it correctly:

births_transformed.select(YNU_cols[-5:]).show(5)

Here's what we get:

Looks like everything worked as we wanted it to work, so let's get to know our data
better.

08/29/15 51

Getting to know your data

In order to build a statistical model in an informed way, an intimate knowledge of the
dataset is necessary.

Without knowing the data it is possible to build a successful model, but it is then a
much more arduous task, or it would require more technical resources to test all the
possible combinations of features.

Therefore, after spending the required 80% of the time cleaning the data, we spend
the next 15% getting to know it!

08/29/15 52

Descriptive statistics

I normally start with descriptive statistics. Even though the DataFrames expose
the .describe() method, since we are working with MLlib, we will use the .colStats(...)
method.

Note A word of warning: the .colStats(...) calculates the descriptive statistics based
on a sample. For real world datasets this should not really matter but if your dataset
has less than 100 observations you might get some strange results.

The method takes an RDD of data to calculate the descriptive statistics of and return
a MultivariateStatisticalSummary object that contains the following descriptive
statistics:

• count(): This holds a row count

• max(): This holds maximum value in the column

• mean(): This holds the value of the mean for the values in the column

08/29/15 53

Descriptive statistics

• min(): This holds the minimum value in the column

• normL1(): This holds the value of the L1-Norm for the values in the column

• normL2(): This holds the value of the L2-Norm for the values in the column

• numNonzeros(): This holds the number of nonzero values in the column

• variance(): This holds the value of the variance for the values in the column

You can read more about the L1- and L2-norms here http://bit.ly/2jJJPJ0

08/29/15 54

Descriptive statistics

We recommend checking the documentation of Spark to learn more about these.
The following is a snippet that calculates the descriptive statistics of the numeric
features:

import pyspark.mllib.stat as st

import numpy as np

numeric_cols = ['MOTHER_AGE_YEARS','FATHER_COMBINED_AGE',

'CIG_BEFORE','CIG_1_TRI','CIG_2_TRI','CIG_3_TRI',

'MOTHER_HEIGHT_IN','MOTHER_PRE_WEIGHT',

'MOTHER_DELIVERY_WEIGHT','MOTHER_WEIGHT_GAIN'

]

08/29/15 55

Descriptive statistics

numeric_rdd = births_transformed\

.select(numeric_cols)\

.rdd \

.map(lambda row: [e for e in row])

mllib_stats = st.Statistics.colStats(numeric_rdd)

for col, m, v in zip(numeric_cols,

mllib_stats.mean(),

mllib_stats.variance()):

print('{0}: \t{1:.2f} \t {2:.2f}'.format(col, m, np.sqrt(v)))

08/29/15 56

Descriptive statistics

The preceding code produces the following result:

08/29/15 57

Descriptive statistics

As you can see, mothers, compared to fathers, are younger: the average age of
mothers was 28 versus over 44 for fathers. A good indication (at least for some of the
infants) was that many mothers quit smoking while being pregnant; it is horrifying,
though, that there still were some that continued smoking.

For the categorical variables, we will calculate the frequencies of their values:

categorical_cols = [e for e in births_transformed.columns

if e not in numeric_cols]

categorical_rdd = births_transformed\

.select(categorical_cols)\

.rdd \

.map(lambda row: [e for e in row])

08/29/15 58

Descriptive statistics

for i, col in enumerate(categorical_cols):

agg = categorical_rdd \

.groupBy(lambda row: row[i]) \

.map(lambda row: (row[0], len(row[1])))

print(col, sorted(agg.collect(),

key=lambda el: el[1],

reverse=True))

Here is what the results look like:

Most of the deliveries happened in hospital (BIRTH_PLACE equal to 1). Around 550 deliveries happened at home: some intentionally
('BIRTH_PLACE' equal to 3), and some not ('BIRTH_PLACE' equal to 4).

08/29/15 59

Correlations

Correlations help to identify collinear numeric features and handle them
appropriately. Let's check the correlations between our features:

corrs = st.Statistics.corr(numeric_rdd)

for i, el in enumerate(corrs > 0.5):

correlated = [

(numeric_cols[j], corrs[i][j])

for j, e in enumerate(el)

if e == 1.0 and j != i]

if len(correlated) > 0:

for e in correlated:

print('{0}-to-{1}: {2:.2f}’.format(numeric_cols[i], e[0], e[1]))

08/29/15 60

Correlations

The preceding code will calculate the correlation matrix and will print only those
features that have a correlation coefficient greater than 0.5: the corrs > 0.5 part takes
care of that.

Here's what we get:

08/29/15 61

Correlations

As you can see, the 'CIG_...' features are highly correlated, so we can drop most of
them. Since we want to predict the survival chances of an infant as soon as possible,
we will keep only the 'CIG_1_TRI'. Also, as expected, the weight features are also
highly correlated and we will only keep the 'MOTHER_PRE_WEIGHT':

features_to_keep = [

'INFANT_ALIVE_AT_REPORT', 'BIRTH_PLACE', 'MOTHER_AGE_YEARS',

'FATHER_COMBINED_AGE' , 'C IG_1_TRI ' , 'MOTHER_HEIGHT_IN ' ,
'MOTHER_PRE_WEIGHT',

'DIABETES_PRE', 'DIABETES_GEST', 'HYP_TENS_PRE',

'HYP_TENS_GEST', 'PREV_BIRTH_PRETERM'

]

births_transformed = births_transformed.select([e for e in features_ to_keep])

08/29/15 62

Statistical testing

We cannot calculate correlations for the categorical features. However, we can run a
Chi-square test to determine if there are significant differences.

Here's how you can do it using the .chiSqTest(...) method of MLlib:

import pyspark.mllib.linalg as ln

for cat in categorical_cols[1:]:

agg = births_transformed \

.groupby('INFANT_ALIVE_AT_REPORT') .pivot(cat) .count()

agg_rdd = agg.rdd.map(lambda row: (row[1:]))\

.flatMap(lambda row: [0 if e == None else e for e in row]) .collect()

08/29/15 63

Statistical testing

row_length = len(agg.collect()[0]) - 1

agg = ln.Matrices.dense(row_length, 2, agg_rdd)

test = st.Statistics.chiSqTest(agg)

print(cat, round(test.pValue, 4))

We loop through all the categorical variables and pivot them by the 'INFANT_ALIVE_
AT_REPORT' feature to get the counts.

Next, we transform them into an RDD, so we can then convert them into a matrix
using the pyspark.mllib.linalg module.

The first parameter to the .Matrices.dense(...) method specifies the number of rows
in the matrix; in our case, it is the length of distinct values of the categorical feature.

08/29/15 64

Statistical testing

The second parameter specifies the number of columns: we have two as our
'INFANT_ALIVE_AT_REPORT' target variable has only two values.

The last parameter is a list of values to be transformed into a matrix.

Here's an example that shows this more clearly:

print(ln.Matrices.dense(3,2, [1,2,3,4,5,6]))

The preceding code produces the following matrix:

08/29/15 65

Statistical testing

Once we have our counts in a matrix form, we can use the .chiSqTest(...) to calculate
our test.

Here's what we get in return:

Our tests reveal that all the features should be significantly different and should help
us predict the chance of survival of an infant.

08/29/15 66

Creating the final dataset

Therefore, it is time to create our final dataset that we will use to build our models.
We will convert our DataFrame into an RDD of LabeledPoints.

A LabeledPoint is a MLlib structure that is used to train the machine learning models.
It consists of two attributes: label and features.

The label is our target variable and features can be a NumPy array, list,
pyspark.mllib.linalg.SparseVector, pyspark.mllib.linalg.DenseVector, or scipy.sparse
column matrix.

08/29/15 67

Creating an RDD of LabeledPoints

Before we build our final dataset, we first need to deal with one final obstacle: our 'BIRTH_PLACE'
feature is still a string. While any of the other categorical variables can be used as is (as they are now
dummy variables), we will use a hashing trick to encode the 'BIRTH_PLACE' feature:

import pyspark.mllib.feature as ft

import pyspark.mllib.regression as reg

hashing = ft.HashingTF(7)

births_hashed = births_transformed.rdd .map(lambda row: [

list(hashing.transform(row[1]).toArray())

if col == 'BIRTH_PLACE'

else row[i]

for i, col

08/29/15 68

Creating an RDD of LabeledPoints

for i, col in enumerate(features_to_keep)]) \

.map(lambda row: [[e] if type(e) == int else e

for e in row]).map(lambda row: [item for sublist in row

for item in sublist]).map(lambda row: reg.LabeledPoint(row[0],

ln.Vectors.dense(row[1:])))

First, we create the hashing model. Our feature has seven levels, so we use as
many features as that for the hashing trick.

Next, we actually use the model to convert our 'BIRTH_PLACE' feature into a
SparseVector; such a data structure is preferred if your dataset has many columns
but in a row only a few of them have non-zero values. We then combine all the
features together and finally create a LabeledPoint.

08/29/15 69

Splitting into training and testing

Before we move to the modeling stage, we need to split our dataset into two sets:
one we'll use for training and the other for testing.

Luckily, RDDs have a handy method to do just that:

.randomSplit(...).

The method takes a list of proportions that are to be used to randomly split the
dataset.

Here is how it is done:

births_train, births_test = births_hashed.randomSplit([0.6, 0.4])

08/29/15 70

Predicting infant survival

Finally, we can move to predicting the infants' survival chances.

In this section, we will build two models:

a linear classifier—the logistic regression, and

a non-linear one—a random forest.

For the former one, we will use all the features at our disposal,

whereas for the latter one, we will employ a ChiSqSelector(...) method to select the
top four features.

08/29/15 71

Logistic regression in MLlib

Logistic regression is somewhat a benchmark to build any classification model.

MLlib used to provide a logistic regression model estimated using a stochastic
gradient descent (SGD) algorithm.

Th i s mode l has been dep reca ted i n Spa rk 2 .0 i n f avo r o f t he
LogisticRegressionWithLBFGS model.

The LogisticRegressionWithLBFGS model uses the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm. It is a quasi-Newton
method that approximates the BFGS algorithm.

Note : For those of you who are mathematically adept and interested in this, we suggest
perusing this blog post that is a nice walk-through of the optimization algorithms:
http://aria42.com/blog/2014/12/ understanding-lbfgs.

08/29/15 72

Logistic regression in MLlib

08/29/15 73

Logistic regression in MLlib

First, we train the model on our data:

from pyspark.mllib.classification \

import LogisticRegressionWithLBFGS

LR_Model = LogisticRegressionWithLBFGS \

.train(births_train, iterations=10)

Training the model is very simple: we just need to call the .train(...) method. The
required parameters are the RDD with LabeledPoints; we also specified the number
of iterations so it does not take too long to run.

08/29/15 74

Logistic regression in MLlib

Having trained the model using the births_train dataset, let's use the model to predict
the classes for our testing set:

LR_results = (

births_test.map(lambda row: row.label) \

.zip(LR_Model \

.predict(births_test\

.map(lambda row: row.features)))

).map(lambda row: (row[0], row[1] * 1.0))

08/29/15 75

Logistic regression in MLlib

The preceding snippet creates an RDD where each element is a tuple, with the first
element being the actual label and the second one, the model's prediction.

MLlib provides an evaluation metric for classification and regression. Let's check how
well or how bad our model performed:

import pyspark.mllib.evaluation as ev

LR_evaluation = ev.BinaryClassificationMetrics(LR_results)

print('Area under PR: {0:.2f}' \

.format(LR_evaluation.areaUnderPR))

print('Area under ROC: {0:.2f}' \

.format(LR_evaluation.areaUnderROC))

LR_evaluation.unpersist()

08/29/15 76

Logistic regression in MLlib

Here's what we got:

The model performed reasonably well! The 85% area under the Precision-Recall
curve indicates a good fit. In this case, we might be getting slightly more predicted
deaths (true and false positives). In this case, this is actually a good thing as it would
allow doctors to put the expectant mother and the infant under special care.

The area under Receiver-Operating Characteristic (ROC) can be understood as a
probability of the model ranking higher than a randomly chosen positive instance
compared to a randomly chosen negative one. A 63% value can be thought of as
acceptable.

For more on these metr ics, we point interested readers to http:/ /
stats.stackexchange.com/questions/7207/ roc-vs-precision-and-recall-curves and
http://gim. unmc.edu/dxtests/roc3.htm.

08/29/15 77

Selecting only the most
predictable features

Any model that uses less features to predict a class accurately should always be
preferred to a more complex one. MLlib allows us to select the most predictable
features using a Chi-Square selector.

Here's how you do it:

selector = ft.ChiSqSelector(4).fit(births_train)

topFeatures_train = (

births_train.map(lambda row: row.label) \

.zip(selector \

.transform(births_train \

.map(lambda row: row.features)))

).map(lambda row: reg.LabeledPoint(row[0], row[1]))

08/29/15 78

Selecting only the most
predictable features

topFeatures_test = (

births_test.map(lambda row: row.label) \

.zip(selector \

.transform(births_test \

.map(lambda row: row.features)))

).map(lambda row: reg.LabeledPoint(row[0], row[1]))

We asked the selector to return the four most predictive features from the dataset
and train the selector using the births_train dataset. We then used the model to
extract only those features from our training and testing datasets.

The .ChiSqSelector(...) method can only be used for numerical features; categorical
variables need to be either hashed or dummy coded before the selector can be used.

08/29/15 79

Random forest in MLlib

We are now ready to build the random forest model.

The following code shows you how to do it:

from pyspark.mllib.tree import RandomForest

RF_model = RandomForest \

.trainClassifier(data=topFeatures_train,

numClasses=2,

categoricalFeaturesInfo={},

numTrees=6,

featureSubsetStrategy='all',

seed=666)

08/29/15 80

Random forest in MLlib

The first parameter to the .trainClassifier(...) method specifies the training dataset.

The numClasses one indicates how many classes our target variable has.

As the third parameter, you can pass a dictionary where the key is the index of a
categorical feature in our RDD and the value for the key indicates the number of
levels that the categorical feature has.

The numTrees specifies the number of trees to be in the forest.

The next parameter tells the model to use all the features in our dataset instead of
keeping only the most descriptive ones, while the last one specifies the seed for the
stochastic part of the model.

08/29/15 81

Random forest in MLlib

Let's see how well our model did:

RF_results = (

topFeatures_test.map(lambda row: row.label) \

.zip(RF_model \

.predict(topFeatures_test \

.map(lambda row: row.features)))

)

RF_evaluation = ev.BinaryClassificationMetrics(RF_results)

print('Area under PR: {0:.2f}' \

.format(RF_evaluation.areaUnderPR))

08/29/15 82

Random forest in MLlib

print('Area under ROC: {0:.2f}' \

.format(RF_evaluation.areaUnderROC))

model_evaluation.unpersist()

Here are the results:

As you can see, the Random Forest model with fewer features performed even
better than the logistic regression model. Let's see how the logistic regression would
perform with a reduced number of features:

LR_Model_2 = LogisticRegressionWithLBFGS \
.train(topFeatures_train, iterations=10)
LR_results_2 = (topFeatures_test.map(lambda row: row.label).zip(LR_Model_2 \
.predict(topFeatures_test.map(lambda row: row.features)))
).map(lambda row: (row[0], row[1] * 1.0))

08/29/15 83

Random forest in MLlib

LR_evaluation_2 = ev.BinaryClassificationMetrics(LR_results_2)

print('Area under PR: {0:.2f}' \

.format(LR_evaluation_2.areaUnderPR))

print('Area under ROC: {0:.2f}' \

.format(LR_evaluation_2.areaUnderROC))

LR_evaluation_2.unpersist()

The results might surprise you:

As you can see, both models can be simplified and still attain the same level of
accuracy.

Having said that, you should always opt for a model with fewer variables.

08/29/15 84

Random forest in MLlib

LR_evaluation_2 = ev.BinaryClassificationMetrics(LR_results_2)

print('Area under PR: {0:.2f}' \

.format(LR_evaluation_2.areaUnderPR))

print('Area under ROC: {0:.2f}' \

.format(LR_evaluation_2.areaUnderROC))

LR_evaluation_2.unpersist()

The results might surprise you:

As you can see, both models can be simplified and still attain the same level of
accuracy.

Having said that, you should always opt for a model with fewer variables.

08/29/15 85

• In this Module we looked at the capabilities of the MLlib package of PySpark.

• Even though the package is currently in a maintenance mode and is not actively
being worked on, it is still good to know how to use it.

• Also, for now it is the only package available to train models while streaming data.

• We used MLlib to clean up, transform, and get familiar with the dataset of infant
deaths.

• Using that knowledge we then successfully built two models that aimed at
predicting the chance of infant survival given the information about its mother,
father, and place of birth.

Summary

Module 6 

Introducing the ML Package

08/29/15 86

Module 6
Introducing the ML Package
Overview of the package
Predicting the chances of infant survival with ML
Parameter hyper-tuning
Other features of PySpark ML in action
Implementation of ML Algorithm
• Random Forest
• Regression
• K-means
Assignments 5

Agenda

 87

In the previous module, we worked with the MLlib package in Spark that operated
strictly on RDDs.

In this module, we move to the ML part of Spark that operates strictly on
DataFrames.

Also, according to the Spark documentation, the primary machine learning API for
Spark is now the DataFrame-based set of models contained in the spark.ml package.

So, let's get to it!

In this module, we will reuse a portion of the dataset we played within the previous
module.

The data can be downloaded from http://www.tomdrabas.com/data/LearningPySpark/
births_transformed.csv.gz.

Introducing the ML Package

 88

08/29/15 89

Introducing the ML Package

Objectives
You will learn how to do the following:

• Prepare transformers, estimators, and pipelines

• Predict the chances of infant survival using models available in the ML package

• Evaluate the performance of the model

• Perform parameter hyper-tuning

• Use other machine-learning models available in the package

08/29/15 90

Overview of the package

At the top level, the package exposes three main abstract classes:

• a Transformer,

• an Estimator, and

• a Pipeline.

Transformer

The Transformer class, like the name suggests, transforms your data by (normally)
appending a new column to your DataFrame.

At the high level, when deriving from the Transformer abstract class, each and every
new Transformer needs to implement a .transform(...) method.

The method, as a first and normally the only obligatory parameter, requires passing a
DataFrame to be transformed.

08/29/15 91

Transformer

This, of course, varies method-by-method in the ML package: other popular
parameters are inputCol and outputCol; these, however, frequently default to some
predefined values, such as, for example, 'features' for the inputCol parameter.

There are many Transformers offered in the spark.ml.feature and we will briefly
describe them here:

Binarizer: Given a threshold, the method takes a continuous variable and transforms
it into a binary one.

Bucketizer: Similar to the Binarizer, this method takes a list of thresholds (the splits
parameter) and transforms a continuous variable into a multinomial one.

ChiSqSelector: For the categorical target variables (think classification models), this
feature allows you to select a predefined number of features (parameterized by the
numTopFeatures parameter) that explain the variance in the target the best.

08/29/15 92

Transformer

This, of course, varies method-by-method in the ML package: other popular
parameters are inputCol and outputCol; these, however, frequently default to some
predefined values, such as, for example, 'features' for the inputCol parameter.

There are many Transformers offered in the spark.ml.feature and we will briefly
describe them here:

Binarizer: Given a threshold, the method takes a continuous variable and transforms
it into a binary one.

Bucketizer: Similar to the Binarizer, this method takes a list of thresholds (the splits
parameter) and transforms a continuous variable into a multinomial one.

ChiSqSelector: For the categorical target variables (think classification models), this
feature allows you to select a predefined number of features (parameterized by the
numTopFeatures parameter) that explain the variance in the target the best.

More information on Chi-squares can be found here:

http:// ccnmtl.columbia.edu/projects/qmss/the_chisquare_test/ about_the_chisquare_test.html.

08/29/15 93

Transformer

ChiSqSelector: The selection is done, as the name of the method suggests, using a
Chi-Square test. It is one of the two-step methods:

first, you need to .fit(...) your data (so the method can calculate the Chi-square tests).

Calling the .fit(...) method (you pass your DataFrame as a parameter) returns a
ChiSqSelectorModel object that you can then use to transform your DataFrame
using the .transform(...) method.

CountVectorizer: This is useful for a tokenized text (such as [['Learning', 'PySpark',
'with', 'us'],['us', 'us', 'us']]). It is one of two-step methods:

first, you need to .fit(...), that is, learn the patterns from your dataset, before you
can .transform(...) with the CountVectorizerModel returned by the .fit(...) method.

The output from this transformer, for the tokenized text presented previously, would
look similar to this: [(4, [0, 1, 2, 3], [1.0, 1.0, 1.0, 1.0]),(4, [3], [3.0])].

08/29/15 94

Transformer

DCT: The Discrete Cosine Transform takes a vector of real values and returns a
vector of the same length, but with the sum of cosine functions oscillating at different
frequencies.

Such transformations are useful to extract some underlying frequencies in your data
or in data compression.

• ElementwiseProduct: A method that returns a vector with elements that are
products of the vector passed to the method, and a vector passed as the scalingVec
parameter.

For example, if you had a [10.0, 3.0, 15.0] vector and your scalingVec was [0.99,
3.30, 0.66], then the vector you would get would look as follows: [9.9, 9.9, 9.9].

08/29/15 95

Transformer

HashingTF: A hashing trick transformer that takes a list of tokenized text and
returns a vector (of predefined length) with counts.

 From PySpark's documentation:

"Since a simple modulo is used to transform the hash function to a column index, it is
advisable to use a power of two as the numFeatures parameter; otherwise the
features will not be mapped evenly to the columns."

IDF: This method computes an Inverse Document Frequency for a list of
documents. Note that the documents need to already be represented as a vector (for
example, using either the HashingTF or CountVectorizer).

IndexToString: A complement to the StringIndexer method. It uses the encoding
from the StringIndexerModel object to reverse the string index to original values. As
an aside, please note that this sometimes does not work and you need to specify the
values from the StringIndexer.

08/29/15 96

Transformer

MaxAbsScaler: Rescales the data to be within the [-1.0, 1.0] range (thus, it does not
shift the center of the data).

• MinMaxScaler: This is similar to the MaxAbsScaler with the difference that it scales
the data to be in the [0.0, 1.0] range.

• NGram: This method takes a list of tokenized text and returns n-grams: pairs,
triples, or n-mores of subsequent words. For example, if you had a ['good', 'morning',
'Robin', 'Williams'] vector you would get the following output: ['good morning',
'morning Robin', 'Robin Williams'].

Normalizer: This method scales the data to be of unit norm using the p-norm value
(by default, it is L2).

• OneHotEncoder: This method encodes a categorical column to a column of binary
vectors.

• PCA: Performs the data reduction using principal component analysis.

08/29/15 97

Transformer

PolynomialExpansion: Performs a polynomial expansion of a vector. For example,
if you had a vector symbolically written as [x, y, z], the method would produce the
following expansion: [x, x*x, y, x*y, y*y, z, x*z, y*z, z*z].

• QuantileDiscretizer: Similar to the Bucketizer method, but instead of passing the
splits parameter, you pass the numBuckets one. The method then decides, by
calculating approximate quantiles over your data, what the splits should be.

• RegexTokenizer: This is a string tokenizer using regular expressions.

• RFormula: For those of you who are avid R users, you can pass a formula such as
vec ~ alpha * 3 + beta (assuming your DataFrame has the alpha and beta columns)
and it will produce the vec column given the expression.

SQLTransformer: Similar to the previous, but instead of R-like formulas, you can
use SQL syntax.

08/29/15 98

Transformer

StandardScaler: Standardizes the column to have a 0 mean and standard deviation
equal to 1.

StopWordsRemover: Removes stop words (such as 'the' or 'a') from a tokenized
text.

StringIndexer: Given a list of all the words in a column, this will produce a vector of
indices.

Tokenizer: This is the default tokenizer that converts the string to lower case and
then splits on space(s).

VectorAssembler: This is a highly useful transformer that collates multiple numeric
(vectors included) columns into a single column with a vector representation.

08/29/15 99

Transformer

VectorAssembler: For example, if you had three columns in your DataFrame:

df = spark.createDataFrame(

[(12, 10, 3), (1, 4, 2)],

['a', 'b', 'c'])

The output of calling:

ft.VectorAssembler(inputCols=['a', 'b', 'c'],

outputCol='features').transform(df).select(‘features').collect()

It would look as follows:

[Row(features=DenseVector([12.0, 10.0, 3.0])),

Row(features=DenseVector([1.0, 4.0, 2.0]))]

08/29/15 100

Transformer

VectorIndexer: This is a method for indexing categorical columns into a vector of
indices. It works in a column-by-column fashion, selecting distinct values from the
column, sorting and returning an index of the value from the map instead of the
original value.

VectorSlicer: Works on a feature vector, either dense or sparse: given a list of
indices, it extracts the values from the feature vector.

Word2Vec: This method takes a sentence (string) as an input and transforms it into
a map of {string, vector} format, a representation that is useful in natural language
processing.

08/29/15 101

Estimators

Estimators can be thought of as statistical models that need to be estimated to
make predictions or classify your observations.

If deriving from the abstract Estimator class, the new model has to implement
the .fit(...) method that fits the model given the data found in a DataFrame and some
default or user-specified parameters.

There are a lot of estimators available in PySpark and we will now shortly discuss the
models available in Spark 2.0.

08/29/15 102

Classification

The ML package provides a data scientist with seven classification models to choose
from.

LogisticRegression: The benchmark model for classification. The logistic
regression uses a logit function to calculate the probability of an observation
belonging to a particular class.

DecisionTreeClassifier: A classifier that builds a decision tree to predict a class for
an observation. Specifying the maxDepth parameter limits the depth the tree grows,
the minInstancePerNode determines the minimum number of observations in the
tree node required to further split, the maxBins parameter specifies the maximum
number of bins the continuous variables will be split into, and the impurity specifies
the metric to measure and calculate the information gain from the split.

GBTClassifier: A Gradient Boosted Trees model for classification. The model
belongs to the family of ensemble models: models that combine multiple weak
predictive models to form a strong one. At the moment, the GBTClassifier model
supports binary labels, and continuous and categorical features.

08/29/15 103

Classification

RandomForestClassifier: This model produces multiple decision trees (hence the name—
forest) and uses the mode output of those decision trees to classify observations. The
RandomForestClassifier supports both binary and multinomial labels.

• NaiveBayes: Based on the Bayes' theorem, this model uses conditional probability theory to
classify observations. The NaiveBayes model in PySpark ML supports both binary and
multinomial labels.

• MultilayerPerceptronClassifier: A classifier that mimics the nature of a human brain. Deeply
rooted in the Artificial Neural Networks theory, the model is a black-box, that is, it is not easy to
interpret the internal parameters of the model.

The model consists, at a minimum, of three, fully connected layers (a parameter that needs to
be specified when creating the model object) of artificial neurons:

• the input layer (that needs to be equal to the number of features in your dataset),

• a number of hidden layers (at least one), and

• an output layer with the number of neurons equal to the number of categories in your label. All
the neurons in the input and hidden layers have a sigmoid activation function, whereas the
activation function of the neurons in the output layer is softmax.

08/29/15 104

Classification

OneVsRest: A reduction of a multiclass classification to a binary one. For example,
in the case of a multinomial label, the model can train multiple binary logistic
regression models. For example, if label == 2, the model will build a logistic
regression where it will convert the label == 2 to 1 (all remaining label values would
be set to 0) and then train a binary model. All the models are then scored and the
model with the highest probability wins.

08/29/15 105

Regression

There are seven models available for regression tasks in the PySpark ML package.
As with classification, these range from some basic ones (such as the obligatory
linear regression) to more complex ones:

AFTSurvivalRegression: Fits an Accelerated Failure Time regression model. It is a
parametric model that assumes that a marginal effect of one of the features
accelerates or decelerates a life expectancy (or process failure). It is highly
applicable for the processes with well-defined stages.

DecisionTreeRegressor: Similar to the model for classification with an obvious
distinction that the label is continuous instead of binary (or multinomial).

GBTRegressor: As with the DecisionTreeRegressor, the difference is the data type
of the label.

08/29/15 106

Regression

GeneralizedLinearRegression: A family of linear models with differing kernel
functions (link functions). In contrast to the linear regression that assumes normality
of error terms, the GLM allows the label to have different error term distributions: the
GeneralizedLinearRegression model from the PySpark ML package supports
gaussian, binomial, gamma, and poisson families of error distributions with a host of
different link functions.

IsotonicRegression: A type of regression that fits a free-form, non-decreasing line to
your data. It is useful to fit the datasets with ordered and increasing observations.

LinearRegression: The most simple of regression models, it assumes a linear
relationship between features and a continuous label, and normality of error terms.

RandomForestRegressor: Similar to either DecisionTreeRegressor or
GBTRegressor, the RandomForestRegressor fits a continuous label instead of a
discrete one.

08/29/15 107

Clustering

Clustering is a family of unsupervised models that are used to find underlying
patterns in your data. The PySpark ML package provides the four most popular
models at the moment:

BisectingKMeans: A combination of the k-means clustering method and hierarchical
clustering. The algorithm begins with all observations in a single cluster and
iteratively splits the data into k clusters.

Check out this website for more information on pseudo-algorithms:

http://minethedata.blogspot.com/2012/08/bisecting-k-means.html.

KMeans: This is the famous k-mean algorithm that separates data into k clusters,
iteratively searching for centroids that minimize the sum of square distances between
each observation and the centroid of the cluster it belongs to.

08/29/15 108

Clustering

GaussianMixture: This method uses k Gaussian distributions with unknown
parameters to dissect the dataset. Using the Expectation-Maximization algorithm, the
parameters for the Gaussians are found by maximizing the log-likelihood function.

Note: Beware that for datasets with many features this model might perform poorly
due to the curse of dimensionality and numerical issues with Gaussian distributions.

LDA: This model is used for topic modeling in natural language processing
applications.

08/29/15 109

Pipeline

A Pipeline in PySpark ML is a concept of an end-to-end transformation-estimation
process (with distinct stages) that ingests some raw data (in a DataFrame form),
performs the necessary data carpentry (transformations), and finally estimates a
statistical model (estimator).

Note: A Pipeline can be purely transformative, that is, consisting of Transformers
only.

A Pipeline can be thought of as a chain of multiple discrete stages. When a .fit(...)
method is executed on a Pipeline object, all the stages are executed in the order
they were specified in the stages parameter; the stages parameter is a list of
Transformer and Estimator objects. The .fit(...) method of the Pipeline object
executes the .transform(...) method for the Transformers and the .fit(...) method for
the Estimators.

Normally, the output of a preceding stage becomes the input for the following stage:
when deriving from either the Transformer or Estimator abstract classes, one needs
to implement the .getOutputCol() method that returns the value of the outputCol
parameter specified when creating an object.

08/29/15 110

Predicting the chances of
infant survival with ML

Loading the data
First, we load the data with the help of the following code:

import pyspark.sql.types as typ
labels = [
('INFANT_ALIVE_AT_REPORT', typ.IntegerType()),
('BIRTH_PLACE', typ.StringType()),
('MOTHER_AGE_YEARS', typ.IntegerType()),
('FATHER_COMBINED_AGE', typ.IntegerType()),
('CIG_BEFORE', typ.IntegerType()),
('CIG_1_TRI', typ.IntegerType()),
('CIG_2_TRI', typ.IntegerType()),
('CIG_3_TRI', typ.IntegerType()),
('MOTHER_HEIGHT_IN', typ.IntegerType()),
('MOTHER_PRE_WEIGHT', typ.IntegerType()),
('MOTHER_DELIVERY_WEIGHT', typ.IntegerType()),
('MOTHER_WEIGHT_GAIN', typ.IntegerType()),
('DIABETES_PRE', typ.IntegerType()),
('DIABETES_GEST', typ.IntegerType()),
('HYP_TENS_PRE', typ.IntegerType()),
('HYP_TENS_GEST', typ.IntegerType()),
('PREV_BIRTH_PRETERM', typ.IntegerType())]

08/29/15 111

Predicting the chances of
infant survival with ML

Loading the data …

schema = typ.StructType([

typ.StructField(e[0], e[1], False) for e in labels

])

births = spark.read.csv('births_transformed.csv.gz', header=True,

schema=schema)

We specify the schema of the DataFrame; our severely limited dataset now only has
17 columns.

Note: http://www.tomdrabas.com/data/ LearningPySpark/births_transformed.csv.gz.

08/29/15 112

Creating transformers

Before we can use the dataset to estimate a model, we need to do some
transformations. Since statistical models can only operate on numeric data, we will
have to encode the BIRTH_PLACE variable.

Before we do any of this, since we will use a number of different feature
transformations ,let’s import them all:

import pyspark.ml.feature as ft

To encode the BIRTH_PLACE column, we will use the OneHotEncoder method.
However, the method cannot accept StringType columns; it can only deal with
numeric types so first we will cast the column to an IntegerType:

births = births.withColumn('BIRTH_PLACE_INT', births['BIRTH_PLACE'] \

.cast(typ.IntegerType()))

Having done this, we can now create our first Transformer:

08/29/15 113

Creating transformers

e n c o d e r = f t . O n e H o t E n c o d e r (i n p u t C o l = ' B I R T H _ P L A C E _ I N T ' ,
outputCol='BIRTH_PLACE_VEC')

Let's now create a single column with all the features collated together. We will use
the VectorAssembler method:

featuresCreator = ft.VectorAssembler(

inputCols=[col[0]

for col in labels[2:]] + [encoder.getOutputCol()], outputCol='features'

)

The inputCols parameter passed to the VectorAssembler object is a list of all the columns
to be combined together to form the outputCol—the 'features'.

Note that we use the output of the encoder object (by calling the .getOutputCol() method),
so we do not have to remember to change this parameter's value should we change the
name of the output column in the encoder object at any point.

08/29/15 114

Creating an estimator

import pyspark.ml.classification as cl

Once loaded, let's create the model by using the following code:

logistic = cl.LogisticRegression(maxIter=10, regParam=0.01,

labelCol='INFANT_ALIVE_AT_REPORT')

We would not have to specify the labelCol parameter if our target column had the
name 'label'.

Also, if the output of our featuresCreator was not called 'features', we would have to
specify the featuresCol by (most conveniently) calling the getOutputCol() method on
the featuresCreator object.

08/29/15 115

Creating a pipeline

First, let's load the Pipeline from the ML package:

from pyspark.ml import Pipeline

Creating a Pipeline is really easy. Here's how our pipeline should look like
conceptually:

Converting this structure into a Pipeline is a walk in the park:

pipeline = Pipeline(stages=[encoder, featuresCreator, logistic])

That's it! Our pipeline is now created so we can (finally!) estimate the model.

08/29/15 116

Fitting the model

Before you fit the model, we need to split our dataset into training and testing datasets.
Conveniently, the DataFrame API has the .randomSplit(...) method:

births_train, births_test = births.randomSplit([0.7, 0.3], seed=666)

The first parameter is a list of dataset proportions that should end up in, respectively, births_train
and births_test subsets.

The seed parameter provides a seed to the randomizer.

Note: You can also split the dataset into more than two subsets as long as the elements of the
list sum up to 1, and you unpack the output into as many subsets.

For example, we could split the births dataset into three subsets like this:

train, test, val = births.randomSplit([0.7, 0.2, 0.1], seed=666)

The preceding code would put a random 70% of the births dataset into the train object, 20%
would go to the test, and the val DataFrame would hold the remaining 10%.

08/29/15 117

Fitting the model

Now it is about time to finally run our pipeline and estimate our model:

model = pipeline.fit(births_train)

test_model = model.transform(births_test)

The .fit(...) method of the pipeline object takes our training dataset as an input. Under
the hood, the births_train dataset is passed first to the encoder object. The
DataFrame that is created at the encoder stage then gets passed to the
featuresCreator that creates the 'features' column. Finally, the output from this stage
is passed to the logistic object that estimates the final model.

08/29/15 118

Fitting the model

The .fit(...) method returns the PipelineModel object (the model object in the
preceding snippet) that can then be used for prediction; we attain this by calling
the .transform(...) method and passing the testing dataset created earlier. Here's
what the test_model looks like in the following command:

test_model.take(1)

It generates the following output:

08/29/15 119

Fitting the model

The .fit(...) method returns the PipelineModel object (the model object in the
preceding snippet) that can then be used for prediction; we attain this by calling
the .transform(...) method and passing the testing dataset created earlier. Here's
what the test_model looks like in the following command:

test_model.take(1)

It generates the following output:

08/29/15 120

Evaluating the performance of
the model

Obviously, we would like to now test how well our model did.

PySpark exposes a number of evaluation methods for classification and regression
in the .evaluation section of the package:

import pyspark.ml.evaluation as ev

We will use the BinaryClassficationEvaluator to test how well our model performed:

evaluator = ev.BinaryClassificationEvaluator(

rawPredictionCol='probability',

labelCol='INFANT_ALIVE_AT_REPORT')

The rawPredictionCol can either be the rawPrediction column produced by the
estimator or the probability.

08/29/15 121

Evaluating the performance of
the model

Let's see how well our model performed:

print(evaluator.evaluate(test_model,

{evaluator.metricName: 'areaUnderROC'}))

print(evaluator.evaluate(test_model,

{evaluator.metricName: 'areaUnderPR'}))

The preceding code produces the following result:

The area under the ROC of 74% and area under PR of 71% shows a well-defined
model, but nothing out of extraordinary; if we had other features, we could drive this
up, but this is not the purpose of this chapter (nor the book, for that matter).

08/29/15 122

Saving the model

PySpark allows you to save the Pipeline definition for later use. It not only saves the
pipeline structure, but also all the definitions of all the Transformers and Estimators:

pipelinePath = './infant_oneHotEncoder_Logistic_Pipeline'

pipeline.write().overwrite().save(pipelinePath)

So, you can load it up later and use it straight away to .fit(...) and predict:

loadedPipeline = Pipeline.load(pipelinePath)

loadedPipeline.fit(births_train).transform(births_test).take(1)

The preceding code produces the same result (as expected):

08/29/15 123

Saving the model

To save your model, see the following the example:

from pyspark.ml import PipelineModel

modelPath = './infant_oneHotEncoder_Logistic_PipelineModel'

model.write().overwrite().save(modelPath)

loadedPipelineModel = PipelineModel.load(modelPath)

test_reloadedModel = loadedPipelineModel.transform(births_test)

The preceding script uses the .load(...) method, a class method of the PipelineModel
class, to reload the estimated model.

You can compare the result of test_reloadedModel.take(1) with the output of
test_model.take(1) we presented earlier.

08/29/15 124

Parameter hyper-tuning

Rarely, our first model would be the best we can do. By simply looking at our metrics
and accepting the model because it passed our pre-conceived performance
thresholds is hardly a scientific method for finding the best model.

A concept of parameter hyper-tuning is to find the best parameters of the model: for
example, the maximum number of iterations needed to properly estimate the logistic
regression model or maximum depth of a decision tree.

In this section, we will explore two concepts that allow us to find the best parameters
for our models: grid search and train-validation splitting.

08/29/15 125

Grid search

Grid search is an exhaustive algorithm that loops through the list of defined
parameter values, estimates separate models, and chooses the best one given some
evaluation metric.

A note of caution should be stated here: if you define too many parameters you want
to optimize over, or too many values of these parameters, it might take a lot of time
to select the best model as the number of models to estimate would grow very
quickly as the number of parameters and parameter values grow.

For example, if you want to fine-tune two parameters with two parameter values, you
would have to fit four models. Adding one more parameter with two values would
require estimating eight models, whereas adding one more additional value to our
two parameters (bringing it to three values for each) would require estimating nine
models.

As you can see, this can quickly get out of hand if you are not careful. See the
following chart to inspect this visually:

08/29/15 126

Grid search

As you can see, this can quickly get out of hand if you are not careful. See the
following chart to inspect this visually:

08/29/15 127

Grid search

Next, we need some way of comparing the models:

evaluator = ev.BinaryClassificationEvaluator(

rawPredictionCol='probability',

labelCol='INFANT_ALIVE_AT_REPORT')

So, once again, we'll use the BinaryClassificationEvaluator. It is time now to create the logic that will do
the validation work for us:

cv = tune.CrossValidator(estimator=logistic, estimatorParamMaps=grid,

evaluator=evaluator

)

The CrossValidator needs the estimator, the estimatorParamMaps, and the evaluator to do its job. The
model loops through the grid of values, estimates the models, and compares their performance using
the evaluator.

08/29/15 128

Grid search

We cannot use the data straight away (as the births_train and births_test still have the BIRTHS_PLACE column not encoded) so
we create a purely transforming Pipeline:

pipeline = Pipeline(stages=[encoder ,featuresCreator])

data_transformer = pipeline.fit(births_train)

Having done this, we are ready to find the optimal combination of parameters for our model:

cvModel = cv.fit(data_transformer.transform(births_train))

The cvModel will return the best model estimated. We can now use it to see if it performed better than our previous model:

data_train = data_transformer.transform(births_test)

results = cvModel.transform(data_train)

print(evaluator.evaluate(results,

{evaluator.metricName: 'areaUnderROC'}))

print(evaluator.evaluate(results,

{evaluator.metricName: 'areaUnderPR'}))

The preceding code will produce the following result:

08/29/15 129

Grid search

As you can see, we got a slightly better result. What parameters does the best model have? The answer is a
little bit convoluted, but here's how you can extract it:

results = [([{key.name: paramValue}

for key, paramValue in zip(

params.keys(), params.values())

], metric)

for params, metric

in zip(cvModel.getEstimatorParamMaps(),

cvModel.avgMetrics

)]

sorted(results,

key=lambda el: el[1],

reverse=True)[0]

08/29/15 130

Train-validation splitting

The TrainValidationSplit model, to select the best model, performs a random split of the input dataset (the
training dataset) into two subsets: smaller training and validation subsets. The split is only performed once.

In this example, we will also use the ChiSqSelector to select only the top five features, thus limiting the
complexity of our model:

selector = ft.ChiSqSelector(numTopFeatures=5,

featuresCol=featuresCreator.getOutputCol(),

outputCol='selectedFeatures',

labelCol='INFANT_ALIVE_AT_REPORT')

The numTopFeatures specifies the number of features to return. We will put the selector after the
featuresCreator, so we call the .getOutputCol() on the featuresCreator.

We covered creating the LogisticRegression and Pipeline earlier, so we will not explain how these are created
again here:

logistic = cl.LogisticRegression(labelCol='INFANT_ALIVE_AT_REPORT', featuresCol='selectedFeatures')

pipeline = Pipeline(stages=[encoder, featuresCreator, selector])

data_transformer = pipeline.fit(births_train)

08/29/15 131

Train-validation splitting

The TrainValidationSplit object gets created in the same fashion as the CrossValidator model:

tvs = tune.TrainVal idat ionSpl i t (est imator=logist ic, est imatorParamMaps=grid,
evaluator=evaluator)

As before, we fit our data to the model, and calculate the results:

tvsModel = tvs.fit(data_transformer.transform(births_train))

data_train = data_transformer.transform(births_test)

results = tvsModel.transform(data_train)

p r in t (eva lua to r.eva lua te (resu l ts , {eva lua to r.met r i cName: 'a reaUnderROC' }))
print(evaluator.evaluate(results,

{evaluator.metricName: 'areaUnderPR'}))

The preceding code prints out the following output:

08/29/15 132

Other features of PySpark ML

Feature extraction

NLP - related feature extractors

As described earlier, the NGram model takes a list of tokenized text and produces
pairs (or n-grams) of words.

In this example, we will take an excerpt from PySpark's documentation and present
how to clean up the text before passing it to the NGram model. Here's how our
dataset looks like (abbreviated for brevity):

Note: Download the code from GitHub repository:

https://github. com/drabastomek/learningPySpark.
http://spark.apache.org/docs/latest/ ml-pipeline.html#dataframe.

08/29/15 133

Other features of PySpark ML

text_data = spark.createDataFrame([

['''Machine learning can be applied to a wide variety

of data types, such as vectors, text, images, and

structured data. This API adopts the DataFrame from

Spark SQL in order to support a variety of data

types.'''],

(...)

['''Columns in a DataFrame are named. The code examples

below use names such as "text," "features," and

"label."''']

], ['input'])

08/29/15 134

Other features of PySpark ML

Each row in our single-column DataFrame is just a bunch of text.

First, we need to tokenize this text. To do so we will use the RegexTokenizer instead
of just the Tokenizer as we can specify the pattern(s) we want the text to be broken
at:

tokenizer = ft.RegexTokenizer(

inputCol='input',

outputCol='input_arr',

pattern='\s+|[,.\"]')

08/29/15 135

Other features of PySpark ML

The pattern here splits the text on any number of spaces, but also removes commas,
full stops, backslashes, and quotation marks. A single row from the output of the tokenizer

looks similar to this:

As you can see, the RegexTokenizer not only splits the sentences in to words, but
also normalizes the text so each word is in small-caps.

08/29/15 136

Other features of PySpark ML

However, there is still plenty of junk in our text: words such as be, a, or to normally
provide us with nothing useful when analyzing a text. Thus, we will remove these so
called stopwords using nothing else other than the StopWordsRemover(...):

stopwords = ft.StopWordsRemover(

inputCol=tokenizer.getOutputCol(),

outputCol='input_stop')

The output of the method looks as follows:

08/29/15 137

Other features of PySpark ML

Now we only have the useful words. So, let's build our NGram model and the Pipeline:

ngram = ft.NGram(n=2,

inputCol=stopwords.getOutputCol(),

outputCol="nGrams")

pipeline = Pipeline(stages=[tokenizer, stopwords, ngram])

Now that we have the pipeline, we follow in a very similar fashion as before:

data_ngram = pipeline \

.fit(text_data) \

.transform(text_data)

data_ngram.select('nGrams').take(1)

The preceding code produces the following output:

08/29/15 138

Discretizing continuous variables

Ever so often, we deal with a continuous feature that is highly non-linear and really
hard to fit in our model with only one coefficient.

In such a situation, it might be hard to explain the relationship between such a
feature and the target with just one coefficient. Sometimes, it is useful to band the
values into discrete buckets.

First, let's create some fake data with the help of the following code:

import numpy as np

x = np.arange(0, 100)

x = x / 100.0 * np.pi * 4

y = x * np.sin(x / 1.764) + 20.1234

08/29/15 139

Discretizing continuous variables

Now, we can create a DataFrame by using the following code:

schema = typ.StructType([

typ.StructField('continuous_var',

typ.DoubleType(),

False

)

])

data = spark.createDataFrame(

[[float(e),] for e in y],

schema=schema)

08/29/15 140

Discretizing continuous variables

08/29/15 141

Discretizing continuous variables

Next, we will use the QuantileDiscretizer model to split our continuous variable into
five buckets (the numBuckets parameter):

discretizer = ft.QuantileDiscretizer(

numBuckets=5,

inputCol='continuous_var',

outputCol='discretized')

Let's see what we have got:

data_discretized = discretizer.fit(data).transform(data)

Our function now looks as follows:

08/29/15 142

Discretizing continuous variables

08/29/15 143

Standardizing continuous variables

Standardizing continuous variables helps not only in better understanding the
relationships between the features (as interpreting the coefficients becomes easier),
but it also aids computational efficiency and protects from running into some
numerical traps. Here's how you do it with PySpark ML.

First, we need to create a vector representation of our continuous variable (as it is
only a single float):

vectorizer = ft.VectorAssembler(

inputCols=['continuous_var'],

outputCol= 'continuous_vec')

08/29/15 144

Standardizing continuous variables

Next, we build our normalizer and the pipeline. By setting the withMean and withStd
to True, the method will remove the mean and scale the variance to be of unit length:

normalizer = ft.StandardScaler(

inputCol=vectorizer.getOutputCol(),

outputCol='normalized',

withMean=True,

withStd=True

)

pipeline = Pipeline(stages=[vectorizer, normalizer])

data_standardized = pipeline.fit(data).transform(data)

08/29/15 145

Standardizing continuous variables

Here's what the transformed data would look like:

08/29/15 146

Classification

So far we have only used the LogisticRegression model from PySpark ML.

In this section, we will use the RandomForestClassfier to, once again, model the
chances of survival for an infant.

Before we can do that, though, we need to cast the label feature to DoubleType:

import pyspark.sql.functions as func

births = births.withColumn(

'INFANT_ALIVE_AT_REPORT',

func.col('INFANT_ALIVE_AT_REPORT').cast(typ.DoubleType())

)

births_train, births_test = births \

.randomSplit([0.7, 0.3], seed=666)

08/29/15 147

Classification

Now that we have the label converted to double, we are ready to build our model. We
progress in a similar fashion as before with the distinction that we will reuse the
encoder and featureCreator from earlier in the chapter. The numTrees parameter
specifies how many decision trees should be in our random forest, and the
maxDepth parameter limits the depth of the trees:

classifier = cl.RandomForestClassifier(numTrees=5, maxDepth=5,

labelCol='INFANT_ALIVE_AT_REPORT')

pipeline = Pipeline(stages=[encoder, featuresCreator, classifier])

model = pipeline.fit(births_train)

test = model.transform(births_test)

08/29/15 148

Classification

Let's now see how the RandomForestClassifier model performs compared to the
LogisticRegression:

evaluator = ev.BinaryClassificationEvaluator(

labelCol='INFANT_ALIVE_AT_REPORT')

print(evaluator.evaluate(test,

{evaluator.metricName: "areaUnderROC"}))

print(evaluator.evaluate(test,

{evaluator.metricName: “areaUnderPR"}))

We get the following results:

08/29/15 149

Classification

Well, as you can see, the results are better than the logistic regression model by
roughly 3 percentage points. Let's test how well would a model with one tree do:
classifier = cl.DecisionTreeClassifier(

maxDepth=5,

labelCol='INFANT_ALIVE_AT_REPORT')

pipeline = Pipeline(stages=[encoder, featuresCreator, classifier])

model = pipeline.fit(births_train)

test = model.transform(births_test)

evaluator = ev.BinaryClassificationEvaluator(labelCol='INFANT_ALIVE_AT_REPORT')

print(evaluator.evaluate(test,

{evaluator.metricName: "areaUnderROC"}))

print(evaluator.evaluate(test,

{evaluator.metricName: "areaUnderPR"}))

08/29/15 150

Clustering

Clustering is another big part of machine learning: quite often, in the real world, we
do not have the luxury of having the target feature, so we need to revert to an
unsupervised learning paradigm, where we try to uncover patterns in the data.

Finding clusters in the births dataset

In this example, we will use the k-means model to find similarities in the births data:

import pyspark.ml.clustering as clus

kmeans = clus.KMeans(k = 5, featuresCol='features')

pipeline = Pipeline(stages=[assembler, featuresCreator, kmeans]

)

model = pipeline.fit(births_train)

08/29/15 151

Clustering

Having estimated the model, let's see if we can find some differences between clusters:

test = model.transform(births_test)

test.groupBy('prediction').agg({ '*': 'count', 'MOTHER_HEIGHT_IN': 'avg' }).collect()

The preceding code produces the following output:

Well, the MOTHER_HEIGHT_IN is significantly different in cluster 2. Going through
the results (which we will not do here for obvious reasons) would most likely uncover
more differences and allow us to understand the data better.

08/29/15 152

Topic mining

Clustering models are not limited to numeric data only. In the field of NLP, problems such as topic
extraction rely on clustering to detect documents with similar topics. We will go through such an
example.

First, let's create our dataset. The data is formed from randomly selected paragraphs found on the
Internet: three of them deal with topics of nature and national parks, the remaining three cover
technology.

text_data = spark.createDataFrame([
['''To make a computer do anything, you have to write a
computer program. To write a computer program, you have
to tell the computer, step by step, exactly what you want
it to do. The computer then "executes" the program,
following each step mechanically, to accomplish the end
goal. When you are telling the computer what to do, you
also get to choose how it's going to do it. That's where
computer algorithms come in. The algorithm is the basic
technique used to get the job done. Let's follow an
example to help get an understanding of the algorithm
concept.'''],

08/29/15 153

Topic mining

(...),
['''Australia has over 500 national parks. Over 28
million hectares of land is designated as national
parkland, accounting for almost four per cent of
Australia's land areas. In addition, a further six per
cent of Australia is protected and includes state
forests, nature parks and conservation reserves.National
parks are usually large areas of land that are protected
because they have unspoilt landscapes and a diverse
number of native plants and animals. This means that
commercial activities such as farming are prohibited and
human activity is strictly monitored.''']
], ['documents'])

08/29/15 154

Topic mining

First, we will once again use the RegexTokenizer and the StopWordsRemover
models:

tokenizer = ft.RegexTokenizer(

inputCol='documents',

outputCol='input_arr',

pattern='\s+|[,.\"]')

stopwords = ft.StopWordsRemover(

inputCol=tokenizer.getOutputCol(),

outputCol='input_stop')

08/29/15 155

Topic mining

Next in our pipeline is the CountVectorizer: a model that counts words in a document
and returns a vector of counts. The length of the vector is equal to the total number
of distinct words in all the documents, which can be seen in the following snippet:

stringIndexer = ft.CountVectorizer(

inputCol=stopwords.getOutputCol(),

outputCol="input_indexed")

tokenized = stopwords \

.transform(tokenizer.transform(text_data)

)

08/29/15 156

Topic mining

As you can see, there are 262 distinct words in the text, and each document is now
represented by a count of each word occurrence.

It's now time to start predicting the topics. For that purpose we will use the LDA
model—the Latent Dirichlet Allocation model:

clustering = clus.LDA(k=2,

optimizer='online',

featuresCol=stringIndexer.getOutputCol())

The k parameter specifies how many topics we expect to see, the optimizer
parameter can be either 'online' or 'em' (the latter standing for the Expectation
Maximization algorithm).

08/29/15 157

Topic mining

stringIndexer.fit(tokenized).transform(tokenized).select('input_indexed').take(2)

The preceding code will produce the following output:

08/29/15 158

Topic mining

As you can see, there are 262 distinct words in the text, and each document is now
represented by a count of each word occurrence.

It's now time to start predicting the topics. For that purpose we will use the LDA
model—the Latent Dirichlet Allocation model:

clustering = clus.LDA(k=2, optimizer='online',

featuresCol=stringIndexer.getOutputCol())

The k parameter specifies how many topics we expect to see, the optimizer
parameter can be either 'online' or 'em' (the latter standing for the Expectation
Maximization algorithm).

08/29/15 159

Topic mining

Putting these puzzles together results in, so far, the longest of our pipelines:

pipeline = ml.Pipeline(stages=[tokenizer, stopwords, stringIndexer, clustering])

Have we properly uncovered the topics? Well, let's see:

topics = pipeline.fit(text_data) .transform(text_data)

topics.select('topicDistribution').collect()

Here's what we get:

08/29/15 160

Regression

We will try to predict the MOTHER_WEIGHT_GAIN given some of the features
described here; these are contained in the features listed here:

features = ['MOTHER_AGE_YEARS','MOTHER_HEIGHT_IN',

'MOTHER_PRE_WEIGHT','DIABETES_PRE',

'DIABETES_GEST','HYP_TENS_PRE',

'HYP_TENS_GEST', 'PREV_BIRTH_PRETERM',

'CIG_BEFORE','CIG_1_TRI', 'CIG_2_TRI',

'CIG_3_TRI'

]

08/29/15 161

Regression

First, since all the features are numeric, we will collate them together and use the
ChiSqSelector to select only the top six most important features:

featuresCreator = ft.VectorAssembler(

inputCols=[col for col in features[1:]],

outputCol='features'

)

selector = ft.ChiSqSelector(

numTopFeatures=6, outputCol="selectedFeatures",

labelCol='MOTHER_WEIGHT_GAIN'

)

08/29/15 162

Regression

In order to predict the weight gain, we will use the gradient boosted trees regressor:

import pyspark.ml.regression as reg

regressor = reg.GBTRegressor(

maxIter=15,

maxDepth=3,

labelCol='MOTHER_WEIGHT_GAIN')

Finally, again, we put it all together into a Pipeline:

pipeline = Pipeline(stages=[featuresCreator, selector, regressor])

weightGain = pipeline.fit(births_train)

08/29/15 163

Regression

Having created the weightGain model, let's see if it performs well on our testing data:

evaluator = ev.RegressionEvaluator(

predictionCol="prediction",

labelCol='MOTHER_WEIGHT_GAIN')

print(evaluator.evaluate(

weightGain.transform(births_test),

{evaluator.metricName: 'r2'}))

We get the following output:

Sadly, the model is no better than a flip of a coin. It looks that without additional independent features that are
better correlated with the MOTHER_WEIGHT_GAIN label, we will not be able to explain its variance sufficiently.

08/29/15 164

Summary

• In This Module, We went into details of how to use PySpark ML: the official main
machine learning library for PySpark.

• We explained what the Transformer and Estimator are, and showed their role in
another concept introduced in the ML library: the Pipeline. Subsequently,

• we also presented how to use some of the methods to fine-tune the hyper
parameters of models.

• Finally, we gave some examples of how to use some of the feature extractors and
models from the library.

• In the next Module, we will delve into graph theory and GraphFrames that help in
tackling machine learning problems better represented as graphs.

Module 7 

GraphFrames

08/29/15 165

Day 3
Module 7
GraphFrames
Introducing GraphFrames
Installing GraphFrames
Preparing your flights dataset
Building the graph
Executing simple queries
Understanding vertex degrees
Determining the top transfer airports
Understanding motifs
Determining airport ranking using PageRank
Determining the most popular non-stop flights
Using Breadth-First Search
Visualizing flights using D3
Assignment 6
Conclusion and Summary

Agenda

 166

Objectives
You will learn how to do the following:

• Why use graphs?

• Understanding the classic graph problem: the flights dataset

• Understanding the graph vertices and edges

• Simple queries

• Using motif finding

• Using breadth first search

• Using PageRank

• Visualizing flights using D3

Agenda

 167

Whether traversing social networks or restaurant recommendations, it is easier to
understand these data problems within the context of graph structures: vertices,
edges, and properties:

GraphFrames

 168

For example, within the context of social networks, the vertices are the people while
the edges are the connections between them.

Within the context of restaurant recommendations, the vertices (for example) involve
the location, cuisine type, and restaurants while the edges are the connections
between them (for example, these three restaurants are in Vancouver, BC, but only
two of them serve ramen).

While the two graphs are seemingly disconnected, you can in fact create a social
network + restaurant recommendation graph based on the reviews of friends within a
social circle, as noted in the following figure:

GraphFrames

 169

For example, if Isabella wants to find a great ramen restaurant in Vancouver,
traversing her friends' reviews, she will most likely choose Kintaro Ramen, as both
Samantha and Juliette have rated the restaurant favorably:

GraphFrames

 170

Another classic graph problem is the analysis of flight data:

Airports are represented by vertices and flights between those airports are
represented by edges.

Also, there are numerous properties associated with these flights, including, but not
limited to, departure delays, plane type, and carrier:

GraphFrames

 171

In this module, we will use GraphFrames to quickly and easily analyze flight
performance data organized in graph structures.

Because we're using graph structures, we can easily ask many questions that are
not as intuitive as tabular structures, such as finding structural motifs, airport ranking
using PageRank, and shortest paths between cities.

GraphFrames leverages the distribution and expression capabilities of the
DataFrame API to both simplify your queries and leverage the performance
optimizations of the Apache Spark SQL engine.

In addition, with GraphFrames, graph analysis is available in Python, Scala, and
Java.

Just as important, you can leverage your existing Apache Spark skills to solve graph
problems (in addition to machine learning, streaming, and SQL) instead of making a
paradigm shift to learn a new framework.

GraphFrames

 172

GraphFrames utilizes the power of Apache Spark DataFrames to support general
graph processing.

Specifically, the vertices and edges are represented by DataFrames allowing us to
store arbitrary data with each vertex and edge.

While GraphFrames is similar to Spark's GraphX library, there are some key
differences, including:

• GraphFrames leverage the performance optimizations and simplicity of the
DataFrame API.

• By using the DataFrame API, GraphFrames now have Python, Java, and Scala
APIs. GraphX is only accessible through Scala; now all its algorithms are
available in Python and Java.

• Note, at the time of writing, there was a bug preventing GraphFrames from
working with Python3.x, hence we will be using Python2.x.

Introducing GraphFrames

 173

At the time of writing, GraphFrames is on version 0.3 and available as a Spark
package (http://spark-packages.org) at

https://spark-packages.org/package/graphframes/graphframes.

For more information about GraphFrames, please refer to Introducing GraphFrames
at

https://databricks.com/blog/2016/03/03/ introducing-graphframes.html.

Introducing GraphFrames

 174

If you are running your job from a Spark CLI (for example, spark-shell, pyspark,
spark-sql, spark-submit), you can use the –-packages command, which will extract,
compile, and execute the necessary code for you to use the GraphFrames package.

For example, to use the latest GraphFrames package (version 0.3) with Spark 2.0
and Scala 2.11 with spark-shell, the command is:

> $SPARK_HOME/bin/spark-shell --packages graphframes:graphframes:0.3.0- spark2.0-s_2.11

If you are using a notebook service, you may need to install the package first.

For example, the following section shows the steps to install the GraphFrames library within the free
Databricks Community Edition (http://databricks.com/try-databricks).

Installing GraphFrames

 175

For this flights sample scenario, we will make use of two sets of data:

Airline On-Time Performance and Causes of Flight Delays: [http://bit. ly/2ccJPPM]
This dataset contains scheduled and actual departure and arrival times, and delay
causes as reported by US air carriers. The data is collected by the Office of Airline
Information, Bureau of Transportation Statistics (BTS).

Open Flights: Airports and airline data: [http://openflights.org/data. html] This dataset
contains the list of US airport data including the IATA code, airport name, and airport
location.

Preparing your flights dataset

 176

We will create two DataFrames – airports and departureDelays–which will make up
our vertices and edges of our GraphFrame, respectively.

We will be creating this flights sample application using Python.

As we are using a Databricks notebook for our example, we can make use of the /
databricks-datasets/location, which contains numerous sample datasets.

You can also download the data from:

departureDelays.csv: http://bit.ly/2ejPr8k

airportCodes: http://bit.ly/2ePAdKT

Preparing your flights dataset

 177

We are creating two variables denoting the file paths for our Airports and Departure
Delays data, respectively.

Then we will load these datasets and create the respective Spark DataFrames; note
for both of these files, we can easily infer the schema:

Set File Paths

tripdelaysFilePath = "/databricks-datasets/flights/departuredelays. csv"

airportsnaFilePath = "/databricks-datasets/flights/airport-codes-na. txt"

Obtain airports dataset

Note, this dataset is tab-delimited with a header

airportsna = spark.read.csv(airportsnaFilePath, header='true', inferSchema='true',
sep='\t')

airportsna.createOrReplaceTempView("airports_na")

Preparing your flights dataset

 178

Obtain departure Delays data

Note, this dataset is comma-delimited with a header

departureDelays = spark.read.csv(tripdelaysFilePath, header='true')

departureDelays.createOrReplaceTempView("departureDelays")

departureDelays.cache()

Once we loaded the departureDelays DataFrame, we also cache it so we can
include some additional filtering of the data in a performant manner:

Available IATA codes from the departuredelays sample dataset

tripIATA = spark.sql("select distinct iata from (select distinct origin as iata from
departureDelays union all select distinct destination as iata from departureDelays)
a")

tripIATA.createOrReplaceTempView("tripIATA")

Preparing your flights dataset

 179

The preceding query allows us to build a distinct list with origin city IATA codes (for
example, Seattle = 'SEA', San Francisco = 'SFO', New York JFK = 'JFK', and so on).
Next, we only include airports that had a trip occur within the departureDelays
DataFrame:

Only include airports with atleast one trip from the

`departureDelays` dataset

airports = spark.sql("select f.IATA, f.City, f.State, f.Country from airports_na f join
tripIATA t on t.IATA = f.IATA")

airports.createOrReplaceTempView("airports")

airports.cache()

Preparing your flights dataset

 180

Once we loaded the departureDelays DataFrame, we also cache it so we can include
some additional filtering of the data in a performant manner:

Available IATA codes from the departuredelays sample dataset

tripIATA = spark.sql("select distinct iata from (select distinct origin as iata from
departureDelays union all select distinct destination as iata from departureDelays)
a")

tripIATA.createOrReplaceTempView("tripIATA")

Preparing your flights dataset

 181

The preceding query allows us to build a distinct list with origin city IATA codes (for
example, Seattle = 'SEA', San Francisco = 'SFO', New York JFK = 'JFK', and so on).
Next, we only include airports that had a trip occur within the departureDelays
DataFrame:

Only include airports with atleast one trip from the

`departureDelays` dataset

airports = spark.sql("select f.IATA, f.City, f.State, f.Country from airports_na f join
tripIATA t on t.IATA = f.IATA")

airports.createOrReplaceTempView("airports")

airports.cache()

Preparing your flights dataset

 182

By building the distinct list of origin airport codes, we can build the airports
DataFrame to contain only the airport codes that exist in the departureDelays
dataset. The following code snippet generates a new DataFrame (departureDelays_
geo) that is comprised of key attributes including date of flight, delays, distance, and
airport information (origin, destination):
Build `departureDelays_geo` DataFrame

Obtain key attributes such as Date of flight, delays, distance,

and airport information (Origin, Destination)

departureDelays_geo = spark.sql("select cast(f.date as int) as tripid,
cast(concat(concat(concat(concat(concat(concat('2014-', concat(concat(substr(cast(f.date as string), 1, 2), '-')),
substr(cast(f.date as string), 3, 2)), ''), substr(cast(f.date as string), 5, 2)), ':'), substr(cast(f.date as string), 7, 2)),
':00') as timestamp) as `localdate`, cast(f.delay as int), cast(f.distance as int), f.origin as src, f.destination as dst,
o.city as city_src, d.city as city_dst, o.state as state_src, d.state as state_dst from departuredelays f join
airports o on o.iata = f.origin join airports d on d.iata = f.destination")

Create Temporary View and cache

departureDelays_geo.createOrReplaceTempView("departureDelays_geo")

departureDelays_geo.cache()

Preparing your flights dataset

 183

To take a quick peek into this data, you can run the show method as shown here:

Review the top 10 rows of the `departureDelays_geo` DataFrame

departureDelays_geo.show(10)

Preparing your flights dataset

 184

Now that we've imported our data, let's build our graph. To do this, we're going to
build the structure for our vertices and edges. At the time of writing, GraphFrames
requires a specific naming convention for vertices and edges:

The column representing the vertices needs to have the name ofid. In our case, the
vertices of our flight data are the airports. Therefore, we will need to rename the IATA
airport code to id in our airports DataFrame.

The columns representing the edges need to have a source (src) and destination
(dst). For our flight data, the edges are the flights, therefore the src and dst are the
origin and destination columns from the departureDelays_geo DataFrame.

Building the graph

 185

To simplify the edges for our graph, we will create the tripEdges DataFrame with a
subset of the columns available within the departureDelays_Geo DataFrame. As
well, we created a tripVertices DataFrame that simply renames the IATA column to id
to match the GraphFrame naming convention:

Note, ensure you have already installed

the GraphFrames spark-package

from pyspark.sql.functions import *

from graphframes import *

Create Vertices (airports) and Edges (flights)

tripVertices = airports.withColumnRenamed("IATA", "id").distinct()

tripEdges = departureDelays_geo.select("tripid", "delay", "src", "dst", "city_dst",
"state_dst")

Cache Vertices and Edges

tripEdges.cache()

tripVertices.cache()

Building the graph

 186

Within Databricks, you can query the data using the display command. For example,
to view the tripEdges DataFrame, the command is as follows:

display(tripEdges)

The output is as follows:

Now that we have the two DataFrames, we can create a GraphFrame using the
GraphFrame command:

tripGraph = GraphFrame(tripVertices, tripEdges)

Building the graph

 187

Let's start with a set of simple graph queries to understand flight performance and
departure delays.

Determining the number of airports and trips

For example, to determine the number of airports and trips, you can run the following
commands:

print "Airports: %d" % tripGraph.vertices.count()

print "Trips: %d" % tripGraph.edges.count()

As you can see from the results, there are 279 airports with 1.36 million trips:

Executing simple queries

 188

Determining the longest delay in this dataset

To determine the longest delayed flight in the dataset, you can run the following
query with the result of 1,642 minutes (that's more than 27 hours!):

tripGraph.edges.groupBy().max("delay")

Output

+----------+

|max(delay)|

+----------+

| 1642|

+----------+

Executing simple queries

 189

Determining the number of delayed versus on-time/early flights

To determine the number of delayed versus on-time (or early) flights, you can run the
following queries:

print "On-time / Early Flights: %d" % tripGraph.edges.filter("delay <= 0").count()

print "Delayed Flights: %d" % tripGraph.edges.filter("delay > 0"). count()

Executing simple queries

 190

Determining the number of delayed versus on-time/early flights

To determine the number of delayed versus on-time (or early) flights, you can run the
following queries:

print "On-time / Early Flights: %d" % tripGraph.edges.filter("delay <= 0").count()

print "Delayed Flights: %d" % tripGraph.edges.filter("delay > 0"). count()

with the results nothing that almost 43% of the flights were delayed!

Executing simple queries

 191

What flights departing Seattle are most likely to have significant delays?
Digging further in this data, let's find out the top five destinations for flights departing from
Seattle that are most likely to have significant delays. This can be achieved through the following
query:

tripGraph.edges.filter("src = 'SEA' and delay > 0").groupBy("src", "dst")\

.avg(“delay").sort(desc("avg(delay)")).show(5)

As you can see in the following results: Philadelphia (PHL), Colorado Springs (COS), Fresno
(FAT), Long Beach (LGB), and Washington D.C (IAD) are the top five cities with flights delayed
originating from Seattle:

Executing simple queries

 192

What states tend to have significant delays departing from Seattle?
Let's find which states have the longest cumulative delays (with individual delays >
100 minutes) originating from Seattle. This time we will use the display command to
review the data:

States with the longest cumulative delays (with individual

delays > 100 minutes) (origin: Seattle)

display(tripGraph.edges.filter("src = 'SEA' and delay > 100"))

Executing simple queries

 193

Using the Databricks display command, we can also quickly change from this table
view to a map view of the data. As can be seen in the following figure, the state with
the most cumulative delays originating from Seattle (in this dataset) is California:

Executing simple queries

 194

Within the context of graph theory, the degrees around a vertex are the number of
edges around the vertex. In our flights example, the degrees are then the total
number of edges (that is, flights) to the vertex (that is, airports). Therefore, if we were
to obtain the top 20 vertex degrees (in descending order) from our graph, then we
would be asking for the top 20 busiest airports (most flights in and out) from our
graph. This can be quickly determined using the following query:

display(tripGraph.degrees.sort(desc("degree")).limit(20))

Because we're using the display command, we can quickly view a bar graph of this
data:

Understanding vertex degrees

 195

Diving into more details, here are the top 20 inDegrees (that is, incoming flights):

display(tripGraph.inDegrees.sort(desc("inDegree")).limit(20))

Understanding vertex degrees

 196

While here are the top 20 outDegrees (that is, outgoing flights):

display(tripGraph.outDegrees.sort(desc("outDegree")).limit(20))

Interestingly, while the top 10 airports (Atlanta/ATL to Charlotte/CLT) are ranked the
same for incoming and outgoing flights, the ranks of the next 10 airports change (for
example, Seattle/SEA is 17th for incoming flights, but 18th for outgoing).

Understanding vertex degrees

 197

Determining the top transfer airports
An extension of understanding vertex degrees for airports is to determine the top
transfer airports. Many airports are used as transfer points instead of being the final
destination. An easy way to calculate this is by calculating the ratio of inDegrees (the
number of flights to the airport) and / outDegrees (the number of flights leaving the
airport). Values close to 1 may indicate many transfers, whereas values <1 indicate
many outgoing flights and values >1 indicate many incoming flights.

Note that this is a simple calculation that does not consider timing or scheduling of
flights, just the overall aggregate number within the dataset:

Calculate the inDeg (flights into the airport) and

outDeg (flights leaving the airport)

inDeg = tripGraph.inDegrees

outDeg = tripGraph.outDegrees

Understanding vertex degrees

 198

Calculate the degreeRatio (inDeg/outDeg)

degreeRatio = inDeg.join(outDeg, inDeg.id == outDeg.id) \

.drop(outDeg.id) \

.selectExpr("id", "double(inDegree)/double(outDegree) as degreeRatio") \

.cache()

Join back to the 'airports' DataFrame

(instead of registering temp table as above)

transferAirports = degreeRatio.join(airports, degreeRatio.id == airports.IATA) \

.selectExpr("id", "city", "degreeRatio") \

.filter("degreeRatio between 0.9 and 1.1")

Understanding vertex degrees

 199

List out the top 10 transfer city airports

display(transferAirports.orderBy("degreeRatio").limit(10))

The output of this query is a bar chart of the top 10 transfer city airports (that is, hub airports):

This makes sense since these airports are major hubs for national airlines (for example, Delta uses
Minneapolis and Salt Lake City as its hub, Frontier uses Denver, American uses Dallas and Phoenix,
United uses Houston, Chicago, and San Francisco, and Hawaiian Airlines uses Kahului and Honolulu
as its hubs).

Understanding vertex degrees

 200

To easily understand the complex relationship of city airports and the flights between
each other, we can use motifs to find patterns of airports (for example, vertices)
connected by flights (that is, edges). The result is a DataFrame in which the column
names are given by the motif keys. Note that motif finding is one of the new graph
algorithms supported as part of GraphFrames.

For example, let's determine the delays that are due to San Francisco International
Airport (SFO):

Generate motifs

motifs = tripGraphPrime.find("(a)-[ab]->(b); (b)-[bc]->(c)")\

.filter("(b.id = 'SFO') and (ab.delay > 500 or bc.delay > 500) and bc.tripid > ab.tripid
and bc.tripid < ab.tripid + 10000”)

Display motifs

display(motifs)

Breaking down the preceding query, the (x) represents the vertex (that is, airport)
while the [xy] represents the edge (that is, flights between airports).

Understanding motifs

 201

Therefore, to determine the delays that are due to SFO, use the following:

The vertex (b) represents the airport in the middle (that is, SFO)

The vertex(a)represents the origin airport (within the dataset)

The vertex (c) represents the destination airport (within the dataset)

The edge [ab] represents the flight between (a) (that is, origin) and (b) (that is, SFO)

The edge [bc] represents the flight between (b) (that is, SFO) and (c) (that is,
destination)

Within the filter statement, we put in some rudimentary constraints (note that this is
an over simplistic representation of flight paths):

b.id = 'SFO' denotes that the middle vertex (b) is limited to just SFO airport

(ab.delay > 500 or bc.delay > 500) denotes that we are limited to flights that have
delays greater than 500 minutes

Understanding motifs

 202

(bc.tripid > ab.tripid and bc.tripid < ab.tripid + 10000) denotes that the (ab) flight must
be before the (bc) trip and within the same day. The tripid was derived from the date
time, thus explaining why it could be simplified this way

The output of this query is noted in the following figure:

Understanding motifs

 203

Because GraphFrames is built on top of GraphX, there are several algorithms that
we can immediately leverage.

PageRank was popularized by the Google Search Engine and created by Larry
Page.

To quote Wikipedia:

"PageRank works by counting the number and quality of links to a page to determine
a rough estimate of how important the website is. The underlying assumption is that
more important websites are likely to receive more links from other websites."

While the preceding example refers to web pages, this concept readily applies to any
graph structure whether it is created from web pages, bike stations, or airports.

Yet the interface via GraphFrames is as simple as calling a method.

GraphFrames.PageRank will return the PageRank results as a new column
appended to the vertices DataFrame to simplify our downstream analysis.

Determining airport ranking
using PageRank

 204

As there are many flights and connections through the various airports included in
this dataset, we can use the PageRank algorithm to have Spark traverse the graph
iteratively to compute a rough estimate of how important each airport is:

Determining Airport ranking of importance using 'pageRank'

ranks = tripGraph.pageRank(resetProbability=0.15, maxIter=5)

Display the pageRank output

display(ranks.vertices.orderBy(ranks.vertices.pagerank.desc()). limit(20))

Note that resetProbability = 0.15 represents the probability of resetting to a random
vertex (this is the default value) while maxIter = 5 is a set number of iterations.

For more information on PageRank parameters, please refer to Wikipedia > Page
Rank at https://en.wikipedia.org/wiki/PageRank.

Determining airport ranking
using PageRank

 205

The results of the PageRank are noted in the following bar graph:

In terms of airport ranking, the PageRank algorithm has determined that ATL (Hartsfield-Jackson
Atlanta International Airport) is the most important airport in the United States.

This observation makes sense as ATL is not only the busiest airport in the United States (http://
bit.ly/2eTGHs4), but it is also the busiest airport in the world (2000-2015) (http://bit.ly/2eTGDsy).

Determining airport ranking
using PageRank

 206

Determining the most popular non-stop flights
Expanding upon our tripGraph GraphFrame, the following query will allow us to find
the most popular non-stop flights in the US (for this dataset):

Determine the most popular non-stop flights

import pyspark.sql.functions as func

topTrips = tripGraph \

.edges \

.groupBy("src", "dst") \

.agg(func.count("delay").alias("trips"))

Show the top 20 most popular flights (single city hops)

display(topTrips.orderBy(topTrips.trips.desc()).limit(20))

Determining airport ranking
using PageRank

 207

Note, while we are using the delay column, we're just actually doing a count of the
number of trips. Here's the output:

As can be observed from this query, the two most frequent non-stop flights are between LAX (Los Angeles)
and SFO (San Francisco). The fact that these flights are so frequent indicates their importance in the airline
market. As noted in the New York Times article from April 4, 2016, Alaska Air Sees Virgin America as Key to
West Coast (http://nyti.ms/2ea1uZR), acquiring slots at these two airports was one of the reasons why Alaska
Airlines purchased Virgin Airlines. Graphs are not just fun but also contain potentially powerful business
insight!

Determining airport ranking
using PageRank

 208

The Breadth-first search (BFS) is a new algorithm as part of GraphFrames that
finds the shortest path from one set of vertices to another.

In this section, we will use BFS to traverse our tripGraph to quickly find the desired
vertices (that is, airports) and edges (that is, flights). Let's try to find the shortest
number of connections between cities based on the dataset. Note that these
examples do not consider time or distance, just hops between cities. For example, to
find the number of direct flights between Seattle and San Francisco, you can run the
following query:

Obtain list of direct flights between SEA and SFO

filteredPaths = tripGraph.bfs(

fromExpr = "id = 'SEA'",

toExpr = "id = 'SFO'",

maxPathLength = 1)

display list of direct flights

display(filteredPaths)

Using Breadth-First Search

 209

fromExpr and toExpr are the expressions indicating the origin and destination
airports (that is, SEA and SFO, respectively). The maxPathLength = 1 indicates that
we only want one edge between the two vertices, that is, a non-stop flight between
Seattle and San Francisco. As noted in the following results, there are many direct
flights between Seattle and San Francisco:

Using Breadth-First Search

 210

But how about if we want to determine the number of direct flights between San
Francisco and Buffalo? Running the following query will note that there are no
results, that is, no direct flights between the two cities:

Obtain list of direct flights between SFO and BUF

filteredPaths = tripGraph.bfs(

fromExpr = "id = 'SFO'",

toExpr = "id = 'BUF'",

maxPathLength = 1)

display list of direct flights

display(filteredPaths)

Using Breadth-First Search

 211

Once we modify the preceding query to maxPathLength = 2, that is, one layover,
then you will see a lot more flight options:

display list of one-stop flights between SFO and BUF

filteredPaths = tripGraph.bfs(

fromExpr = "id = 'SFO'",

toExpr = "id = 'BUF'",

maxPathLength = 2)

display list of flights

display(filteredPaths)

Using Breadth-First Search

 212

But now that I have my list of airports, how can I determine which layover airports are
more popular between SFO and BUF? To determine this, you can now run the following
query:

Display most popular layover cities by descending count

display(filteredPaths.groupBy("v1.id", "v1.City").count(). orderBy(desc("count")).limit(10))

The output is shown in the following bar chart:

Using Breadth-First Search

 213

To get a powerful and fun visualization of the flight paths and connections in this
dataset, we can leverage the Airports D3 visualization (https://mbostock.github. io/d3/
talk/20111116/airports.html) within our Databricks notebook. By connecting our
GraphFrames, DataFrames, and D3 visualizations, we can visualize the scope of all
the flight connections as noted for all on-time or early departing flights within this
dataset.

The blue circles represent the vertices (that is, airports) where the size of the circle
represents the number of edges (that is, flights) in and out of those airports. The
black lines are the edges themselves (that is, flights) and their respective
connections to the other vertices (that is, airports). Note for any edges that go
offscreen, they are representing vertices (that is, airports) in the states of Hawaii and
Alaska.

Visualizing flights using D3

 214

For this to work, we first create a scala package called d3a that is embedded in our
notebook (you can download it from here: http://bit.ly/2kPkXkc). Because we're using
Databricks notebooks, we can make Scala calls within our PySpark notebook:

%scala

// On-time and Early Arrivals

import d3a._

graphs.force(

height = 800,

width = 1200,

clicks = sql("""select src, dst as dest, count(1) as count from departureDelays_geo where
delay <= 0 group by src, dst""").as[Edge])

Visualizing flights using D3

 215

The results of the preceding query for on-time and early arrivals flights are visualized in
the following screenshot:

Visualizing flights using D3

 216

You can hover over the airports (blue circle, vertex) in the airports D3 visualization where
the lines are the edges (flights). The preceding visualization is a snapshot when hovering
over Seattle (SEA) airport; while the following visualization is a snapshot when hovering
over Los Angeles (LAX) airport:

Visualizing flights using D3

 217

As you can see in this module, you can easily perform a lot of powerful data analysis by
executing queries against graph structures. With GraphFrames, you can leverage the
power, simplicity, and performance of the DataFrame API against your graph problems.

For more information on GraphFrames, please refer to the following resources:

Introducing GraphFrames (http://bit.ly/2dBPhKn)

On-Time Flight Performance with GraphFrames for Apache Spark (http://bit.ly/2c804ZD)

On-Time Flight Performance with GraphFrames for Apache Spark (Spark 2.0) Notebook
(http://bit.ly/2kPkXkc)

GraphFrames Overview (http://graphframes.github.io/)

Pygraphframes documentation (http://graphframes.github.io/api/ python/graphframes.html)

GraphX Programming Guide (http://spark.apache.org/docs/latest/ graphx-programming-
guide.html)

Summary

 218

Contact Us on:
G K T C S Innovations Pvt. Ltd.
IT Training & Consultancy,

Mobile: +91- 9975072320
Email : surendra@gktcs.com
Web: www.gktcs.com

 219

mailto:surendra@gktcs.com

