
More at rubyonrails.org: More Ruby on RailsMore Ruby on Rails

Action View Form
Helpers
Forms in web applications are an essential
interface for user input. However, form
markup can quickly become tedious to
write and maintain because of the need to
handle form control naming and its
numerous attributes. Rails does away with
this complexity by providing view helpers
for generating form markup. However, since
these helpers have different use cases,
developers need to know the differences
between the helper methods before putting
them to use.

After reading this guide, you will know:

How to create search forms and
similar kind of generic forms not
representing any specific model in
your application.

How to make model-centric forms
for creating and editing specific
database records.

How to generate select boxes from
multiple types of data.

What date and time helpers Rails
provides.

What makes a file upload form
different.

How to post forms to external
resources and specify setting an

https://guides.rubyonrails.org/index.html
http://rubyonrails.org/

authenticity_token.

How to build complex forms.

Chapters
1. Dealing with Basic Forms

A Generic Search Form

Multiple Hashes in Form Helper Calls

Helpers for Generating Form Elements

Other Helpers of Interest

2. Dealing with Model Objects

Model Object Helpers

Binding a Form to an Object

Relying on Record Identification

How do forms with PATCH, PUT, or DELETE
methods work?

3. Making Select Boxes with Ease

The Select and Option Tags

Select Boxes for Dealing with Models

Option Tags from a Collection of Arbitrary Objects

Time Zone and Country Select

4. Using Date and Time Form Helpers

Barebones Helpers

Model Object Helpers

Common Options

Individual Components

5. Uploading Files

What Gets Uploaded

Dealing with Ajax

6. Customizing Form Builders

7. Understanding Parameter Naming Conventions

Basic Structures

Combining Them

Using Form Helpers

8. Forms to External Resources

9. Building Complex Forms

Configuring the Model

Nested Forms

This guide is not intended to be a complete documentation of available form helpers and their arguments.
Please visit the Rails API documentation for a complete reference.

1 Dealing with Basic Forms
The most basic form helper is form_tag.

When called without arguments like this, it creates a <form> tag which, when submitted, will POST to the
current page. For instance, assuming the current page is /home/index, the generated HTML will look like
this (some line breaks added for readability):

You'll notice that the HTML contains an input element with type hidden. This input is important, because
the form cannot be successfully submitted without it. The hidden input element with the name utf8
enforces browsers to properly respect your form's character encoding and is generated for all forms whether
their action is "GET" or "POST".

The second input element with the name authenticity_token is a security feature of Rails called cross-
site request forgery protection, and form helpers generate it for every non-GET form (provided that this
security feature is enabled). You can read more about this in the Security Guide.

1.1 A Generic Search Form
One of the most basic forms you see on the web is a search form. This form contains:

a form element with "GET" method,

The Controller

Removing Objects

Preventing Empty Records

Adding Fields on the Fly

<%= form_tag do %>
 Form contents
<% end %>
<%= form_tag do %>
 Form contents
<% end %>

<form accept-charset="UTF-8" action="/" method="post">
 <input name="utf8" type="hidden" value="✓" />
 <input name="authenticity_token" type="hidden" value="J7CBxfHalt49OSHp27hblqK20c9PgwJ108nDHX/8Cts="
 Form contents
</form>
<form accept-charset="UTF-8" action="/" method="post">
 <input name="utf8" type="hidden" value="✓" />
 <input name="authenticity_token" type="hidden" value="J7CBxfHalt49OSHp27hblqK20c9PgwJ108nDHX/8Cts="
 Form contents
</form>

http://api.rubyonrails.org/v5.2.2/
https://guides.rubyonrails.org/security.html#cross-site-request-forgery-csrf

a label for the input,
a text input element, and
a submit element.

To create this form you will use form_tag, label_tag, text_field_tag, and submit_tag, respectively.
Like this:

This will generate the following HTML:

For every form input, an ID attribute is generated from its name ("q" in above example). These IDs can be
very useful for CSS styling or manipulation of form controls with JavaScript.

Besides text_field_tag and submit_tag, there is a similar helper for every form control in HTML.

Always use "GET" as the method for search forms. This allows users to bookmark a specific
search and get back to it. More generally Rails encourages you to use the right HTTP verb for an
action.

1.2 Multiple Hashes in Form Helper Calls
The form_tag helper accepts 2 arguments: the path for the action and an options hash. This hash specifies
the method of form submission and HTML options such as the form element's class.

As with the link_to helper, the path argument doesn't have to be a string; it can be a hash of URL

<%= form_tag("/search", method: "get") do %>
 <%= label_tag(:q, "Search for:") %>
 <%= text_field_tag(:q) %>
 <%= submit_tag("Search") %>
<% end %>
<%= form_tag("/search", method: "get") do %>
 <%= label_tag(:q, "Search for:") %>
 <%= text_field_tag(:q) %>
 <%= submit_tag("Search") %>
<% end %>

<form accept-charset="UTF-8" action="/search" method="get">
 <input name="utf8" type="hidden" value="✓" />
 <label for="q">Search for:</label>
 <input id="q" name="q" type="text" />
 <input name="commit" type="submit" value="Search" />
</form>
<form accept-charset="UTF-8" action="/search" method="get">
 <input name="utf8" type="hidden" value="✓" />
 <label for="q">Search for:</label>
 <input id="q" name="q" type="text" />
 <input name="commit" type="submit" value="Search" />
</form>

parameters recognizable by Rails' routing mechanism, which will turn the hash into a valid URL. However,
since both arguments to form_tag are hashes, you can easily run into a problem if you would like to specify
both. For instance, let's say you write this:

Here, method and class are appended to the query string of the generated URL because even though you
mean to write two hashes, you really only specified one. So you need to tell Ruby which is which by
delimiting the first hash (or both) with curly brackets. This will generate the HTML you expect:

1.3 Helpers for Generating Form Elements
Rails provides a series of helpers for generating form elements such as checkboxes, text fields, and radio
buttons. These basic helpers, with names ending in _tag (such as text_field_tag and check_box_tag),
generate just a single <input> element. The first parameter to these is always the name of the input. When
the form is submitted, the name will be passed along with the form data, and will make its way to the
params in the controller with the value entered by the user for that field. For example, if the form contains
<%= text_field_tag(:query) %>, then you would be able to get the value of this field in the controller
with params[:query].

When naming inputs, Rails uses certain conventions that make it possible to submit parameters with non-
scalar values such as arrays or hashes, which will also be accessible in params. You can read more about
them in chapter 7 of this guide. For details on the precise usage of these helpers, please refer to the API
documentation.

1.3.1 Checkboxes

Checkboxes are form controls that give the user a set of options they can enable or disable:

form_tag(controller: "people", action: "search", method: "get", class:
"nifty_form")
=> '<form accept-charset="UTF-8" action="/people/search?
method=get&class=nifty_form" method="post">'
form_tag(controller: "people", action: "search", method: "get", class:
"nifty_form")
=> '<form accept-charset="UTF-8" action="/people/search?
method=get&class=nifty_form" method="post">'

form_tag({controller: "people", action: "search"}, method: "get",
class: "nifty_form")
=> '<form accept-charset="UTF-8" action="/people/search" method="get"
class="nifty_form">'
form_tag({controller: "people", action: "search"}, method: "get",
class: "nifty_form")
=> '<form accept-charset="UTF-8" action="/people/search" method="get"
class="nifty_form">'

<%= check_box_tag(:pet_dog) %>
<%= label_tag(:pet_dog, "I own a dog") %>
<%= check_box_tag(:pet_cat) %>
<%= label_tag(:pet_cat, "I own a cat") %>

http://api.rubyonrails.org/v5.2.2/classes/ActionView/Helpers/FormTagHelper.html

This generates the following:

The first parameter to check_box_tag, of course, is the name of the input. The second parameter, naturally,
is the value of the input. This value will be included in the form data (and be present in params) when the
checkbox is checked.

1.3.2 Radio Buttons

Radio buttons, while similar to checkboxes, are controls that specify a set of options in which they are
mutually exclusive (i.e., the user can only pick one):

Output:

As with check_box_tag, the second parameter to radio_button_tag is the value of the input. Because
these two radio buttons share the same name (age), the user will only be able to select one of them, and
params[:age] will contain either "child" or "adult".

<%= check_box_tag(:pet_dog) %>
<%= label_tag(:pet_dog, "I own a dog") %>
<%= check_box_tag(:pet_cat) %>
<%= label_tag(:pet_cat, "I own a cat") %>

<input id="pet_dog" name="pet_dog" type="checkbox" value="1" />
<label for="pet_dog">I own a dog</label>
<input id="pet_cat" name="pet_cat" type="checkbox" value="1" />
<label for="pet_cat">I own a cat</label>
<input id="pet_dog" name="pet_dog" type="checkbox" value="1" />
<label for="pet_dog">I own a dog</label>
<input id="pet_cat" name="pet_cat" type="checkbox" value="1" />
<label for="pet_cat">I own a cat</label>

<%= radio_button_tag(:age, "child") %>
<%= label_tag(:age_child, "I am younger than 21") %>
<%= radio_button_tag(:age, "adult") %>
<%= label_tag(:age_adult, "I'm over 21") %>
<%= radio_button_tag(:age, "child") %>
<%= label_tag(:age_child, "I am younger than 21") %>
<%= radio_button_tag(:age, "adult") %>
<%= label_tag(:age_adult, "I'm over 21") %>

<input id="age_child" name="age" type="radio" value="child" />
<label for="age_child">I am younger than 21</label>
<input id="age_adult" name="age" type="radio" value="adult" />
<label for="age_adult">I'm over 21</label>
<input id="age_child" name="age" type="radio" value="child" />
<label for="age_child">I am younger than 21</label>
<input id="age_adult" name="age" type="radio" value="adult" />
<label for="age_adult">I'm over 21</label>

Always use labels for checkbox and radio buttons. They associate text with a specific option and, by
expanding the clickable region, make it easier for users to click the inputs.

1.4 Other Helpers of Interest
Other form controls worth mentioning are textareas, password fields, hidden fields, search fields, telephone
fields, date fields, time fields, color fields, datetime-local fields, month fields, week fields, URL fields, email
fields, number fields and range fields:

Output:

<%= text_area_tag(:message, "Hi, nice site", size: "24x6") %>
<%= password_field_tag(:password) %>
<%= hidden_field_tag(:parent_id, "5") %>
<%= search_field(:user, :name) %>
<%= telephone_field(:user, :phone) %>
<%= date_field(:user, :born_on) %>
<%= datetime_local_field(:user, :graduation_day) %>
<%= month_field(:user, :birthday_month) %>
<%= week_field(:user, :birthday_week) %>
<%= url_field(:user, :homepage) %>
<%= email_field(:user, :address) %>
<%= color_field(:user, :favorite_color) %>
<%= time_field(:task, :started_at) %>
<%= number_field(:product, :price, in: 1.0..20.0, step: 0.5) %>
<%= range_field(:product, :discount, in: 1..100) %>
<%= text_area_tag(:message, "Hi, nice site", size: "24x6") %>
<%= password_field_tag(:password) %>
<%= hidden_field_tag(:parent_id, "5") %>
<%= search_field(:user, :name) %>
<%= telephone_field(:user, :phone) %>
<%= date_field(:user, :born_on) %>
<%= datetime_local_field(:user, :graduation_day) %>
<%= month_field(:user, :birthday_month) %>
<%= week_field(:user, :birthday_week) %>
<%= url_field(:user, :homepage) %>
<%= email_field(:user, :address) %>
<%= color_field(:user, :favorite_color) %>
<%= time_field(:task, :started_at) %>
<%= number_field(:product, :price, in: 1.0..20.0, step: 0.5) %>
<%= range_field(:product, :discount, in: 1..100) %>

<textarea id="message" name="message" cols="24" rows="6">Hi, nice site</textarea
<input id="password" name="password" type="password" />
<input id="parent_id" name="parent_id" type="hidden" value="5" />
<input id="user_name" name="user[name]" type="search" />
<input id="user_phone" name="user[phone]" type="tel" />
<input id="user_born_on" name="user[born_on]" type="date" />
<input id="user_graduation_day" name="user[graduation_day]" type="datetime-local"
<input id="user_birthday_month" name="user[birthday_month]" type="month"
<input id="user_birthday_week" name="user[birthday_week]" type="week" />
<input id="user_homepage" name="user[homepage]" type="url" />
<input id="user_address" name="user[address]" type="email" />
<input id="user_favorite_color" name="user[favorite_color]" type="color"

Hidden inputs are not shown to the user but instead hold data like any textual input. Values inside them can
be changed with JavaScript.

The search, telephone, date, time, color, datetime, datetime-local, month, week, URL, email,
number and range inputs are HTML5 controls. If you require your app to have a consistent
experience in older browsers, you will need an HTML5 polyfill (provided by CSS and/or
JavaScript). There is definitely no shortage of solutions for this, although a popular tool at the
moment is Modernizr, which provides a simple way to add functionality based on the presence
of detected HTML5 features.

If you're using password input fields (for any purpose), you might want to configure your application to
prevent those parameters from being logged. You can learn about this in the Security Guide.

2 Dealing with Model Objects

2.1 Model Object Helpers
A particularly common task for a form is editing or creating a model object. While the *_tag helpers can
certainly be used for this task they are somewhat verbose as for each tag you would have to ensure the
correct parameter name is used and set the default value of the input appropriately. Rails provides helpers
tailored to this task. These helpers lack the _tag suffix, for example text_field, text_area.

For these helpers the first argument is the name of an instance variable and the second is the name of a
method (usually an attribute) to call on that object. Rails will set the value of the input control to the return
value of that method for the object and set an appropriate input name. If your controller has defined
@person and that person's name is Henry then a form containing:

<input id="task_started_at" name="task[started_at]" type="time" />
<input id="product_price" max="20.0" min="1.0" name="product[price]" step
<input id="product_discount" max="100" min="1" name="product[discount]" type
<textarea id="message" name="message" cols="24" rows="6">Hi, nice site</textarea
<input id="password" name="password" type="password" />
<input id="parent_id" name="parent_id" type="hidden" value="5" />
<input id="user_name" name="user[name]" type="search" />
<input id="user_phone" name="user[phone]" type="tel" />
<input id="user_born_on" name="user[born_on]" type="date" />
<input id="user_graduation_day" name="user[graduation_day]" type="datetime-local"
<input id="user_birthday_month" name="user[birthday_month]" type="month"
<input id="user_birthday_week" name="user[birthday_week]" type="week" />
<input id="user_homepage" name="user[homepage]" type="url" />
<input id="user_address" name="user[address]" type="email" />
<input id="user_favorite_color" name="user[favorite_color]" type="color"
<input id="task_started_at" name="task[started_at]" type="time" />
<input id="product_price" max="20.0" min="1.0" name="product[price]" step
<input id="product_discount" max="100" min="1" name="product[discount]" type

<%= text_field(:person, :name) %>
<%= text_field(:person, :name) %>

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://modernizr.com/
https://guides.rubyonrails.org/security.html#logging

will produce output similar to

Upon form submission the value entered by the user will be stored in params[:person][:name]. The
params[:person] hash is suitable for passing to Person.new or, if @person is an instance of Person,
@person.update. While the name of an attribute is the most common second parameter to these helpers
this is not compulsory. In the example above, as long as person objects have a name and a name= method
Rails will be happy.

You must pass the name of an instance variable, i.e. :person or "person", not an actual
instance of your model object.

Rails provides helpers for displaying the validation errors associated with a model object. These are covered
in detail by the Active Record Validations guide.

2.2 Binding a Form to an Object
While this is an increase in comfort it is far from perfect. If Person has many attributes to edit then we would
be repeating the name of the edited object many times. What we want to do is somehow bind a form to a
model object, which is exactly what form_for does.

Assume we have a controller for dealing with articles app/controllers/articles_controller.rb:

The corresponding view app/views/articles/new.html.erb using form_for looks like this:

<input id="person_name" name="person[name]" type="text" value="Henry"/>
<input id="person_name" name="person[name]" type="text" value="Henry"/>

def new
 @article = Article.new
end
def new
 @article = Article.new
end

<%= form_for @article, url: {action: "create"}, html: {class:
"nifty_form"} do |f| %>
 <%= f.text_field :title %>
 <%= f.text_area :body, size: "60x12" %>
 <%= f.submit "Create" %>
<% end %>
<%= form_for @article, url: {action: "create"}, html: {class:
"nifty_form"} do |f| %>
 <%= f.text_field :title %>
 <%= f.text_area :body, size: "60x12" %>
 <%= f.submit "Create" %>
<% end %>

https://guides.rubyonrails.org/active_record_validations.html#displaying-validation-errors-in-views

There are a few things to note here:

@article is the actual object being edited.
There is a single hash of options. Routing options are passed in the :url hash, HTML options are
passed in the :html hash. Also you can provide a :namespace option for your form to ensure
uniqueness of id attributes on form elements. The namespace attribute will be prefixed with
underscore on the generated HTML id.
The form_for method yields a form builder object (the f variable).
Methods to create form controls are called on the form builder object f.

The resulting HTML is:

The name passed to form_for controls the key used in params to access the form's values. Here the name
is article and so all the inputs have names of the form article[attribute_name]. Accordingly, in the
create action params[:article] will be a hash with keys :title and :body. You can read more about the
significance of input names in the parameter_names section.

The helper methods called on the form builder are identical to the model object helpers except that it is not
necessary to specify which object is being edited since this is already managed by the form builder.

You can create a similar binding without actually creating <form> tags with the fields_for helper. This is
useful for editing additional model objects with the same form. For example, if you had a Person model with
an associated ContactDetail model, you could create a form for creating both like so:

<form class="nifty_form" id="new_article" action="/articles" accept-charset
 <input name="utf8" type="hidden" value="✓" />
 <input type="hidden" name="authenticity_token" value="NRkFyRWxdYNfUg7vYxLOp2SLf93lvnl+QwDWorR42Dp6yZXPhHEb6arhDOIWcqGit8jfnrPwL781/xlrzj63TA=="
 <input type="text" name="article[title]" id="article_title" />
 <textarea name="article[body]" id="article_body" cols="60" rows="12"></
 <input type="submit" name="commit" value="Create" data-disable-with="Create"
</form>
<form class="nifty_form" id="new_article" action="/articles" accept-charset
 <input name="utf8" type="hidden" value="✓" />
 <input type="hidden" name="authenticity_token" value="NRkFyRWxdYNfUg7vYxLOp2SLf93lvnl+QwDWorR42Dp6yZXPhHEb6arhDOIWcqGit8jfnrPwL781/xlrzj63TA=="
 <input type="text" name="article[title]" id="article_title" />
 <textarea name="article[body]" id="article_body" cols="60" rows="12"></
 <input type="submit" name="commit" value="Create" data-disable-with="Create"
</form>

<%= form_for @person, url: {action: "create"} do |person_form| %>
 <%= person_form.text_field :name %>
 <%= fields_for @person.contact_detail do |contact_detail_form| %>
 <%= contact_detail_form.text_field :phone_number %>
 <% end %>
<% end %>
<%= form_for @person, url: {action: "create"} do |person_form| %>
 <%= person_form.text_field :name %>
 <%= fields_for @person.contact_detail do |contact_detail_form| %>
 <%= contact_detail_form.text_field :phone_number %>
 <% end %>
<% end %>

which produces the following output:

The object yielded by fields_for is a form builder like the one yielded by form_for (in fact form_for calls
fields_for internally).

2.3 Relying on Record Identification
The Article model is directly available to users of the application, so - following the best practices for
developing with Rails - you should declare it a resource:

Declaring a resource has a number of side effects. See Rails Routing From the Outside In for more
information on setting up and using resources.

When dealing with RESTful resources, calls to form_for can get significantly easier if you rely on record
identification. In short, you can just pass the model instance and have Rails figure out model name and the
rest:

<form class="new_person" id="new_person" action="/people" accept-charset=
 <input name="utf8" type="hidden" value="✓" />
 <input type="hidden" name="authenticity_token" value="bL13x72pldyDD8bgtkjKQakJCpd4A8JdXGbfksxBDHdf1uC0kCMqe2tvVdUYfidJt0fj3ihC4NxiVHv8GVYxJA=="
 <input type="text" name="person[name]" id="person_name" />
 <input type="text" name="contact_detail[phone_number]" id="contact_detail_phone_number"
</form>
<form class="new_person" id="new_person" action="/people" accept-charset=
 <input name="utf8" type="hidden" value="✓" />
 <input type="hidden" name="authenticity_token" value="bL13x72pldyDD8bgtkjKQakJCpd4A8JdXGbfksxBDHdf1uC0kCMqe2tvVdUYfidJt0fj3ihC4NxiVHv8GVYxJA=="
 <input type="text" name="person[name]" id="person_name" />
 <input type="text" name="contact_detail[phone_number]" id="contact_detail_phone_number"
</form>

resources :articles
resources :articles

Creating a new article
long-style:
form_for(@article, url: articles_path)
same thing, short-style (record identification gets used):
form_for(@article)

Editing an existing article
long-style:
form_for(@article, url: article_path(@article), html: {method:
"patch"})
short-style:
form_for(@article)
Creating a new article
long-style:
form_for(@article, url: articles_path)

https://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default

Notice how the short-style form_for invocation is conveniently the same, regardless of the record being
new or existing. Record identification is smart enough to figure out if the record is new by asking
record.new_record?. It also selects the correct path to submit to and the name based on the class of the
object.

Rails will also automatically set the class and id of the form appropriately: a form creating an article would
have id and class new_article. If you were editing the article with id 23, the class would be set to
edit_article and the id to edit_article_23. These attributes will be omitted for brevity in the rest of this
guide.

When you're using STI (single-table inheritance) with your models, you can't rely on record
identification on a subclass if only their parent class is declared a resource. You will have to
specify the model name, :url, and :method explicitly.

2.3.1 Dealing with Namespaces

If you have created namespaced routes, form_for has a nifty shorthand for that too. If your application has
an admin namespace then

will create a form that submits to the ArticlesController inside the admin namespace (submitting to
admin_article_path(@article) in the case of an update). If you have several levels of namespacing then
the syntax is similar:

For more information on Rails' routing system and the associated conventions, please see the routing
guide.

2.4 How do forms with PATCH, PUT, or DELETE methods work?
The Rails framework encourages RESTful design of your applications, which means you'll be making a lot of
"PATCH" and "DELETE" requests (besides "GET" and "POST"). However, most browsers don't support

same thing, short-style (record identification gets used):
form_for(@article)

Editing an existing article
long-style:
form_for(@article, url: article_path(@article), html: {method:
"patch"})
short-style:
form_for(@article)

form_for [:admin, @article]
form_for [:admin, @article]

form_for [:admin, :management, @article]
form_for [:admin, :management, @article]

https://guides.rubyonrails.org/routing.html

methods other than "GET" and "POST" when it comes to submitting forms.

Rails works around this issue by emulating other methods over POST with a hidden input named
"_method", which is set to reflect the desired method:

output:

When parsing POSTed data, Rails will take into account the special _method parameter and act as if the
HTTP method was the one specified inside it ("PATCH" in this example).

3 Making Select Boxes with Ease
Select boxes in HTML require a significant amount of markup (one OPTION element for each option to
choose from), therefore it makes the most sense for them to be dynamically generated.

Here is what the markup might look like:

Here you have a list of cities whose names are presented to the user. Internally the application only wants to
handle their IDs so they are used as the options' value attribute. Let's see how Rails can help out here.

form_tag(search_path, method: "patch")
form_tag(search_path, method: "patch")

<form accept-charset="UTF-8" action="/search" method="post">
 <input name="_method" type="hidden" value="patch" />
 <input name="utf8" type="hidden" value="✓" />
 <input name="authenticity_token" type="hidden" value="f755bb0ed134b76c432144748a6d4b7a7ddf2b71"
 ...
</form>
<form accept-charset="UTF-8" action="/search" method="post">
 <input name="_method" type="hidden" value="patch" />
 <input name="utf8" type="hidden" value="✓" />
 <input name="authenticity_token" type="hidden" value="f755bb0ed134b76c432144748a6d4b7a7ddf2b71"
 ...
</form>

<select name="city_id" id="city_id">
 <option value="1">Lisbon</option>
 <option value="2">Madrid</option>
 ...
 <option value="12">Berlin</option>
</select>
<select name="city_id" id="city_id">
 <option value="1">Lisbon</option>
 <option value="2">Madrid</option>
 ...
 <option value="12">Berlin</option>
</select>

3.1 The Select and Option Tags
The most generic helper is select_tag, which - as the name implies - simply generates the SELECT tag that
encapsulates an options string:

This is a start, but it doesn't dynamically create the option tags. You can generate option tags with the
options_for_select helper:

The first argument to options_for_select is a nested array where each element has two elements: option
text (city name) and option value (city id). The option value is what will be submitted to your controller. Often
this will be the id of a corresponding database object but this does not have to be the case.

Knowing this, you can combine select_tag and options_for_select to achieve the desired, complete
markup:

options_for_select allows you to pre-select an option by passing its value.

<%= select_tag(:city_id, '<option value="1">Lisbon</option>...') %>
<%= select_tag(:city_id, '<option value="1">Lisbon</option>...') %>

<%= options_for_select([['Lisbon', 1], ['Madrid', 2], ...]) %>

output:

<option value="1">Lisbon</option>
<option value="2">Madrid</option>
...
<%= options_for_select([['Lisbon', 1], ['Madrid', 2], ...]) %>

output:

<option value="1">Lisbon</option>
<option value="2">Madrid</option>
...

<%= select_tag(:city_id, options_for_select(...)) %>
<%= select_tag(:city_id, options_for_select(...)) %>

<%= options_for_select([['Lisbon', 1], ['Madrid', 2], ...], 2) %>

output:

<option value="1">Lisbon</option>
<option value="2" selected="selected">Madrid</option>
...
<%= options_for_select([['Lisbon', 1], ['Madrid', 2], ...], 2) %>

output:

Whenever Rails sees that the internal value of an option being generated matches this value, it will add the
selected attribute to that option.

When :include_blank or :prompt are not present, :include_blank is forced true if the select
attribute required is true, display size is one and multiple is not true.

You can add arbitrary attributes to the options using hashes:

3.2 Select Boxes for Dealing with Models
In most cases form controls will be tied to a specific database model and as you might expect Rails
provides helpers tailored for that purpose. Consistent with other form helpers, when dealing with models
you drop the _tag suffix from select_tag:

<option value="1">Lisbon</option>
<option value="2" selected="selected">Madrid</option>
...

<%= options_for_select(
 [
 ['Lisbon', 1, { 'data-size' => '2.8 million' }],
 ['Madrid', 2, { 'data-size' => '3.2 million' }]
], 2
) %>

output:

<option value="1" data-size="2.8 million">Lisbon</option>
<option value="2" selected="selected" data-size="3.2
million">Madrid</option>
...
<%= options_for_select(
 [
 ['Lisbon', 1, { 'data-size' => '2.8 million' }],
 ['Madrid', 2, { 'data-size' => '3.2 million' }]
], 2
) %>

output:

<option value="1" data-size="2.8 million">Lisbon</option>
<option value="2" selected="selected" data-size="3.2
million">Madrid</option>
...

controller:
@person = Person.new(city_id: 2)
controller:
@person = Person.new(city_id: 2)

Notice that the third parameter, the options array, is the same kind of argument you pass to
options_for_select. One advantage here is that you don't have to worry about pre-selecting the correct
city if the user already has one - Rails will do this for you by reading from the @person.city_id attribute.

As with other helpers, if you were to use the select helper on a form builder scoped to the @person object,
the syntax would be:

You can also pass a block to select helper:

If you are using select (or similar helpers such as collection_select, select_tag) to set a
belongs_to association you must pass the name of the foreign key (in the example above
city_id), not the name of association itself. If you specify city instead of city_id Active
Record will raise an error along the lines of ActiveRecord::AssociationTypeMismatch:
City(#17815740) expected, got String(#1138750) when you pass the params hash to
Person.new or update. Another way of looking at this is that form helpers only edit attributes.
You should also be aware of the potential security ramifications of allowing users to edit foreign
keys directly.

3.3 Option Tags from a Collection of Arbitrary Objects
Generating options tags with options_for_select requires that you create an array containing the text and
value for each option. But what if you had a City model (perhaps an Active Record one) and you wanted to

view:
<%= select(:person, :city_id, [['Lisbon', 1], ['Madrid', 2], ...]) %>
view:
<%= select(:person, :city_id, [['Lisbon', 1], ['Madrid', 2], ...]) %>

select on a form builder
<%= f.select(:city_id, ...) %>
select on a form builder
<%= f.select(:city_id, ...) %>

<%= f.select(:city_id) do %>
 <% [['Lisbon', 1], ['Madrid', 2]].each do |c| -%>
 <%= content_tag(:option, c.first, value: c.last) %>
 <% end %>
<% end %>
<%= f.select(:city_id) do %>
 <% [['Lisbon', 1], ['Madrid', 2]].each do |c| -%>
 <%= content_tag(:option, c.first, value: c.last) %>
 <% end %>
<% end %>

generate option tags from a collection of those objects? One solution would be to make a nested array by
iterating over them:

This is a perfectly valid solution, but Rails provides a less verbose alternative:
options_from_collection_for_select. This helper expects a collection of arbitrary objects and two
additional arguments: the names of the methods to read the option value and text from, respectively:

As the name implies, this only generates option tags. To generate a working select box you would need to
use it in conjunction with select_tag, just as you would with options_for_select. When working with
model objects, just as select combines select_tag and options_for_select, collection_select
combines select_tag with options_from_collection_for_select.

As with other helpers, if you were to use the collection_select helper on a form builder scoped to the
@person object, the syntax would be:

To recap, options_from_collection_for_select is to collection_select what options_for_select
is to select.

Pairs passed to options_for_select should have the name first and the id second, however with
options_from_collection_for_select the first argument is the value method and the second the text
method.

3.4 Time Zone and Country Select
To leverage time zone support in Rails, you have to ask your users what time zone they are in. Doing so
would require generating select options from a list of pre-defined TimeZone objects using
collection_select, but you can simply use the time_zone_select helper that already wraps this:

<% cities_array = City.all.map { |city| [city.name, city.id] } %>
<%= options_for_select(cities_array) %>
<% cities_array = City.all.map { |city| [city.name, city.id] } %>
<%= options_for_select(cities_array) %>

<%= options_from_collection_for_select(City.all, :id, :name) %>
<%= options_from_collection_for_select(City.all, :id, :name) %>

<%= collection_select(:person, :city_id, City.all, :id, :name) %>
<%= collection_select(:person, :city_id, City.all, :id, :name) %>

<%= f.collection_select(:city_id, City.all, :id, :name) %>
<%= f.collection_select(:city_id, City.all, :id, :name) %>

<%= time_zone_select(:person, :time_zone) %>

There is also time_zone_options_for_select helper for a more manual (therefore more customizable)
way of doing this. Read the API documentation to learn about the possible arguments for these two
methods.

Rails used to have a country_select helper for choosing countries, but this has been extracted to the
country_select plugin. When using this, be aware that the exclusion or inclusion of certain names from the
list can be somewhat controversial (and was the reason this functionality was extracted from Rails).

4 Using Date and Time Form Helpers
You can choose not to use the form helpers generating HTML5 date and time input fields and use the
alternative date and time helpers. These date and time helpers differ from all the other form helpers in two
important respects:

Dates and times are not representable by a single input element. Instead you have several, one for
each component (year, month, day etc.) and so there is no single value in your params hash with
your date or time.
Other helpers use the _tag suffix to indicate whether a helper is a barebones helper or one that
operates on model objects. With dates and times, select_date, select_time and
select_datetime are the barebones helpers, date_select, time_select and datetime_select
are the equivalent model object helpers.

Both of these families of helpers will create a series of select boxes for the different components (year,
month, day etc.).

4.1 Barebones Helpers
The select_* family of helpers take as their first argument an instance of Date, Time or DateTime that is
used as the currently selected value. You may omit this parameter, in which case the current date is used.
For example:

outputs (with actual option values omitted for brevity)

The above inputs would result in params[:start_date] being a hash with keys :year, :month, :day. To
get an actual Date, Time or DateTime object you would have to extract these values and pass them to the

<%= time_zone_select(:person, :time_zone) %>

<%= select_date Date.today, prefix: :start_date %>
<%= select_date Date.today, prefix: :start_date %>

<select id="start_date_year" name="start_date[year]"> ... </select>
<select id="start_date_month" name="start_date[month]"> ... </select>
<select id="start_date_day" name="start_date[day]"> ... </select>
<select id="start_date_year" name="start_date[year]"> ... </select>
<select id="start_date_month" name="start_date[month]"> ... </select>
<select id="start_date_day" name="start_date[day]"> ... </select>

http://api.rubyonrails.org/v5.2.2/classes/ActionView/Helpers/FormOptionsHelper.html#method-i-time_zone_options_for_select
https://github.com/stefanpenner/country_select

appropriate constructor, for example:

The :prefix option is the key used to retrieve the hash of date components from the params hash. Here it
was set to start_date, if omitted it will default to date.

4.2 Model Object Helpers
select_date does not work well with forms that update or create Active Record objects as Active Record
expects each element of the params hash to correspond to one attribute. The model object helpers for
dates and times submit parameters with special names; when Active Record sees parameters with such
names it knows they must be combined with the other parameters and given to a constructor appropriate to
the column type. For example:

outputs (with actual option values omitted for brevity)

which results in a params hash like

When this is passed to Person.new (or update), Active Record spots that these parameters should all be
used to construct the birth_date attribute and uses the suffixed information to determine in which order it
should pass these parameters to functions such as Date.civil.

Date.civil(params[:start_date][:year].to_i, params[:start_date]
[:month].to_i, params[:start_date][:day].to_i)
Date.civil(params[:start_date][:year].to_i, params[:start_date]
[:month].to_i, params[:start_date][:day].to_i)

<%= date_select :person, :birth_date %>
<%= date_select :person, :birth_date %>

<select id="person_birth_date_1i" name="person[birth_date(1i)]"> ...
</select>
<select id="person_birth_date_2i" name="person[birth_date(2i)]"> ...
</select>
<select id="person_birth_date_3i" name="person[birth_date(3i)]"> ...
</select>
<select id="person_birth_date_1i" name="person[birth_date(1i)]"> ...
</select>
<select id="person_birth_date_2i" name="person[birth_date(2i)]"> ...
</select>
<select id="person_birth_date_3i" name="person[birth_date(3i)]"> ...
</select>

{'person' => {'birth_date(1i)' => '2008', 'birth_date(2i)' => '11',
'birth_date(3i)' => '22'}}
{'person' => {'birth_date(1i)' => '2008', 'birth_date(2i)' => '11',
'birth_date(3i)' => '22'}}

4.3 Common Options
Both families of helpers use the same core set of functions to generate the individual select tags and so
both accept largely the same options. In particular, by default Rails will generate year options 5 years either
side of the current year. If this is not an appropriate range, the :start_year and :end_year options
override this. For an exhaustive list of the available options, refer to the API documentation.

As a rule of thumb you should be using date_select when working with model objects and select_date
in other cases, such as a search form which filters results by date.

In many cases the built-in date pickers are clumsy as they do not aid the user in working out the relationship
between the date and the day of the week.

4.4 Individual Components
Occasionally you need to display just a single date component such as a year or a month. Rails provides a
series of helpers for this, one for each component select_year, select_month, select_day,
select_hour, select_minute, select_second. These helpers are fairly straightforward. By default they
will generate an input field named after the time component (for example, "year" for select_year, "month"
for select_month etc.) although this can be overridden with the :field_name option. The :prefix option
works in the same way that it does for select_date and select_time and has the same default value.

The first parameter specifies which value should be selected and can either be an instance of a Date, Time
or DateTime, in which case the relevant component will be extracted, or a numerical value. For example:

will produce the same output if the current year is 2009 and the value chosen by the user can be retrieved
by params[:date][:year].

5 Uploading Files
A common task is uploading some sort of file, whether it's a picture of a person or a CSV file containing data
to process. The most important thing to remember with file uploads is that the rendered form's encoding
MUST be set to "multipart/form-data". If you use form_for, this is done automatically. If you use form_tag,
you must set it yourself, as per the following example.

The following two forms both upload a file.

<%= select_year(2009) %>
<%= select_year(Time.now) %>
<%= select_year(2009) %>
<%= select_year(Time.now) %>

<%= form_tag({action: :upload}, multipart: true) do %>
 <%= file_field_tag 'picture' %>
<% end %>

<%= form_for @person do |f| %>
 <%= f.file_field :picture %>
<% end %>
<%= form_tag({action: :upload}, multipart: true) do %>

http://api.rubyonrails.org/v5.2.2/classes/ActionView/Helpers/DateHelper.html

Rails provides the usual pair of helpers: the barebones file_field_tag and the model oriented
file_field. The only difference with other helpers is that you cannot set a default value for file inputs as
this would have no meaning. As you would expect in the first case the uploaded file is in params[:picture]
and in the second case in params[:person][:picture].

5.1 What Gets Uploaded
The object in the params hash is an instance of a subclass of IO. Depending on the size of the uploaded file
it may in fact be a StringIO or an instance of File backed by a temporary file. In both cases the object will
have an original_filename attribute containing the name the file had on the user's computer and a
content_type attribute containing the MIME type of the uploaded file. The following snippet saves the
uploaded content in #{Rails.root}/public/uploads under the same name as the original file (assuming
the form was the one in the previous example).

Once a file has been uploaded, there are a multitude of potential tasks, ranging from where to store the files
(on disk, Amazon S3, etc) and associating them with models to resizing image files and generating
thumbnails. The intricacies of this are beyond the scope of this guide, but there are several libraries
designed to assist with these. Two of the better known ones are CarrierWave and Paperclip.

If the user has not selected a file the corresponding parameter will be an empty string.

5.2 Dealing with Ajax
Unlike other forms, making an asynchronous file upload form is not as simple as providing form_for with
remote: true. With an Ajax form the serialization is done by JavaScript running inside the browser and
since JavaScript cannot read files from your hard drive the file cannot be uploaded. The most common
workaround is to use an invisible iframe that serves as the target for the form submission.

 <%= file_field_tag 'picture' %>
<% end %>

<%= form_for @person do |f| %>
 <%= f.file_field :picture %>
<% end %>

def upload
 uploaded_io = params[:person][:picture]
 File.open(Rails.root.join('public', 'uploads',
uploaded_io.original_filename), 'wb') do |file|
 file.write(uploaded_io.read)
 end
end
def upload
 uploaded_io = params[:person][:picture]
 File.open(Rails.root.join('public', 'uploads',
uploaded_io.original_filename), 'wb') do |file|
 file.write(uploaded_io.read)
 end
end

https://github.com/jnicklas/carrierwave
https://github.com/thoughtbot/paperclip

6 Customizing Form Builders
As mentioned previously the object yielded by form_for and fields_for is an instance of FormBuilder (or
a subclass thereof). Form builders encapsulate the notion of displaying form elements for a single object.
While you can of course write helpers for your forms in the usual way, you can also subclass FormBuilder
and add the helpers there. For example:

can be replaced with

by defining a LabellingFormBuilder class similar to the following:

If you reuse this frequently you could define a labeled_form_for helper that automatically applies the
builder: LabellingFormBuilder option:

<%= form_for @person do |f| %>
 <%= text_field_with_label f, :first_name %>
<% end %>
<%= form_for @person do |f| %>
 <%= text_field_with_label f, :first_name %>
<% end %>

<%= form_for @person, builder: LabellingFormBuilder do |f| %>
 <%= f.text_field :first_name %>
<% end %>
<%= form_for @person, builder: LabellingFormBuilder do |f| %>
 <%= f.text_field :first_name %>
<% end %>

class LabellingFormBuilder < ActionView::Helpers::FormBuilder
 def text_field(attribute, options={})
 label(attribute) + super
 end
end
class LabellingFormBuilder < ActionView::Helpers::FormBuilder
 def text_field(attribute, options={})
 label(attribute) + super
 end
end

def labeled_form_for(record, options = {}, &block)
 options.merge! builder: LabellingFormBuilder
 form_for record, options, &block
end
def labeled_form_for(record, options = {}, &block)
 options.merge! builder: LabellingFormBuilder
 form_for record, options, &block
end

The form builder used also determines what happens when you do

If f is an instance of FormBuilder then this will render the form partial, setting the partial's object to the
form builder. If the form builder is of class LabellingFormBuilder then the labelling_form partial would
be rendered instead.

7 Understanding Parameter Naming Conventions
As you've seen in the previous sections, values from forms can be at the top level of the params hash or
nested in another hash. For example, in a standard create action for a Person model, params[:person]
would usually be a hash of all the attributes for the person to create. The params hash can also contain
arrays, arrays of hashes and so on.

Fundamentally HTML forms don't know about any sort of structured data, all they generate is name-value
pairs, where pairs are just plain strings. The arrays and hashes you see in your application are the result of
some parameter naming conventions that Rails uses.

7.1 Basic Structures
The two basic structures are arrays and hashes. Hashes mirror the syntax used for accessing the value in
params. For example, if a form contains:

the params hash will contain

and params[:person][:name] will retrieve the submitted value in the controller.

Hashes can be nested as many levels as required, for example:

will result in the params hash being

<%= render partial: f %>
<%= render partial: f %>

<input id="person_name" name="person[name]" type="text" value="Henry"/>
<input id="person_name" name="person[name]" type="text" value="Henry"/>

{'person' => {'name' => 'Henry'}}
{'person' => {'name' => 'Henry'}}

<input id="person_address_city" name="person[address][city]"
type="text" value="New York"/>
<input id="person_address_city" name="person[address][city]"
type="text" value="New York"/>

Normally Rails ignores duplicate parameter names. If the parameter name contains an empty set of square
brackets [] then they will be accumulated in an array. If you wanted users to be able to input multiple phone
numbers, you could place this in the form:

This would result in params[:person][:phone_number] being an array containing the inputted phone
numbers.

7.2 Combining Them
We can mix and match these two concepts. One element of a hash might be an array as in the previous
example, or you can have an array of hashes. For example, a form might let you create any number of
addresses by repeating the following form fragment

This would result in params[:addresses] being an array of hashes with keys line1, line2 and city. Rails
decides to start accumulating values in a new hash whenever it encounters an input name that already
exists in the current hash.

There's a restriction, however, while hashes can be nested arbitrarily, only one level of "arrayness" is
allowed. Arrays can usually be replaced by hashes; for example, instead of having an array of model
objects, one can have a hash of model objects keyed by their id, an array index or some other parameter.

Array parameters do not play well with the check_box helper. According to the HTML
specification unchecked checkboxes submit no value. However it is often convenient for a
checkbox to always submit a value. The check_box helper fakes this by creating an auxiliary
hidden input with the same name. If the checkbox is unchecked only the hidden input is
submitted and if it is checked then both are submitted but the value submitted by the checkbox
takes precedence. When working with array parameters this duplicate submission will confuse
Rails since duplicate input names are how it decides when to start a new array element. It is
preferable to either use check_box_tag or to use hashes instead of arrays.

{'person' => {'address' => {'city' => 'New York'}}}
{'person' => {'address' => {'city' => 'New York'}}}

<input name="person[phone_number][]" type="text"/>
<input name="person[phone_number][]" type="text"/>
<input name="person[phone_number][]" type="text"/>
<input name="person[phone_number][]" type="text"/>
<input name="person[phone_number][]" type="text"/>
<input name="person[phone_number][]" type="text"/>

<input name="addresses[][line1]" type="text"/>
<input name="addresses[][line2]" type="text"/>
<input name="addresses[][city]" type="text"/>
<input name="addresses[][line1]" type="text"/>
<input name="addresses[][line2]" type="text"/>
<input name="addresses[][city]" type="text"/>

7.3 Using Form Helpers
The previous sections did not use the Rails form helpers at all. While you can craft the input names yourself
and pass them directly to helpers such as text_field_tag Rails also provides higher level support. The
two tools at your disposal here are the name parameter to form_for and fields_for and the :index
option that helpers take.

You might want to render a form with a set of edit fields for each of a person's addresses. For example:

Assuming the person had two addresses, with ids 23 and 45 this would create output similar to this:

This will result in a params hash that looks like

<%= form_for @person do |person_form| %>
 <%= person_form.text_field :name %>
 <% @person.addresses.each do |address| %>
 <%= person_form.fields_for address, index: address.id do
|address_form|%>
 <%= address_form.text_field :city %>
 <% end %>
 <% end %>
<% end %>
<%= form_for @person do |person_form| %>
 <%= person_form.text_field :name %>
 <% @person.addresses.each do |address| %>
 <%= person_form.fields_for address, index: address.id do
|address_form|%>
 <%= address_form.text_field :city %>
 <% end %>
 <% end %>
<% end %>

<form accept-charset="UTF-8" action="/people/1" class="edit_person"
id="edit_person_1" method="post">
 <input id="person_name" name="person[name]" type="text" />
 <input id="person_address_23_city" name="person[address][23][city]"
type="text" />
 <input id="person_address_45_city" name="person[address][45][city]"
type="text" />
</form>
<form accept-charset="UTF-8" action="/people/1" class="edit_person"
id="edit_person_1" method="post">
 <input id="person_name" name="person[name]" type="text" />
 <input id="person_address_23_city" name="person[address][23][city]"
type="text" />
 <input id="person_address_45_city" name="person[address][45][city]"
type="text" />
</form>

{'person' => {'name' => 'Bob', 'address' => {'23' => {'city' =>
'Paris'}, '45' => {'city' => 'London'}}}}

Rails knows that all these inputs should be part of the person hash because you called fields_for on the
first form builder. By specifying an :index option you're telling Rails that instead of naming the inputs
person[address][city] it should insert that index surrounded by [] between the address and the city. This
is often useful as it is then easy to locate which Address record should be modified. You can pass numbers
with some other significance, strings or even nil (which will result in an array parameter being created).

To create more intricate nestings, you can specify the first part of the input name (person[address] in the
previous example) explicitly:

will create inputs like

As a general rule the final input name is the concatenation of the name given to fields_for/form_for, the
index value and the name of the attribute. You can also pass an :index option directly to helpers such as
text_field, but it is usually less repetitive to specify this at the form builder level rather than on individual
input controls.

As a shortcut you can append [] to the name and omit the :index option. This is the same as specifying
index: address so

produces exactly the same output as the previous example.

{'person' => {'name' => 'Bob', 'address' => {'23' => {'city' =>
'Paris'}, '45' => {'city' => 'London'}}}}

<%= fields_for 'person[address][primary]', address, index: address do
|address_form| %>
 <%= address_form.text_field :city %>
<% end %>
<%= fields_for 'person[address][primary]', address, index: address do
|address_form| %>
 <%= address_form.text_field :city %>
<% end %>

<input id="person_address_primary_1_city" name="person[address]
[primary][1][city]" type="text" value="bologna" />
<input id="person_address_primary_1_city" name="person[address]
[primary][1][city]" type="text" value="bologna" />

<%= fields_for 'person[address][primary][]', address do |address_form|
%>
 <%= address_form.text_field :city %>
<% end %>
<%= fields_for 'person[address][primary][]', address do |address_form|
%>
 <%= address_form.text_field :city %>
<% end %>

8 Forms to External Resources
Rails' form helpers can also be used to build a form for posting data to an external resource. However, at
times it can be necessary to set an authenticity_token for the resource; this can be done by passing an
authenticity_token: 'your_external_token' parameter to the form_tag options:

Sometimes when submitting data to an external resource, like a payment gateway, the fields that can be
used in the form are limited by an external API and it may be undesirable to generate an
authenticity_token. To not send a token, simply pass false to the :authenticity_token option:

The same technique is also available for form_for:

Or if you don't want to render an authenticity_token field:

<%= form_tag 'http://farfar.away/form', authenticity_token:
'external_token' do %>
 Form contents
<% end %>
<%= form_tag 'http://farfar.away/form', authenticity_token:
'external_token' do %>
 Form contents
<% end %>

<%= form_tag 'http://farfar.away/form', authenticity_token: false do %>
 Form contents
<% end %>
<%= form_tag 'http://farfar.away/form', authenticity_token: false do %>
 Form contents
<% end %>

<%= form_for @invoice, url: external_url, authenticity_token:
'external_token' do |f| %>
 Form contents
<% end %>
<%= form_for @invoice, url: external_url, authenticity_token:
'external_token' do |f| %>
 Form contents
<% end %>

<%= form_for @invoice, url: external_url, authenticity_token: false do
|f| %>
 Form contents
<% end %>
<%= form_for @invoice, url: external_url, authenticity_token: false do
|f| %>
 Form contents
<% end %>

9 Building Complex Forms
Many apps grow beyond simple forms editing a single object. For example, when creating a Person you
might want to allow the user to (on the same form) create multiple address records (home, work, etc.). When
later editing that person the user should be able to add, remove or amend addresses as necessary.

9.1 Configuring the Model
Active Record provides model level support via the accepts_nested_attributes_for method:

This creates an addresses_attributes= method on Person that allows you to create, update and
(optionally) destroy addresses.

9.2 Nested Forms
The following form allows a user to create a Person and its associated addresses.

class Person < ApplicationRecord
 has_many :addresses, inverse_of: :person
 accepts_nested_attributes_for :addresses
end

class Address < ApplicationRecord
 belongs_to :person
end
class Person < ApplicationRecord
 has_many :addresses, inverse_of: :person
 accepts_nested_attributes_for :addresses
end

class Address < ApplicationRecord
 belongs_to :person
end

<%= form_for @person do |f| %>
 Addresses:

 <%= f.fields_for :addresses do |addresses_form| %>

 <%= addresses_form.label :kind %>
 <%= addresses_form.text_field :kind %>

 <%= addresses_form.label :street %>
 <%= addresses_form.text_field :street %>
 ...

 <% end %>

<% end %>
<%= form_for @person do |f| %>
 Addresses:

 <%= f.fields_for :addresses do |addresses_form| %>

When an association accepts nested attributes fields_for renders its block once for every element of the
association. In particular, if a person has no addresses it renders nothing. A common pattern is for the
controller to build one or more empty children so that at least one set of fields is shown to the user. The
example below would result in 2 sets of address fields being rendered on the new person form.

The fields_for yields a form builder. The parameters' name will be what
accepts_nested_attributes_for expects. For example, when creating a user with 2 addresses, the
submitted parameters would look like:

 <%= addresses_form.label :kind %>
 <%= addresses_form.text_field :kind %>

 <%= addresses_form.label :street %>
 <%= addresses_form.text_field :street %>
 ...

 <% end %>

<% end %>

def new
 @person = Person.new
 2.times { @person.addresses.build }
end
def new
 @person = Person.new
 2.times { @person.addresses.build }
end

{
 'person' => {
 'name' => 'John Doe',
 'addresses_attributes' => {
 '0' => {
 'kind' => 'Home',
 'street' => '221b Baker Street'
 },
 '1' => {
 'kind' => 'Office',
 'street' => '31 Spooner Street'
 }
 }
 }
}
{
 'person' => {
 'name' => 'John Doe',
 'addresses_attributes' => {
 '0' => {
 'kind' => 'Home',
 'street' => '221b Baker Street'

The keys of the :addresses_attributes hash are unimportant, they need merely be different for each
address.

If the associated object is already saved, fields_for autogenerates a hidden input with the id of the saved
record. You can disable this by passing include_id: false to fields_for. You may wish to do this if the
autogenerated input is placed in a location where an input tag is not valid HTML or when using an ORM
where children do not have an id.

9.3 The Controller
As usual you need to whitelist the parameters in the controller before you pass them to the model:

9.4 Removing Objects
You can allow users to delete associated objects by passing allow_destroy: true to
accepts_nested_attributes_for

 },
 '1' => {
 'kind' => 'Office',
 'street' => '31 Spooner Street'
 }
 }
 }
}

def create
 @person = Person.new(person_params)
 # ...
end

private
 def person_params
 params.require(:person).permit(:name, addresses_attributes: [:id,
:kind, :street])
 end
def create
 @person = Person.new(person_params)
 # ...
end

private
 def person_params
 params.require(:person).permit(:name, addresses_attributes: [:id,
:kind, :street])
 end

class Person < ApplicationRecord
 has_many :addresses
 accepts_nested_attributes_for :addresses, allow_destroy: true
end

https://guides.rubyonrails.org/action_controller_overview.html#strong-parameters

If the hash of attributes for an object contains the key _destroy with a value of 1 or true then the object will
be destroyed. This form allows users to remove addresses:

Don't forget to update the whitelisted params in your controller to also include the _destroy field:

9.5 Preventing Empty Records
It is often useful to ignore sets of fields that the user has not filled in. You can control this by passing a

class Person < ApplicationRecord
 has_many :addresses
 accepts_nested_attributes_for :addresses, allow_destroy: true
end

<%= form_for @person do |f| %>
 Addresses:

 <%= f.fields_for :addresses do |addresses_form| %>

 <%= addresses_form.check_box :_destroy%>
 <%= addresses_form.label :kind %>
 <%= addresses_form.text_field :kind %>
 ...

 <% end %>

<% end %>
<%= form_for @person do |f| %>
 Addresses:

 <%= f.fields_for :addresses do |addresses_form| %>

 <%= addresses_form.check_box :_destroy%>
 <%= addresses_form.label :kind %>
 <%= addresses_form.text_field :kind %>
 ...

 <% end %>

<% end %>

def person_params
 params.require(:person).
 permit(:name, addresses_attributes: [:id, :kind, :street,
:_destroy])
end
def person_params
 params.require(:person).
 permit(:name, addresses_attributes: [:id, :kind, :street,
:_destroy])
end

:reject_if proc to accepts_nested_attributes_for. This proc will be called with each hash of
attributes submitted by the form. If the proc returns false then Active Record will not build an associated
object for that hash. The example below only tries to build an address if the kind attribute is set.

As a convenience you can instead pass the symbol :all_blank which will create a proc that will reject
records where all the attributes are blank excluding any value for _destroy.

9.6 Adding Fields on the Fly
Rather than rendering multiple sets of fields ahead of time you may wish to add them only when a user
clicks on an 'Add new address' button. Rails does not provide any built-in support for this. When generating
new sets of fields you must ensure the key of the associated array is unique - the current JavaScript date
(milliseconds after the epoch) is a common choice.

Feedback
You're encouraged to help improve the quality of this guide.

Please contribute if you see any typos or factual errors. To get started, you can read our documentation
contributions section.

You may also find incomplete content or stuff that is not up to date. Please do add any missing
documentation for master. Make sure to check Edge Guides first to verify if the issues are already fixed or
not on the master branch. Check the Ruby on Rails Guides Guidelines for style and conventions.

If for whatever reason you spot something to fix but cannot patch it yourself, please open an issue.

And last but not least, any kind of discussion regarding Ruby on Rails documentation is very welcome on
the rubyonrails-docs mailing list.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

"Rails", "Ruby on Rails", and the Rails logo are trademarks of David Heinemeier Hansson. All rights reserved.

class Person < ApplicationRecord
 has_many :addresses
 accepts_nested_attributes_for :addresses, reject_if: lambda
{|attributes| attributes['kind'].blank?}
end
class Person < ApplicationRecord
 has_many :addresses
 accepts_nested_attributes_for :addresses, reject_if: lambda
{|attributes| attributes['kind'].blank?}
end

http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#contributing-to-the-rails-documentation
http://edgeguides.rubyonrails.org/
https://guides.rubyonrails.org/ruby_on_rails_guides_guidelines.html
https://github.com/rails/rails/issues
https://groups.google.com/forum/#!forum/rubyonrails-docs
https://creativecommons.org/licenses/by-sa/4.0/

