
Advance Rails

1. ActiveRecord associations

1. One-to-one, one-to-many

2. Many-to-many

3. ActiveRecord models and Ruby classes

4. Call backs , Validations, Scope

2. Fine-tuning controllers and view

1. Controller filters

2. Redirecting requests

3. Default and custom view helper methods

3. Writing and processing HTML forms in Rails

1. Using form helper methods

2. "Magic" field initialisation from instance variables

4. Image uploading

5. Ruby/ Rails JSON

1. Ruby support for JSON

2. HTTParty helps with communicating with RESTful services

3. HTTParty gets Classy

1 Why Associations?

An association is a connection between two Active Record models.

Why do we need associations between models?

Since they make common operations simpler and easier in your code.

For example, consider a simple Rails application that includes a model for
authors and a model for books.

Each author can have many books.

Without associations, the model declarations would look like this:

� of �1 219

Now, suppose we wanted to add a new book for an existing author. We'd
need to do something like this:

Or consider deleting an author, and ensuring that all of its books get deleted
as well:

With Active Record associations, we can streamline these - and other -
operations by declaratively telling Rails that there is a connection between the
two models. \

Here’s the revised code for setting up authors and books:

class Author < ApplicationRecord
end

class Book < ApplicationRecord
end

@book = Book.create(published_at: Time.now, author_id:
@author.id)

@books = Book.where(author_id: @author.id)
@books.each do |book|
 book.destroy
end
@author.destroy

� of �2 219

With this change, creating a new book for a particular author is easier:

Deleting an author and all of its books is much easier:

To learn more about the different types of associations, read the next section
of this guide. That's followed by some tips and tricks for working with
associations, and then by a complete reference to the methods and options
for associations in Rails.

2 The Types of Associations
Rails supports six types of associations:
• belongs_to
• has_one
• has_many
• has_many :through
• has_one :through
• has_and_belongs_to_many

Associations are implemented using macro-style calls, so that you can
declaratively add features to your models. For example, by declaring that one
model belongs_to another, you instruct Rails to maintain Primary Key-
Foreign Key information between instances of the two models, and you also
get a number of utility methods added to your model.

class Author < ApplicationRecord
 has_many :books, dependent: :destroy
end

class Book < ApplicationRecord
 belongs_to :author
end

@book = @author.books.create(published_at: Time.now)

@author.destroy

� of �3 219

https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Foreign_key

1 The belongs_to Association
A belongs_to association sets up a one-to-one connection with another
model, such that each instance of the declaring model "belongs to" one
instance of the other model. For example, if your application includes authors
and books, and each book can be assigned to exactly one author, you'd
declare the book model this way:

Note:
belongs_to associations must use the singular term. If you used the
pluralized form in the above example for the author association in the Book
model, you would be told that there was an "uninitialized constant
Book::Authors". This is because Rails automatically infers the class name
from the association name. If the association name is wrongly pluralized, then
the inferred class will be wrongly pluralized too.

The corresponding migration might look like this:

class Book < ApplicationRecord
 belongs_to :author
end

� of �4 219

2.2 The has_one Association

A has_one association also sets up a one-to-one connection with another
model, but with somewhat different semantics (and consequences). This
association indicates that each instance of a model contains or possesses
one instance of another model. For example, if each supplier in your
application has only one account, you'd declare the supplier model like this:

class CreateBooks < ActiveRecord::Migration[5.0]
 def change
 create_table :authors do |t|
 t.string :name
 t.timestamps
 end

 create_table :books do |t|
 t.belongs_to :author, index: true
 t.datetime :published_at
 t.timestamps
 end
 end
end

class Supplier < ApplicationRecord
 has_one :account
end

� of �5 219

The corresponding migration might look like this:

Depending on the use case, you might also need to create a unique index
and/or a foreign key constraint on the supplier column for the accounts table.
In this case, the column definition might look like this:

2.3 The has_many Association

class CreateSuppliers < ActiveRecord::Migration[5.0]
 def change
 create_table :suppliers do |t|
 t.string :name
 t.timestamps
 end

 create_table :accounts do |t|
 t.belongs_to :supplier, index: true
 t.string :account_number
 t.timestamps
 end
 end
end

create_table :accounts do |t|
 t.belongs_to :supplier, index: { unique: true },
foreign_key: true
 # ...
end

� of �6 219

A has_many association indicates a one-to-many connection with another
model. You'll often find this association on the "other side" of a belongs_to
association. This association indicates that each instance of the model has
zero or more instances of another model. For example, in an application
containing authors and books, the author model could be declared like this:

The name of the other model is pluralized when declaring a has_many
association.

The corresponding migration might look like this:

class Author < ApplicationRecord
 has_many :books
end

� of �7 219

2.4 The has_many :through Association

A has_many :through association is often used to set up a many-to-many
connection with another model. This association indicates that the declaring
model can be matched with zero or more instances of another model by
proceeding through a third model. For example, consider a medical practice
where patients make appointments to see physicians. The relevant
association declarations could look like this:

class CreateAuthors < ActiveRecord::Migration[5.0]
 def change
 create_table :authors do |t|
 t.string :name
 t.timestamps
 end

 create_table :books do |t|
 t.belongs_to :author, index: true
 t.datetime :published_at
 t.timestamps
 end
 end
end

class Physician < ApplicationRecord
 has_many :appointments
 has_many :patients, through: :appointments
end

class Appointment < ApplicationRecord
 belongs_to :physician
 belongs_to :patient
end

class Patient < ApplicationRecord
 has_many :appointments
 has_many :physicians, through: :appointments
end

� of �8 219

The corresponding migration might look like this:

� of �9 219

The collection of join models can be managed via the has_many association
methods. For example, if you assign:

Then new join models are automatically created for the newly associated
objects. If some that existed previously are now missing, then their join rows
are automatically deleted.

Automatic deletion of join models is direct, no destroy callbacks are triggered.

The has_many :through association is also useful for setting up
"shortcuts" through nested has_many associations. For example, if a
document has many sections, and a section has many paragraphs, you may
sometimes want to get a simple collection of all paragraphs in the document.
You could set that up this way:

class CreateAppointments < ActiveRecord::Migration[5.0]
 def change
 create_table :physicians do |t|
 t.string :name
 t.timestamps
 end

 create_table :patients do |t|
 t.string :name
 t.timestamps
 end

 create_table :appointments do |t|
 t.belongs_to :physician, index: true
 t.belongs_to :patient, index: true
 t.datetime :appointment_date
 t.timestamps
 end
 end
end

physician.patients = patients

� of �10 219

With through: :sections specified, Rails will now understand:

2.5 The has_one :through Association
A has_one :through association sets up a one-to-one connection with
another model. This association indicates that the declaring model can be
matched with one instance of another model by proceeding through a third
model. For example, if each supplier has one account, and each account is
associated with one account history, then the supplier model could look like
this:

class Document < ApplicationRecord
 has_many :sections
 has_many :paragraphs, through: :sections
end

class Section < ApplicationRecord
 belongs_to :document
 has_many :paragraphs
end

class Paragraph < ApplicationRecord
 belongs_to :section
end

@document.paragraphs

class Supplier < ApplicationRecord
 has_one :account
 has_one :account_history, through: :account
end

class Account < ApplicationRecord
 belongs_to :supplier
 has_one :account_history
end

class AccountHistory < ApplicationRecord
 belongs_to :account
end

� of �11 219

The corresponding migration might look like this:

� of �12 219

2.6 The has_and_belongs_to_many Association
A has_and_belongs_to_many association creates a direct many-to-many
connection with another model, with no intervening model. For example,
if your application includes assemblies and parts, with each assembly having
many parts and each part appearing in many assemblies, you could declare
the models this way:

class CreateAccountHistories <
ActiveRecord::Migration[5.0]
 def change
 create_table :suppliers do |t|
 t.string :name
 t.timestamps
 end

 create_table :accounts do |t|
 t.belongs_to :supplier, index: true
 t.string :account_number
 t.timestamps
 end

 create_table :account_histories do |t|
 t.belongs_to :account, index: true
 t.integer :credit_rating
 t.timestamps
 end
 end
end

class Assembly < ApplicationRecord
 has_and_belongs_to_many :parts
end

class Part < ApplicationRecord
 has_and_belongs_to_many :assemblies
end

� of �13 219

The corresponding migration might look like this:

� of �14 219

2.7 Choosing Between belongs_to and has_one
If you want to set up a one-to-one relationship between two models, you'll
need to add belongs_to to one, and has_one to the other.

How do you know which is which?
The distinction is in where you place the foreign key (it goes on the table for
the class declaring the belongs_to association), but you should give some
thought to the actual meaning of the data as well.

The has_one relationship says that one of something is yours - that is, that
something points back to you. For example, it makes more sense to say that
a supplier owns an account than that an account owns a supplier. This
suggests that the correct relationships are like this:

class CreateAssembliesAndParts <
ActiveRecord::Migration[5.0]
 def change
 create_table :assemblies do |t|
 t.string :name
 t.timestamps
 end

 create_table :parts do |t|
 t.string :part_number
 t.timestamps
 end

 create_table :assemblies_parts, id: false do |t|
 t.belongs_to :assembly, index: true
 t.belongs_to :part, index: true
 end
 end
end

class Supplier < ApplicationRecord
 has_one :account
end

class Account < ApplicationRecord
 belongs_to :supplier
end

� of �15 219

The corresponding migration might look like this:

Using t.integer :supplier_id makes the foreign key naming obvious
and explicit. In current versions of Rails, you can abstract away this
implementation detail by using t.references :supplier instead.

2.8 Choosing Between has_many :through and
has_and_belongs_to_many

Rails offers two different ways to declare a many-to-many relationship
between models. The simpler way is to use has_and_belongs_to_many,
which allows you to make the association directly:

class CreateSuppliers < ActiveRecord::Migration[5.0]
 def change
 create_table :suppliers do |t|
 t.string :name
 t.timestamps
 end

 create_table :accounts do |t|
 t.integer :supplier_id
 t.string :account_number
 t.timestamps
 end

 add_index :accounts, :supplier_id
 end
end

class Assembly < ApplicationRecord
 has_and_belongs_to_many :parts
end

class Part < ApplicationRecord
 has_and_belongs_to_many :assemblies
end

� of �16 219

The second way to declare a many-to-many relationship is to use has_many
:through. This makes the association indirectly, through a join model:

The simplest rule of thumb is that you should set up a has_many :through
relationship if you need to work with the relationship model as an independent
entity. If you don't need to do anything with the relationship model, it may be
simpler to set up a has_and_belongs_to_many relationship (though you'll
need to remember to create the joining table in the database).
You should use has_many :through if you need validations, callbacks or
extra attributes on the join model.

2.9 Polymorphic Associations

A slightly more advanced twist on associations is the polymorphic
association. With polymorphic associations, a model can belong to more than
one other model, on a single association. For example, you might have a
picture model that belongs to either an employee model or a product model.
Here's how this could be declared:

class Assembly < ApplicationRecord
 has_many :manifests
 has_many :parts, through: :manifests
end

class Manifest < ApplicationRecord
 belongs_to :assembly
 belongs_to :part
end

class Part < ApplicationRecord
 has_many :manifests
 has_many :assemblies, through: :manifests
end

� of �17 219

You can think of a polymorphic belongs_to declaration as setting up an
interface that any other model can use. From an instance of the Employee
model, you can retrieve a collection of pictures: @employee.pictures.
Similarly, you can retrieve @product.pictures.

If you have an instance of the Picture model, you can get to its parent via
@picture.imageable. To make this work, you need to declare both a
foreign key column and a type column in the model that declares the
polymorphic interface:

This migration can be simplified by using the t.references form:

class Picture < ApplicationRecord
 belongs_to :imageable, polymorphic: true
end

class Employee < ApplicationRecord
 has_many :pictures, as: :imageable
end

class Product < ApplicationRecord
 has_many :pictures, as: :imageable
end

class CreatePictures < ActiveRecord::Migration[5.0]
 def change
 create_table :pictures do |t|
 t.string :name
 t.integer :imageable_id
 t.string :imageable_type
 t.timestamps
 end

 add_index :pictures,
[:imageable_type, :imageable_id]
 end
end

� of �18 219

class CreatePictures < ActiveRecord::Migration[5.0]
 def change
 create_table :pictures do |t|
 t.string :name
 t.references :imageable, polymorphic: true, index:
true
 t.timestamps
 end
 end
end

� of �19 219

2.10 Self Joins
In designing a data model, you will sometimes find a model that should have
a relation to itself. For example, you may want to store all employees in a
single database model, but be able to trace relationships such as between
manager and subordinates. This situation can be modeled with self-joining
associations:

With this setup, you can retrieve @employee.subordinates and
@employee.manager.
In your migrations/schema, you will add a references column to the model
itself.

class Employee < ApplicationRecord
 has_many :subordinates, class_name: "Employee",
 foreign_key: "manager_id"

 belongs_to :manager, class_name: "Employee"
end

class CreateEmployees < ActiveRecord::Migration[5.0]
 def change
 create_table :employees do |t|
 t.references :manager, index: true
 t.timestamps
 end
 end
end

� of �20 219

Callbacks Introduction

1 The Object Life Cycle

During the normal operation of a Rails application,
objects may be created, updated, and destroyed.

Active Record provides hooks into this object life
cycle so that you can control your application and
its data.

Callbacks allow you to trigger logic before or after an
alteration of an object's state.

2 Callbacks Overview
Callbacks are methods that get called at certain moments of an object's life
cycle. With callbacks it is possible to write code that will run whenever an
Active Record object is created, saved, updated, deleted, validated, or loaded
from the database.

2.1 Callback Registration
In order to use the available callbacks, you need to register them. You can
implement the callbacks as ordinary methods and use a macro-style class
method to register them as callbacks:

� of �21 219

The macro-style class methods can also receive a block. Consider using this
style if the code inside your block is so short that it fits in a single line:

Callbacks can also be registered to only fire on certain life cycle events:

It is considered good practice to declare callback methods as private. If left
public, they can be called from outside of the model and violate the principle
of object encapsulation.

class User < ApplicationRecord
 validates :login, :email, presence: true

 before_validation :ensure_login_has_a_value

 private
 def ensure_login_has_a_value
 if login.nil?
 self.login = email unless email.blank?
 end
 end
end

class User < ApplicationRecord
 validates :login, :email, presence: true

 before_create do
 self.name = login.capitalize if name.blank?
 end
end

class User < ApplicationRecord
 before_validation :normalize_name, on: :create

 # :on takes an array as well
 after_validation :set_location, on: [:create, :update
]

 private
 def normalize_name
 self.name = name.downcase.titleize
 end

 def set_location
 self.location = LocationService.query(self)
 end
end

� of �22 219

3 Available Callbacks

Here is a list with all the available Active Record callbacks, listed in the same
order in which they will get called during the respective operations:
3.1 Creating an Object
• before_validation
• after_validation
• before_save
• around_save
• before_create
• around_create
• after_create
• after_save
• after_commit/after_rollback

3.2 Updating an Object
• before_validation
• after_validation
• before_save
• around_save
• before_update
• around_update
• after_update
• after_save
• after_commit/after_rollback

3.3 Destroying an Object
• before_destroy
• around_destroy
• after_destroy
• after_commit/after_rollback

after_save runs both on create and update, but always after the more
specific callbacks after_create and after_update, no matter the order
in which the macro calls were executed.

b e f o r e _ d e s t r o y c a l l b a c k s s h o u l d b e p l a c e d b e f o r e
dependent: :destroy associations (or use the prepend: true option),
to ensure they execute before the records are de le ted by
dependent: :destroy.

3.4 after_initialize and after_find
� of �23 219

The after_initialize callback will be called whenever an Active Record
object is instantiated, either by directly using new or when a record is loaded
from the database. It can be useful to avoid the need to directly override your
Active Record initialize method.

The after_find callback will be called whenever Active Record loads a
r e c o r d f r o m t h e d a t a b a s e . after_find i s c a l l e d b e f o r e
after_initialize if both are defined.

The after_initialize and after_find callbacks have no before_*
counterparts, but they can be registered just like the other Active Record
callbacks.

3.5 after_touch
The after_touch callback will be called whenever an Active Record object
is touched.

class User < ApplicationRecord
 after_initialize do |user|
 puts "You have initialized an object!"
 end

 after_find do |user|
 puts "You have found an object!"
 end
end

>> User.new
You have initialized an object!
=> #<User id: nil>

>> User.first
You have found an object!
You have initialized an object!
=> #<User id: 1>

� of �24 219

It can be used along with belongs_to:

class User < ApplicationRecord
 after_touch do |user|
 puts "You have touched an object"
 end
end

>> u = User.create(name: 'Kuldeep')
=> #<User id: 1, name: "Kuldeep", created_at:
"2013-11-25 12:17:49", updated_at: "2013-11-25
12:17:49">

>> u.touch
You have touched an object
=> true

class Employee < ApplicationRecord
 belongs_to :company, touch: true
 after_touch do
 puts 'An Employee was touched'
 end
end

class Company < ApplicationRecord
 has_many :employees
 after_touch :log_when_employees_or_company_touched

 private
 def log_when_employees_or_company_touched
 puts 'Employee/Company was touched'
 end
end

>> @employee = Employee.last
=> #<Employee id: 1, company_id: 1, created_at:
"2013-11-25 17:04:22", updated_at: "2013-11-25
17:05:05">

triggers @employee.company.touch
>> @employee.touch
Employee/Company was touched
An Employee was touched
=> true

� of �25 219

4 Running Callbacks
The following methods trigger callbacks:
• create
• create!
• destroy
• destroy!
• destroy_all
• save
• save!
• save(validate: false)
• toggle!
• touch
• update_attribute
• update
• update!
• valid?

Additionally, the after_find callback is triggered by the following finder
methods:
• all
• first
• find
• find_by
• find_by_*
• find_by_*!
• find_by_sql
• last

The after_initialize callback is triggered every time a new object of the
class is initialized.
The find_by_* and find_by_*! methods are dynamic finders generated
automatically for every attribute. Learn more about them at the Dynamic
finders section

� of �26 219

https://guides.rubyonrails.org/active_record_querying.html#dynamic-finders
https://guides.rubyonrails.org/active_record_querying.html#dynamic-finders

5 Skipping Callbacks
Just as with validations, it is also possible to skip callbacks by using the
following methods:
• decrement
• decrement_counter
• delete
• delete_all
• increment
• increment_counter
• toggle
• update_column
• update_columns
• update_all
• update_counters

These methods should be used with caution, however, because important
business rules and application logic may be kept in callbacks. Bypassing
them without understanding the potential implications may lead to invalid
data.

6 Halting Execution
As you start registering new callbacks for your models, they will be queued
for execution. This queue will include all your model's validations, the
registered callbacks, and the database operation to be executed.
The whole callback chain is wrapped in a transaction. If any callback raises
an exception, the execution chain gets halted and a ROLLBACK is issued. To
intentionally stop a chain use:

A n y e x c e p t i o n t h a t i s n o t ActiveRecord::Rollback o r
ActiveRecord::RecordInvalid will be re-raised by Rails after the
ca l lback cha in i s ha l ted . Ra is ing an excep t ion o ther than
ActiveRecord::Rollback or ActiveRecord::RecordInvalid may
b reak code tha t does no t expec t me thods l i ke save and
update_attributes (which normally try to return true or false) to raise
an exception.

throw :abort

� of �27 219

7 Relational Callbacks

Callbacks work through model relationships, and can even be defined by
them. Suppose an example where a user has many articles. A user's articles
should be destroyed if the user is destroyed. Let's add an after_destroy
callback to the User model by way of its relationship to the Article model:

8 Conditional Callbacks

class User < ApplicationRecord
 has_many :articles, dependent: :destroy
end

class Article < ApplicationRecord
 after_destroy :log_destroy_action

 def log_destroy_action
 puts 'Article destroyed'
 end
end

>> user = User.first
=> #<User id: 1>
>> user.articles.create!
=> #<Article id: 1, user_id: 1>
>> user.destroy
Article destroyed
=> #<User id: 1>

� of �28 219

As with validations, we can also make the calling of a callback method
conditional on the satisfaction of a given predicate. We can do this using
the :if and :unless options, which can take a symbol, a Proc or an
Array. You may use the :if option when you want to specify under which
conditions the callback should be called. If you want to specify the conditions
under which the callback should not be called, then you may use
the :unless option.

8.1 Using :if and :unless with a Symbol
You can associate the :if and :unless options with a symbol
corresponding to the name of a predicate method that will get called right
before the callback. When using the :if option, the callback won't be
executed if the predicate method returns false; when using the :unless
option, the callback won't be executed if the predicate method returns true.
This is the most common option. Using this form of registration it is also
possible to register several different predicates that should be called to check
if the callback should be executed.

8.2 Using :if and :unless with a Proc

Finally, it is possible to associate :if and :unless with a Proc object. This
option is best suited when writing short validation methods, usually one-liners:

8.3 Multiple Conditions for Callbacks
When writing conditional callbacks, it is possible to mix both :if
and :unless in the same callback declaration:

class Order < ApplicationRecord
 before_save :normalize_card_number,
if: :paid_with_card?
end

class Order < ApplicationRecord
 before_save :normalize_card_number,
 if: Proc.new { |order| order.paid_with_card? }
end

� of �29 219

9 Callback Classes

Sometimes the callback methods that you'll write will be useful enough to be
reused by other models. Active Record makes it possible to create classes
that encapsulate the callback methods, so it becomes very easy to reuse
them.
Here's an example where we create a class with an after_destroy
callback for a PictureFile model:

When declared inside a class, as above, the callback methods will receive the
model object as a parameter. We can now use the callback class in the
model:

Note that we needed to instantiate a new PictureFileCallbacks object,
since we declared our callback as an instance method. This is particularly
useful if the callbacks make use of the state of the instantiated object. Often,
however, it will make more sense to declare the callbacks as class methods:

class Comment < ApplicationRecord
 after_create :send_email_to_author,
if: :author_wants_emails?,
 unless: Proc.new { |comment|
comment.article.ignore_comments? }
end

class PictureFileCallbacks
 def after_destroy(picture_file)
 if File.exist?(picture_file.filepath)
 File.delete(picture_file.filepath)
 end
 end
end

class PictureFile < ApplicationRecord
 after_destroy PictureFileCallbacks.new
end

� of �30 219

If the callback method is declared this way, it won't be necessary to
instantiate a PictureFileCallbacks object.

You can declare as many callbacks as you want inside your callback classes.

10 Transaction Callbacks
There are two additional callbacks that are triggered by the completion of a
database transaction: after_commit and after_rollback. These
callbacks are very similar to the after_save callback except that they don't
execute until after database changes have either been committed or rolled
back.
They are most useful when your active record models need to interact with
external systems which are not part of the database transaction.

Consider, for example, the previous example where the PictureFile model
needs to delete a file after the corresponding record is destroyed. If anything
raises an exception after the after_destroy callback is called and the
transaction rolls back, the file will have been deleted and the model will be left
in an inconsistent state. For example, suppose that picture_file_2 in the
code below is not valid and the save! method raises an error.

By using the after_commit callback we can account for this case.

class PictureFileCallbacks
 def self.after_destroy(picture_file)
 if File.exist?(picture_file.filepath)
 File.delete(picture_file.filepath)
 end
 end
end

class PictureFile < ApplicationRecord
 after_destroy PictureFileCallbacks
end

PictureFile.transaction do
 picture_file_1.destroy
 picture_file_2.save!
end

� of �31 219

The :on option specifies when a callback will be fired. If you don't supply
the :on option the callback will fire for every action.
Since using after_commit callback only on create, update or delete is
common, there are aliases for those operations:
• after_create_commit
• after_update_commit
• after_destroy_commit

The after_commit and after_rollback callbacks are called for all
models created, updated, or destroyed within a transaction block. However, if
an exception is raised within one of these callbacks, the exception will bubble
up and any remaining after_commit or after_rollback methods will
not be executed. As such, if your callback code could raise an exception,
you'll need to rescue it and handle it within the callback in order to allow other
callbacks to run.

Using both after_create_commit and after_update_commit in the
same model will only allow the last callback defined to take effect, and will
override all others.

class PictureFile < ApplicationRecord
 after_commit :delete_picture_file_from_disk,
on: :destroy

 def delete_picture_file_from_disk
 if File.exist?(filepath)
 File.delete(filepath)
 end
 end
end

class PictureFile < ApplicationRecord
 after_destroy_commit :delete_picture_file_from_disk

 def delete_picture_file_from_disk
 if File.exist?(filepath)
 File.delete(filepath)
 end
 end
end

� of �32 219

To register callbacks for both create and update actions, use after_commit
instead.

1 Validations Overview

Here's an example of a very simple validation:

As you can see, our validation lets us know that our Person is not valid
without a name attribute. The second Person will not be persisted to the
database.
Before we dig into more details, let's talk about how validations fit into the big
picture of your application.

1.1 Why Use Validations?

class User < ApplicationRecord
 after_create_commit :log_user_saved_to_db
 after_update_commit :log_user_saved_to_db

 private
 def log_user_saved_to_db
 puts 'User was saved to database'
 end
end

prints nothing
>> @user = User.create

updating @user
>> @user.save
=> User was saved to database

class User < ApplicationRecord
 after_commit :log_user_saved_to_db, on:
[:create, :update]
end

class Person < ApplicationRecord
 validates :name, presence: true
end

Person.create(name: "John Doe").valid? # => true
Person.create(name: nil).valid? # => false

� of �33 219

Validations are used to ensure that only valid data is saved into your
database. For example, it may be important to your application to ensure that
every user provides a valid email address and mailing address.

Model-level validations are the best way to ensure that only valid data is
saved into your database. They are database agnostic, cannot be bypassed
by end users, and are convenient to test and maintain. Rails makes them
easy to use, provides built-in helpers for common needs, and allows you to
create your own validation methods as well.

There are several other ways to validate data before it is saved into your
database, including native database constraints, client-side validations and
controller-level validations. Here's a summary of the pros and cons:

• Database constraints and/or stored procedures make the validation
mechanisms database-dependent and can make testing and
maintenance more difficult. However, if your database is used by other
applications, it may be a good idea to use some constraints at the
database level. Additionally, database-level validations can safely
handle some things (such as uniqueness in heavily-used tables) that
can be difficult to implement otherwise.

• Client-side validations can be useful, but are generally unreliable if used
alone. If they are implemented using JavaScript, they may be bypassed
if JavaScript is turned off in the user's browser. However, if combined
with other techniques, client-side validation can be a convenient way to
provide users with immediate feedback as they use your site.

• Controller-level validations can be tempting to use, but often become
unwieldy and difficult to test and maintain. Whenever possible, it's a
good idea to keep your controllers skinny, as it will make your
application a pleasure to work with in the long run.

Choose these in certain, specific cases. It's the opinion of the Rails team that
model-level validations are the most appropriate in most circumstances.

1.2 When Does Validation Happen?
There are two kinds of Active Record objects: those that correspond to a row
inside your database and those that do not. When you create a fresh object,
for example using the new method, that object does not belong to the
database yet. Once you call save upon that object it will be saved into the
appropriate database table. Active Record uses the new_record? instance
method to determine whether an object is already in the database or not.
Consider the following simple Active Record class:

� of �34 219

We can see how it works by looking at some rails console output:

Creating and saving a new record will send an SQL INSERT operation to the
database. Updating an existing record will send an SQL UPDATE operation
instead. Validations are typically run before these commands are sent to the
database. If any validations fail, the object will be marked as invalid and
Active Record will not perform the INSERT or UPDATE operation. This avoids
storing an invalid object in the database. You can choose to have specific
validations run when an object is created, saved, or updated.

There are many ways to change the state of an object in the database. Some
methods will trigger validations, but some will not. This means that it's
possible to save an object in the database in an invalid state if you aren't
careful.

The following methods trigger validations, and will save the object to the
database only if the object is valid:
• create
• create!
• save
• save!
• update
• update!

The bang versions (e.g. save!) raise an exception if the record is invalid.
The non-bang versions don't: save and update return false, and create
just returns the object.

1.3 Skipping Validations

class Person < ApplicationRecord
end

$ bin/rails console
>> p = Person.new(name: "John Doe")
=> #<Person id: nil, name: "John Doe", created_at: nil,
updated_at: nil>
>> p.new_record?
=> true
>> p.save
=> true
>> p.new_record?
=> false

� of �35 219

The following methods skip validations, and will save the object to the
database regardless of its validity. They should be used with caution.
• decrement!
• decrement_counter
• increment!
• increment_counter
• toggle!
• touch
• update_all
• update_attribute
• update_column
• update_columns
• update_counters

Note that save also has the ability to skip validations if passed validate:
false as an argument. This technique should be used with caution.
• save(validate: false)

1.4 valid? and invalid?

Before saving an Active Record object, Rails runs your validations. If these
validations produce any errors, Rails does not save the object.

You can also run these validations on your own. valid? triggers your
validations and returns true if no errors were found in the object, and false
otherwise. As you saw above:

After Active Record has performed validations, any errors found can be
accessed through the errors.messages instance method, which returns a
collection of errors. By definition, an object is valid if this collection is empty
after running validations.
Note that an object instantiated with new will not report errors even if it's
technically invalid, because validations are automatically run only when the
object is saved, such as with the create or save methods.

class Person < ApplicationRecord
 validates :name, presence: true
end

Person.create(name: "John Doe").valid? # => true
Person.create(name: nil).valid? # => false

� of �36 219

invalid? is simply the inverse of valid?. It triggers your validations,
returning true if any errors were found in the object, and false otherwise.

class Person < ApplicationRecord
 validates :name, presence: true
end

>> p = Person.new
=> #<Person id: nil, name: nil>
>> p.errors.messages
=> {}

>> p.valid?
=> false
>> p.errors.messages
=> {name:["can't be blank"]}

>> p = Person.create
=> #<Person id: nil, name: nil>
>> p.errors.messages
=> {name:["can't be blank"]}

>> p.save
=> false

>> p.save!
=> ActiveRecord::RecordInvalid: Validation failed:
Name can't be blank

>> Person.create!
=> ActiveRecord::RecordInvalid: Validation failed:
Name can't be blank

� of �37 219

1.5 errors[]
To verify whether or not a particular attribute of an object is valid, you can use
errors[:attribute]. It returns an array of all the errors for :attribute.
If there are no errors on the specified attribute, an empty array is returned.
This method is only useful after validations have been run, because it only
inspects the errors collection and does not trigger validations itself. It's
different from the ActiveRecord::Base#invalid? method explained
above because it doesn't verify the validity of the object as a whole. It only
checks to see whether there are errors found on an individual attribute of the
object.

We'll cover validation errors in greater depth in the Working with Validation
Errors section.

1.6 errors.details
To check which validations failed on an invalid attribute, you can use
errors.details[:attribute]. It returns an array of hashes with
an :error key to get the symbol of the validator:

Using details with custom validators is covered in the Working with
Validation Errors section.

class Person < ApplicationRecord
 validates :name, presence: true
end

>> Person.new.errors[:name].any? # => false
>> Person.create.errors[:name].any? # => true

class Person < ApplicationRecord
 validates :name, presence: true
end

>> person = Person.new
>> person.valid?
>> person.errors.details[:name] # => [{error: :blank}]

� of �38 219

2 Validation Helpers
Active Record offers many pre-defined validation helpers that you can use
directly inside your class definitions. These helpers provide common
validation rules. Every time a validation fails, an error message is added to
the object's errors collection, and this message is associated with the
attribute being validated.

Each helper accepts an arbitrary number of attribute names, so with a single
line of code you can add the same kind of validation to several attributes.
All of them accept the :on and :message options, which define when the
validation should be run and what message should be added to the errors
collection if it fails, respectively. The :on option takes one of the
values :create or :update. There is a default error message for each one
of the validation helpers. These messages are used when the :message
option isn't specified. Let's take a look at each one of the available helpers.

2.1 acceptance
This method validates that a checkbox on the user interface was checked
when a form was submitted. This is typically used when the user needs to
agree to your application's terms of service, confirm that some text is read, or
any similar concept.

This check is performed only if terms_of_service is not nil. The default
error message for this helper is "must be accepted". You can also pass
custom message via the message option.

It can also receive an :accept option, which determines the allowed values
that will be considered as accepted. It defaults to ['1', true] and can be
easily changed.

class Person < ApplicationRecord
 validates :terms_of_service, acceptance: true
end

class Person < ApplicationRecord
 validates :terms_of_service, acceptance: { message:
'must be abided' }
end

class Person < ApplicationRecord
 validates :terms_of_service, acceptance: { accept:
'yes' }
 validates :eula, acceptance: { accept: ['TRUE',
'accepted'] }
end

� of �39 219

This validation is very specific to web applications and this 'acceptance' does
not need to be recorded anywhere in your database. If you don't have a field
for it, the helper will just create a virtual attribute. If the field does exist in your
database, the accept option must be set to or include true or else the
validation will not run.

2.2 validates_associated
You should use this helper when your model has associations with other
models and they also need to be validated. When you try to save your object,
valid? will be called upon each one of the associated objects.

This validation will work with all of the association types.
Don't use validates_associated on both ends of your associations.
They would call each other in an infinite loop.
The default error message for validates_associated is "is invalid". Note
that each associated object will contain its own errors collection; errors do
not bubble up to the calling model.
2.3 confirmation
You should use this helper when you have two text fields that should receive
exactly the same content. For example, you may want to confirm an email
address or a password. This validation creates a virtual attribute whose name
is the name of the field that has to be confirmed with "_confirmation"
appended.

In your view template you could use something like

This check is performed only if email_confirmation is not nil. To require
confirmation, make sure to add a presence check for the confirmation
attribute (we'll take a look at presence later on in this guide):

There is also a :case_sensitive option that you can use to define
whether the confirmation constraint will be case sensitive or not. This option
defaults to true.

class Library < ApplicationRecord
 has_many :books
 validates_associated :books
end

class Person < ApplicationRecord
 validates :email, confirmation: true
end

<%= text_field :person, :email %>
<%= text_field :person, :email_confirmation %>

class Person < ApplicationRecord
 validates :email, confirmation: true
 validates :email_confirmation, presence: true
end

� of �40 219

The default error message for this helper is "doesn't match confirmation".

2.4 exclusion
This helper validates that the attributes' values are not included in a given set.
In fact, this set can be any enumerable object.

The exclusion helper has an option :in that receives the set of values that
will not be accepted for the validated attributes. The :in option has an alias
called :within that you can use for the same purpose, if you'd like to. This
example uses the :message option to show how you can include the
attribute's value. For full options to the message argument please see the
message documentation.
The default error message is "is reserved".

2.5 format
This helper validates the attributes' values by testing whether they match a
given regular expression, which is specified using the :with option.

Alternatively, you can require that the specified attribute does not match the
regular expression by using the :without option.
The default error message is "is invalid".

2.6 inclusion
This helper validates that the attributes' values are included in a given set. In
fact, this set can be any enumerable object.

class Person < ApplicationRecord
 validates :email, confirmation: { case_sensitive:
false }
end

class Account < ApplicationRecord
 validates :subdomain, exclusion: { in: %w(www us ca
jp),
 message: "%{value} is reserved." }
end

class Product < ApplicationRecord
 validates :legacy_code, format: { with: /\A[a-zA-Z]+
\z/,
 message: "only allows letters" }
end

� of �41 219

The inclusion helper has an option :in that receives the set of values that
will be accepted. The :in option has an alias called :within that you can
use for the same purpose, if you'd like to. The previous example uses
the :message option to show how you can include the attribute's value. For
full options please see the message documentation.
The default error message for this helper is "is not included in the list".

2.7 length
This helper validates the length of the attributes' values. It provides a variety
of options, so you can specify length constraints in different ways:

The possible length constraint options are:
• :minimum - The attribute cannot have less than the specified length.
• :maximum - The attribute cannot have more than the specified length.
• :in (or :within) - The attribute length must be included in a given

interval. The value for this option must be a range.
• :is - The attribute length must be equal to the given value.

The default error messages depend on the type of length validation being
performed. You can personalize these messages using the :wrong_length,
:too_long, and :too_short options and %{count} as a placeholder for
the number corresponding to the length constraint being used. You can still
use the :message option to specify an error message.

Note that the default error messages are plural (e.g., "is too short (minimum
is %{count} characters)"). For this reason, when :minimum is 1 you should
provide a personalized message or use presence: true instead.
When :in or :within have a lower limit of 1, you should either provide a
personalized message or call presence prior to length.

class Coffee < ApplicationRecord
 validates :size, inclusion: { in: %w(small medium
large),
 message: "%{value} is not a valid size" }
end

class Person < ApplicationRecord
 validates :name, length: { minimum: 2 }
 validates :bio, length: { maximum: 500 }
 validates :password, length: { in: 6..20 }
 validates :registration_number, length: { is: 6 }
end

class Person < ApplicationRecord
 validates :bio, length: { maximum: 1000,
 too_long: "%{count} characters is the maximum
allowed" }
end

� of �42 219

2.8 numericality
This helper validates that your attributes have only numeric values. By
default, it will match an optional sign followed by an integral or floating point
number. To spec i fy that on ly in tegra l numbers are a l lowed
set :only_integer to true.
If you set :only_integer to true, then it will use the

regular expression to validate the attribute's value. Otherwise, it will try to
convert the value to a number using Float.

Besides :only_integer, this helper also accepts the following options to
add constraints to acceptable values:
• :greater_than - Specifies the value must be greater than the

supplied value. The default error message for this option is "must be
greater than %{count}".

• :greater_than_or_equal_to - Specifies the value must be greater
than or equal to the supplied value. The default error message for this
option is "must be greater than or equal to %{count}".

• :equal_to - Specifies the value must be equal to the supplied value.
The default error message for this option is "must be equal to %
{count}".

• :less_than - Specifies the value must be less than the supplied
value. The default error message for this option is "must be less than %
{count}".

• :less_than_or_equal_to - Specifies the value must be less than or
equal to the supplied value. The default error message for this option is
"must be less than or equal to %{count}".

• :other_than - Specifies the value must be other than the supplied
value. The default error message for this option is "must be other than
%{count}".

• :odd - Specifies the value must be an odd number if set to true. The
default error message for this option is "must be odd".

• :even - Specifies the value must be an even number if set to true. The
default error message for this option is "must be even".

By default, numericality doesn't allow nil values. You can use
allow_nil: true option to permit it.
The default error message is "is not a number".

/\A[+-]?\d+\z/

class Player < ApplicationRecord
 validates :points, numericality: true
 validates :games_played, numericality: { only_integer:
true }
end

� of �43 219

2.9 presence
This helper validates that the specified attributes are not empty. It uses the
blank? method to check if the value is either nil or a blank string, that is, a
string that is either empty or consists of whitespace.

If you want to be sure that an association is present, you'll need to test
whether the associated object itself is present, and not the foreign key used
to map the association.

In order to validate associated records whose presence is required, you must
specify the :inverse_of option for the association:

If you validate the presence of an object associated via a has_one or
has_many relationship, it will check that the object is neither blank? nor
marked_for_destruction?.
Since false.blank? is true, if you want to validate the presence of a
boolean field you should use one of the following validations:

By using one of these validations, you will ensure the value will NOT be nil
which would result in a NULL value in most cases.

2.10 absence
This helper validates that the specified attributes are absent. It uses the
present? method to check if the value is not either nil or a blank string, that
is, a string that is either empty or consists of whitespace.

If you want to be sure that an association is absent, you'll need to test
whether the associated object itself is absent, and not the foreign key used to
map the association.

class Person < ApplicationRecord
 validates :name, :login, :email, presence: true
end

class LineItem < ApplicationRecord
 belongs_to :order
 validates :order, presence: true
end

class Order < ApplicationRecord
 has_many :line_items, inverse_of: :order
end

validates :boolean_field_name, inclusion: { in: [true,
false] }
validates :boolean_field_name, exclusion: { in: [nil] }

class Person < ApplicationRecord
 validates :name, :login, :email, absence: true
end

� of �44 219

In order to validate associated records whose absence is required, you must
specify the :inverse_of option for the association:

If you validate the absence of an object associated via a has_one or
has_many relationship, it will check that the object is neither present? nor
marked_for_destruction?.
Since false.present? is false, if you want to validate the absence of a
boolean field you should use validates :field_name, exclusion: {
in: [true, false] }.
The default error message is "must be blank".
2.11 uniqueness
This helper validates that the attribute's value is unique right before the object
gets saved. It does not create a uniqueness constraint in the database, so it
may happen that two different database connections create two records with
the same value for a column that you intend to be unique. To avoid that, you
must create a unique index on that column in your database.

The validation happens by performing an SQL query into the model's table,
searching for an existing record with the same value in that attribute.
There is a :scope option that you can use to specify one or more attributes
that are used to limit the uniqueness check:

Should you wish to create a database constraint to prevent possible violations
of a uniqueness validation using the :scope option, you must create a
unique index on both columns in your database. See the MySQL manual for
more details about multiple column indexes or the PostgreSQL manual for
examples of unique constraints that refer to a group of columns.
There is also a :case_sensitive option that you can use to define
whether the uniqueness constraint will be case sensitive or not. This option
defaults to true.

class LineItem < ApplicationRecord
 belongs_to :order
 validates :order, absence: true
end

class Order < ApplicationRecord
 has_many :line_items, inverse_of: :order
end

class Account < ApplicationRecord
 validates :email, uniqueness: true
end

class Holiday < ApplicationRecord
 validates :name, uniqueness: { scope: :year,
 message: "should happen once per year" }
end

� of �45 219

http://dev.mysql.com/doc/refman/5.7/en/multiple-column-indexes.html
https://www.postgresql.org/docs/current/static/ddl-constraints.html

Note that some databases are configured to perform case-insensitive
searches anyway.
The default error message is "has already been taken".

2.12 validates_with

This helper passes the record to a separate class for validation.

Errors added to record.errors[:base] relate to the state of the record
as a whole, and not to a specific attribute.

The validates_with helper takes a class, or a list of classes to use for
validation. There is no default error message for validates_with. You
must manually add errors to the record's errors collection in the validator
class.

To implement the validate method, you must have a record parameter
defined, which is the record to be validated.
Like all other validations, validates_with takes the :if, :unless
and :on options. If you pass any other options, it will send those options to
the validator class as options:

class Person < ApplicationRecord
 validates :name, uniqueness: { case_sensitive: false }
end

class GoodnessValidator < ActiveModel::Validator
 def validate(record)
 if record.first_name == "Evil"
 record.errors[:base] << "This person is evil"
 end
 end
end

class Person < ApplicationRecord
 validates_with GoodnessValidator
end

� of �46 219

Note that the validator will be initialized only once for the whole application life
cycle, and not on each validation run, so be careful about using instance
variables inside it.
If your validator is complex enough that you want instance variables, you can
easily use a plain old Ruby object instead:

2.13 validates_each
This helper validates attributes against a block. It doesn't have a predefined
validation function. You should create one using a block, and every attribute

class GoodnessValidator < ActiveModel::Validator
 def validate(record)
 if options[:fields].any?{|field| record.send(field)
== "Evil" }
 record.errors[:base] << "This person is evil"
 end
 end
end

class Person < ApplicationRecord
 validates_with GoodnessValidator, fields:
[:first_name, :last_name]
end

class Person < ApplicationRecord
 validate do |person|
 GoodnessValidator.new(person).validate
 end
end

class GoodnessValidator
 def initialize(person)
 @person = person
 end

 def validate
 if
some_complex_condition_involving_ivars_and_private_metho
ds?
 @person.errors[:base] << "This person is evil"
 end
 end

 # ...
end

� of �47 219

passed to validates_each will be tested against it. In the following
example, we don't want names and surnames to begin with lower case.

The block receives the record, the attribute's name and the attribute's value.
You can do anything you like to check for valid data within the block. If your
validation fails, you should add an error message to the model, therefore
making it invalid.

3 Common Validation Options
These are common validation options:
3.1 :allow_nil
The :allow_nil option skips the validation when the value being validated
is nil.

For full options to the message argument please see the message
documentation.
3.2 :allow_blank
The :allow_blank option is similar to the :allow_nil option. This option
will let validation pass if the attribute's value is blank?, like nil or an empty
string for example.

3.3 :message
As you've already seen, the :message option lets you specify the message
that will be added to the errors collection when validation fails. When this
option is not used, Active Record will use the respective default error

class Person < ApplicationRecord
 validates_each :name, :surname do |record, attr,
value|
 record.errors.add(attr, 'must start with upper
case') if value =~ /\A[[:lower:]]/
 end
end

class Coffee < ApplicationRecord
 validates :size, inclusion: { in: %w(small medium
large),
 message: "%{value} is not a valid size" },
allow_nil: true
end

class Topic < ApplicationRecord
 validates :title, length: { is: 5 }, allow_blank: true
end

Topic.create(title: "").valid? # => true
Topic.create(title: nil).valid? # => true

� of �48 219

message for each validation helper. The :message option accepts a String
or Proc.
A String :message value can optionally contain any/all of %{value}, %
{attribute}, and %{model} which will be dynamically replaced when
validation fails. This replacement is done using the I18n gem, and the
placeholders must match exactly, no spaces are allowed.
A Proc :message value is given two arguments: the object being validated,
and a hash with :model, :attribute, and :value key-value pairs.

3.4 :on
The :on option lets you specify when the validation should happen. The
default behavior for all the built-in validation helpers is to be run on save (both
when you're creating a new record and when you're updating it). If you want
to change it, you can use on: :create to run the validation only when a
new record is created or on: :update to run the validation only when a
record is updated.

class Person < ApplicationRecord
 # Hard-coded message
 validates :name, presence: { message: "must be given
please" }

 # Message with dynamic attribute value. %{value} will
be replaced with
 # the actual value of the attribute. %{attribute} and
%{model} also
 # available.
 validates :age, numericality: { message: "%{value}
seems wrong" }

 # Proc
 validates :username,
 uniqueness: {
 # object = person object being validated
 # data = { model: "Person", attribute: "Username",
value: <username> }
 message: ->(object, data) do
 "Hey #{object.name}!, #{data[:value]} is taken
already! Try again #{Time.zone.tomorrow}"
 end
 }
end

� of �49 219

You can also use on: to define custom context. Custom contexts need to be
triggered explicitly by passing name of the context to valid?, invalid? or
save.

person.valid?(:account_setup) executes both the validations without
saving the model. And person.save(context: :account_setup)
validates person in account_setup context before saving. On explicit
triggers, model is validated by validations of only that context and validations
without context.

4 Strict Validations
Yo u c a n a l s o s p e c i f y v a l i d a t i o n s t o b e s t r i c t a n d r a i s e
ActiveModel::StrictValidationFailed when the object is invalid.

There is also the ability to pass a custom exception to the :strict option.

class Person < ApplicationRecord
 # it will be possible to update email with a
duplicated value
 validates :email, uniqueness: true, on: :create

 # it will be possible to create the record with a non-
numerical age
 validates :age, numericality: true, on: :update

 # the default (validates on both create and update)
 validates :name, presence: true
end

class Person < ApplicationRecord
 validates :email, uniqueness: true, on: :account_setup
 validates :age, numericality: true, on: :account_setup
end

person = Person.new

class Person < ApplicationRecord
 validates :name, presence: { strict: true }
end

Person.new.valid? # =>
ActiveModel::StrictValidationFailed: Name can't be blank

class Person < ApplicationRecord
 validates :token, presence: true, uniqueness: true,
strict: TokenGenerationException
end

Person.new.valid? # => TokenGenerationException: Token
can't be blank

� of �50 219

5 Conditional Validation
Sometimes it will make sense to validate an object only when a given
predicate is satisfied. You can do that by using the :if and :unless
options, which can take a symbol, a Proc or an Array. You may use the :if
option when you want to specify when the validation should happen. If you
want to specify when the validation should not happen, then you may use
the :unless option.
5.1 Using a Symbol with :if and :unless
You can associate the :if and :unless options with a symbol
corresponding to the name of a method that will get called right before
validation happens. This is the most commonly used option.

5.2 Using a Proc with :if and :unless
Finally, it's possible to associate :if and :unless with a Proc object which
will be called. Using a Proc object gives you the ability to write an inline
condition instead of a separate method. This option is best suited for one-
liners.

5.3 Grouping Conditional validations
Sometimes it is useful to have multiple validations use one condition. It can
be easily achieved using with_options.

All validations inside of the with_options block will have automatically
passed the condition if: :is_admin?
5.4 Combining Validation Conditions

class Order < ApplicationRecord
 validates :card_number, presence: true,
if: :paid_with_card?

 def paid_with_card?
 payment_type == "card"
 end
end

class Account < ApplicationRecord
 validates :password, confirmation: true,
 unless: Proc.new { |a| a.password.blank? }
end

class User < ApplicationRecord
 with_options if: :is_admin? do |admin|
 admin.validates :password, length: { minimum: 10 }
 admin.validates :email, presence: true
 end
end

� of �51 219

On the other hand, when multiple conditions define whether or not a
validation should happen, an Array can be used. Moreover, you can apply
both :if and :unless to the same validation.

The validation only runs when all the :if conditions and none of
the :unless conditions are evaluated to true.

6 Performing Custom Validations
When the built-in validation helpers are not enough for your needs, you can
write your own validators or validation methods as you prefer.
6.1 Custom Validators
Custom validators are classes that inherit from ActiveModel::Validator.
These classes must implement the validate method which takes a record
as an argument and performs the validation on it. The custom validator is
called using the validates_with method.

The easiest way to add custom validators for validating individual attributes is
with the convenient ActiveModel::EachValidator. In this case, the
custom validator class must implement a validate_each method which
takes three arguments: record, attribute, and value. These correspond to the
instance, the attribute to be validated, and the value of the attribute in the
passed instance.

class Computer < ApplicationRecord
 validates :mouse, presence: true,
 if: [Proc.new { |c| c.market.retail?
}, :desktop?],
 unless: Proc.new { |c|
c.trackpad.present? }
end

class MyValidator < ActiveModel::Validator
 def validate(record)
 unless record.name.starts_with? 'X'
 record.errors[:name] << 'Need a name starting with
X please!'
 end
 end
end

class Person
 include ActiveModel::Validations
 validates_with MyValidator
end

� of �52 219

As shown in the example, you can also combine standard validations with
your own custom validators.

6.2 Custom Methods

You can also create methods that verify the state of your models and add
messages to the errors collection when they are invalid. You must then
register these methods by using the validate (API) class method, passing
in the symbols for the validation methods' names.
You can pass more than one symbol for each class method and the
respective validations will be run in the same order as they were registered.
The valid? method will verify that the errors collection is empty, so your
custom validation methods should add errors to it when you wish validation to
fail:

class EmailValidator < ActiveModel::EachValidator
 def validate_each(record, attribute, value)
 unless value =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]
{2,})\z/i
 record.errors[attribute] << (options[:message] ||
"is not an email")
 end
 end
end

class Person < ApplicationRecord
 validates :email, presence: true, email: true
end

� of �53 219

http://api.rubyonrails.org/v5.2.2/classes/ActiveModel/Validations/ClassMethods.html#method-i-validate

By default, such validations will run every time you call valid? or save the
object. But it is also possible to control when to run these custom validations
by giving an :on option to the validate method, with either: :create
or :update.

7 Working with Validation Errors
In addition to the valid? and invalid? methods covered earlier, Rails
provides a number of methods for working with the errors collection and
inquiring about the validity of objects.
The following is a list of the most commonly used methods. Please refer to
the ActiveModel::Errors documentation for a list of all the available
methods.

class Invoice < ApplicationRecord
 validate :expiration_date_cannot_be_in_the_past,
 :discount_cannot_be_greater_than_total_value

 def expiration_date_cannot_be_in_the_past
 if expiration_date.present? && expiration_date <
Date.today
 errors.add(:expiration_date, "can't be in the
past")
 end
 end

 def discount_cannot_be_greater_than_total_value
 if discount > total_value
 errors.add(:discount, "can't be greater than total
value")
 end
 end
end

class Invoice < ApplicationRecord
 validate :active_customer, on: :create

 def active_customer
 errors.add(:customer_id, "is not active") unless
customer.active?
 end
end

� of �54 219

7.1 errors
Returns an instance of the class ActiveModel::Errors containing all
errors. Each key is the attribute name and the value is an array of strings with
all errors.

7.2 errors[]
errors[] is used when you want to check the error messages for a specific
attribute. It returns an array of strings with all error messages for the given
attribute, each string with one error message. If there are no errors related to
the attribute, it returns an empty array.

class Person < ApplicationRecord
 validates :name, presence: true, length: { minimum:
3 }
end

person = Person.new
person.valid? # => false
person.errors.messages
 # => {:name=>["can't be blank", "is too short (minimum
is 3 characters)"]}

person = Person.new(name: "John Doe")
person.valid? # => true
person.errors.messages # => {}

� of �55 219

7.3 errors.add
The add method lets you add an error message related to a particular
attribute. It takes as arguments the attribute and the error message.
The errors.full_messages method (or its equivalent, errors.to_a)
returns the error messages in a user-friendly format, with the capitalized
attribute name prepended to each message, as shown in the examples
below.

An equivalent to errors#add is to use << to append a message to the
errors.messages array for an attribute:

class Person < ApplicationRecord
 validates :name, presence: true, length: { minimum:
3 }
end

person = Person.new(name: "John Doe")
person.valid? # => true
person.errors[:name] # => []

person = Person.new(name: "JD")
person.valid? # => false
person.errors[:name] # => ["is too short (minimum is 3
characters)"]

person = Person.new
person.valid? # => false
person.errors[:name]
 # => ["can't be blank", "is too short (minimum is 3
characters)"]

class Person < ApplicationRecord
 def a_method_used_for_validation_purposes
 errors.add(:name, "cannot contain the characters !
@#%*()_-+=")
 end
end

person = Person.create(name: "!@#")

person.errors[:name]
 # => ["cannot contain the characters !@#%*()_-+="]

person.errors.full_messages
 # => ["Name cannot contain the characters !@#%*()_-+="]

� of �56 219

7.4 errors.details
You can specify a validator type to the returned error details hash using the
errors.add method.

To improve the error details to contain the unallowed characters set for
instance, you can pass additional keys to errors.add.

class Person < ApplicationRecord
 def a_method_used_for_validation_purposes
 errors.messages[:name] << "cannot contain the
characters !@#%*()_-+="
 end
end

person = Person.create(name: "!@#")

person.errors[:name]
 # => ["cannot contain the characters !@#%*()_-+="]

person.errors.to_a
 # => ["Name cannot contain the characters !@#%*()_-+="]

class Person < ApplicationRecord
 def a_method_used_for_validation_purposes
 errors.add(:name, :invalid_characters)
 end
end

person = Person.create(name: "!@#")

person.errors.details[:name]
=> [{error: :invalid_characters}]

class Person < ApplicationRecord
 def a_method_used_for_validation_purposes
 errors.add(:name, :invalid_characters, not_allowed:
"!@#%*()_-+=")
 end
end

person = Person.create(name: "!@#")

person.errors.details[:name]
=> [{error: :invalid_characters, not_allowed: "!
@#%*()_-+="}]

� of �57 219

All built in Rails validators populate the details hash with the corresponding
validator type.
7.5 errors[:base]
You can add error messages that are related to the object's state as a whole,
instead of being related to a specific attribute. You can use this method when
you want to say that the object is invalid, no matter the values of its attributes.
Since errors[:base] is an array, you can simply add a string to it and it
will be used as an error message.

7.6 errors.clear
The clear method is used when you intentionally want to clear all the
messages in the errors collection. Of course, calling errors.clear upon
an invalid object won't actually make it valid: the errors collection will now
be empty, but the next time you call valid? or any method that tries to save
this object to the database, the validations will run again. If any of the
validations fail, the errors collection will be filled again.

7.7 errors.size
The size method returns the total number of error messages for the object.

class Person < ApplicationRecord
 def a_method_used_for_validation_purposes
 errors[:base] << "This person is invalid
because ..."
 end
end

class Person < ApplicationRecord
 validates :name, presence: true, length: { minimum:
3 }
end

person = Person.new
person.valid? # => false
person.errors[:name]
 # => ["can't be blank", "is too short (minimum is 3
characters)"]

person.errors.clear
person.errors.empty? # => true

person.save # => false

person.errors[:name]
=> ["can't be blank", "is too short (minimum is 3
characters)"]

� of �58 219

8 Displaying Validation Errors in Views
Once you've created a model and added validations, if that model is created
via a web form, you probably want to display an error message when one of
the validations fail.
Because every application handles this kind of thing differently, Rails does not
include any view helpers to help you generate these messages directly.
However, due to the rich number of methods Rails gives you to interact with
validations in general, it's fairly easy to build your own. In addition, when
generating a scaffold, Rails will put some ERB into the _form.html.erb
that it generates that displays the full list of errors on that model.
Assuming we have a model that's been saved in an instance variable named
@article, it looks like this:

Furthermore, if you use the Rails form helpers to generate your forms, when
a validation error occurs on a field, it will generate an extra <div> around the
entry.

class Person < ApplicationRecord
 validates :name, presence: true, length: { minimum:
3 }
end

person = Person.new
person.valid? # => false
person.errors.size # => 2

person = Person.new(name: "Andrea", email:
"andrea@example.com")
person.valid? # => true
person.errors.size # => 0

<% if @article.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@article.errors.count, "error") %>
prohibited this article from being saved:</h2>

 <% @article.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
<% end %>

� of �59 219

You can then style this div however you'd like. The default scaffold that Rails
generates, for example, adds this CSS rule:

This means that any field with an error ends up with a 2 pixel red border.

<div class="field_with_errors">
 <input id="article_title" name="article[title]"
size="30" type="text" value="">
</div>

.field_with_errors {
 padding: 2px;
 background-color: red;
 display: table;
}

� of �60 219

1 Migration Overview

Migrations are a convenient way to alter your database schema over time in a
consistent and easy way. They use a Ruby DSL so that you don't have to
write SQL by hand, allowing your schema and changes to be database
independent.
You can think of each migration as being a new 'version' of the database. A
schema starts off with nothing in it, and each migration modifies it to add or
remove tables, columns, or entries. Active Record knows how to update your
schema along this timeline, bringing it from whatever point it is in the history
to the latest version. Active Record will also update your db/schema.rb file
to match the up-to-date structure of your database.
Here's an example of a migration:

This migration adds a table called products with a string column called
name and a text column called description. A primary key column called
id will also be added implicitly, as it's the default primary key for all Active
Record models. The timestamps macro adds two columns, created_at
and updated_at. These special columns are automatically managed by
Active Record if they exist.
Note that we define the change that we want to happen moving forward in
time. Before this migration is run, there will be no table. After, the table will
exist. Active Record knows how to reverse this migration as well: if we roll this
migration back, it will remove the table.
On databases that support transactions with statements that change the
schema, migrations are wrapped in a transaction. If the database does not

class CreateProducts < ActiveRecord::Migration[5.0]
 def change
 create_table :products do |t|
 t.string :name
 t.text :description

 t.timestamps
 end
 end
end

� of �61 219

https://en.wikipedia.org/wiki/Schema_migration

support this then when a migration fails the parts of it that succeeded will not
be rolled back. You will have to rollback the changes that were made by hand.
There are certain queries that can't run inside a transaction. If your adapter
supports DDL transactions you can use disable_ddl_transaction! to
disable them for a single migration.
If you wish for a migration to do something that Active Record doesn't know
how to reverse, you can use reversible:

Alternatively, you can use up and down instead of change:

2 Creating a Migration
2.1 Creating a Standalone Migration

Migrations are stored as files in the db/migrate directory, one for each
m i g r a t i o n c l a s s . T h e n a m e o f t h e fi l e i s o f t h e f o r m
YYYYMMDDHHMMSS_create_products.rb, that is to say a UTC timestamp
identifying the migration followed by an underscore followed by the name of
the migration.

class ChangeProductsPrice < ActiveRecord::Migration[5.0]
 def change
 reversible do |dir|
 change_table :products do |t|
 dir.up { t.change :price, :string }
 dir.down { t.change :price, :integer }
 end
 end
 end
end

class ChangeProductsPrice < ActiveRecord::Migration[5.0]
 def up
 change_table :products do |t|
 t.change :price, :string
 end
 end

 def down
 change_table :products do |t|
 t.change :price, :integer
 end
 end
end

� of �62 219

The name of the migration class (CamelCased version) should match the
latter part of the file name. For example
20080906120000_create_products.rb should define class
CreateProducts and
20080906120001_add_details_to_products.rb should define
AddDetailsToProducts.

Rails uses this timestamp to determine which migration should be run and in
what order, so if you're copying a migration from another application or
generate a file yourself, be aware of its position in the order.

Of course, calculating timestamps is no fun, so Active Record provides a
generator to handle making it for you:

This will create an empty but appropriately named migration:

I f t h e m i g r a t i o n n a m e i s o f t h e f o r m " A d d X X X To Y Y Y " o r
"RemoveXXXFromYYY" and is followed by a list of column names and types
then a migration containing the appropriate add_column and
remove_column statements will be created.

will generate

If you'd like to add an index on the new column, you can do that as well:

will generate

$ bin/rails generate migration AddPartNumberToProducts

class AddPartNumberToProducts <
ActiveRecord::Migration[5.0]
 def change
 end
end

$ bin/rails generate migration AddPartNumberToProducts
part_number:string

class AddPartNumberToProducts <
ActiveRecord::Migration[5.0]
 def change
 add_column :products, :part_number, :string
 end
end

$ bin/rails generate migration AddPartNumberToProducts
part_number:string:index

� of �63 219

Similarly, you can generate a migration to remove a column from the
command line:

generates

You are not limited to one magically generated column. For example:

generates

If the migration name is of the form "CreateXXX" and is followed by a list of
column names and types then a migration creating the table XXX with the
columns listed will be generated.

For example:

generates

class AddPartNumberToProducts <
ActiveRecord::Migration[5.0]
 def change
 add_column :products, :part_number, :string
 add_index :products, :part_number
 end
end

$ bin/rails generate migration
RemovePartNumberFromProducts part_number:string

class RemovePartNumberFromProducts <
ActiveRecord::Migration[5.0]
 def change
 remove_column :products, :part_number, :string
 end
end

$ bin/rails generate migration AddDetailsToProducts
part_number:string price:decimal

class AddDetailsToProducts <
ActiveRecord::Migration[5.0]
 def change
 add_column :products, :part_number, :string
 add_column :products, :price, :decimal
 end
end

$ bin/rails generate migration CreateProducts
name:string part_number:string

� of �64 219

As always, what has been generated for you is just a starting point. You can
add or remove from it as you see fit by editing the db/migrate/
YYYYMMDDHHMMSS_add_details_to_products.rb file.
Also, the generator accepts column type as references (also available as
belongs_to). For instance:

generates

This migration will create a user_id column and appropriate index. For more
add_reference options, visit the API documentation.
There is also a generator which will produce join tables if JoinTable is part
of the name:

will produce the following migration:

2.2 Model Generators
The model and scaffold generators will create migrations appropriate for
adding a new model. This migration will already contain instructions for
creating the relevant table. If you tell Rails what columns you want, then

class CreateProducts < ActiveRecord::Migration[5.0]
 def change
 create_table :products do |t|
 t.string :name
 t.string :part_number
 end
 end
end

$ bin/rails generate migration AddUserRefToProducts
user:references

class AddUserRefToProducts <
ActiveRecord::Migration[5.0]
 def change
 add_reference :products, :user, foreign_key: true
 end
end

$ bin/rails g migration CreateJoinTableCustomerProduct
customer product

class CreateJoinTableCustomerProduct <
ActiveRecord::Migration[5.0]
 def change
 create_join_table :customers, :products do |t|
 # t.index [:customer_id, :product_id]
 # t.index [:product_id, :customer_id]
 end
 end
end

� of �65 219

http://api.rubyonrails.org/v5.2.2/classes/ActiveRecord/ConnectionAdapters/SchemaStatements.html#method-i-add_reference

statements for adding these columns will also be created. For example,
running:

will create a migration that looks like this

You can append as many column name/type pairs as you want.
2.3 Passing Modifiers
Some commonly used type modifiers can be passed directly on the command
line. They are enclosed by curly braces and follow the field type:
For instance, running:

will produce a migration that looks like this

Have a look at the generators help output for further details.

3 Writing a Migration
Once you have created your migration using one of the generators it's time to
get to work!
3.1 Creating a Table
The create_table method is one of the most fundamental, but most of the
time, will be generated for you from using a model or scaffold generator. A
typical use would be

$ bin/rails generate model Product name:string
description:text

class CreateProducts < ActiveRecord::Migration[5.0]
 def change
 create_table :products do |t|
 t.string :name
 t.text :description

 t.timestamps
 end
 end
end

$ bin/rails generate migration AddDetailsToProducts
'price:decimal{5,2}' supplier:references{polymorphic}

class AddDetailsToProducts <
ActiveRecord::Migration[5.0]
 def change
 add_column :products, :price, :decimal, precision:
5, scale: 2
 add_reference :products, :supplier, polymorphic:
true
 end
end

� of �66 219

which creates a products table with a column called name (and as
discussed below, an implicit id column).
By default, create_table will create a primary key called id. You can
change the name of the primary key with the :primary_key option (don't
forget to update the corresponding model) or, if you don't want a primary key
at all, you can pass the option id: false. If you need to pass database
specific options you can place an SQL fragment in the :options option. For
example:

will append ENGINE=BLACKHOLE to the SQL statement used to create the
table.
Also you can pass the :comment option with any description for the table
that will be stored in database itself and can be viewed with database
administration tools, such as MySQL Workbench or PgAdmin III. It's highly
recommended to specify comments in migrations for applications with large
databases as it helps people to understand data model and generate
documentation. Currently only the MySQL and PostgreSQL adapters support
comments.
3.2 Creating a Join Table
The migration method create_join_table creates an HABTM (has and
belongs to many) join table. A typical use would be:

which creates a categories_products table with two columns called
category_id and product_id. These columns have the option :null set
to false by defaul t . This can be overr idden by speci fy ing
the :column_options option:

By default, the name of the join table comes from the union of the first two
arguments provided to create_join_table, in alphabetical order. To customize
the name of the table, provide a :table_name option:

creates a categorization table.
create_join_table also accepts a block, which you can use to add
indices (which are not created by default) or additional columns:

create_table :products do |t|
 t.string :name
end

create_table :products, options: "ENGINE=BLACKHOLE" do |
t|
 t.string :name, null: false
end

create_join_table :products, :categories

create_join_table :products, :categories,
column_options: { null: true }

create_join_table :products, :categories,
table_name: :categorization

� of �67 219

3.3 Changing Tables
A close cousin of create_table is change_table, used for changing
existing tables. It is used in a similar fashion to create_table but the object
yielded to the block knows more tricks. For example:

removes the description and name columns, creates a part_number
string column and adds an index on it. Finally it renames the upccode
column.
3.4 Changing Columns
Like the remove_column and add_column Rails provides the
change_column migration method.

This changes the column part_number on products table to be a :text
field. Note that change_column command is irreversible.
Bes ides change_column , t he change_column_null and
change_column_default methods are used specifically to change a not
null constraint and default values of a column.

This sets :name field on products to a NOT NULL column and the default
value of the :approved field from true to false.
Note: You could also write the above change_column_default migration
as change_column_default :products, :approved, false, but
unlike the previous example, this would make your migration irreversible.
3.5 Column Modifiers
Column modifiers can be applied when creating or changing a column:
• limit Sets the maximum size of the string/text/binary/

integer fields.
• precision Defines the precision for the decimal fields, representing

the total number of digits in the number.

create_join_table :products, :categories do |t|
 t.index :product_id
 t.index :category_id
end

change_table :products do |t|
 t.remove :description, :name
 t.string :part_number
 t.index :part_number
 t.rename :upccode, :upc_code
end

change_column :products, :part_number, :text

change_column_null :products, :name, false
change_column_default :products, :approved, from: true,
to: false

� of �68 219

• scale Defines the scale for the decimal fields, representing the
number of digits after the decimal point.

• polymorphic Adds a type column for belongs_to associations.
• null Allows or disallows NULL values in the column.
• default Allows to set a default value on the column. Note that if you

are using a dynamic value (such as a date), the default will only be
calculated the first time (i.e. on the date the migration is applied).

• index Adds an index for the column.
• comment Adds a comment for the column.

Some adapters may support additional options; see the adapter specific API
docs for further information.
null and default cannot be specified via command line.

3.6 Foreign Keys
While it's not required you might want to add foreign key constraints to
guarantee referential integrity.

This adds a new foreign key to the author_id column of the articles
table. The key references the id column of the authors table. If the column
names can not be derived from the table names, you can use the :column
and :primary_key options.
Rails will generate a name for every foreign key starting with fk_rails_
followed by 10 characters which are deterministically generated from the
from_table and column. There is a :name option to specify a different
name if needed.
Active Record only supports single column foreign keys. execute and
structure.sql are required to use composite foreign keys. See Schema
Dumping and You.
Removing a foreign key is easy as well:

3.7 When Helpers aren't Enough
If the helpers provided by Active Record aren't enough you can use the
execute method to execute arbitrary SQL:

add_foreign_key :articles, :authors

let Active Record figure out the column name
remove_foreign_key :accounts, :branches

remove foreign key for a specific column
remove_foreign_key :accounts, column: :owner_id

remove foreign key by name
remove_foreign_key :accounts, name: :special_fk_name

� of �69 219

For more details and examples of individual methods, check the API
d o c u m e n t a t i o n . I n p a r t i c u l a r t h e d o c u m e n t a t i o n f o r
ActiveRecord::ConnectionAdapters::SchemaStatements (which
provides the methods available in the change, up and down methods),
ActiveRecord::ConnectionAdapters::TableDefinition (which
provides the methods available on the object yielded by create_table) and
ActiveRecord::ConnectionAdapters::Table (which provides the
methods available on the object yielded by change_table).
3.8 Using the change Method
The change method is the primary way of writing migrations. It works for the
majority of cases, where Active Record knows how to reverse the migration
automatically. Currently, the change method supports only these migration
definitions:

• add_column
• add_foreign_key
• add_index
• add_reference
• add_timestamps
• change_column_default (must supply a :from and :to option)
• change_column_null
• create_join_table
• create_table
• disable_extension
• drop_join_table
• drop_table (must supply a block)
• enable_extension
• remove_column (must supply a type)
• remove_foreign_key (must supply a second table)
• remove_index
• remove_reference
• remove_timestamps
• rename_column
• rename_index
• rename_table

change_table is also reversible, as long as the block does not call change,
change_default or remove.
remove_column is reversible if you supply the column type as the third
argument. Provide the original column options too, otherwise Rails can't
recreate the column exactly when rolling back:

Product.connection.execute("UPDATE products SET price =
'free' WHERE 1=1")

� of �70 219

http://api.rubyonrails.org/v5.2.2/classes/ActiveRecord/ConnectionAdapters/SchemaStatements.html
http://api.rubyonrails.org/v5.2.2/classes/ActiveRecord/ConnectionAdapters/TableDefinition.html
http://api.rubyonrails.org/v5.2.2/classes/ActiveRecord/ConnectionAdapters/Table.html

If you're going to need to use any other methods, you should use
reversible or write the up and down methods instead of using the change
method.
3.9 Using reversible
Complex migrations may require processing that Active Record doesn't know
how to reverse. You can use reversible to specify what to do when
running a migration and what else to do when reverting it. For example:

Using reversible will ensure that the instructions are executed in the right
order too. If the previous example migration is reverted, the down block will
be run after the home_page_url column is removed and right before the
table distributors is dropped.
Sometimes your migration will do something which is just plain irreversible;
for example, it might destroy some data. In such cases, you can raise
ActiveRecord::IrreversibleMigration in your down block. If

remove_column :posts, :slug, :string, null: false,
default: '', index: true

class ExampleMigration < ActiveRecord::Migration[5.0]
 def change
 create_table :distributors do |t|
 t.string :zipcode
 end

 reversible do |dir|
 dir.up do
 # add a CHECK constraint
 execute <<-SQL
 ALTER TABLE distributors
 ADD CONSTRAINT zipchk
 CHECK (char_length(zipcode) = 5) NO
INHERIT;
 SQL
 end
 dir.down do
 execute <<-SQL
 ALTER TABLE distributors
 DROP CONSTRAINT zipchk
 SQL
 end
 end

 add_column :users, :home_page_url, :string
 rename_column :users, :email, :email_address
 end
end

� of �71 219

someone tries to revert your migration, an error message will be displayed
saying that it can't be done.
3.10 Using the up/down Methods
You can also use the old style of migration using up and down methods
instead of the change method. The up method should describe the
transformation you'd like to make to your schema, and the down method of
your migration should revert the transformations done by the up method. In
other words, the database schema should be unchanged if you do an up
followed by a down. For example, if you create a table in the up method, you
should drop it in the down method. It is wise to perform the transformations in
precisely the reverse order they were made in the up method. The example
in the reversible section is equivalent to:

I f y o u r m i g r a t i o n i s i r r e v e r s i b l e , y o u s h o u l d r a i s e
ActiveRecord::IrreversibleMigration from your down method. If

class ExampleMigration < ActiveRecord::Migration[5.0]
 def up
 create_table :distributors do |t|
 t.string :zipcode
 end

 # add a CHECK constraint
 execute <<-SQL
 ALTER TABLE distributors
 ADD CONSTRAINT zipchk
 CHECK (char_length(zipcode) = 5);
 SQL

 add_column :users, :home_page_url, :string
 rename_column :users, :email, :email_address
 end

 def down
 rename_column :users, :email_address, :email
 remove_column :users, :home_page_url

 execute <<-SQL
 ALTER TABLE distributors
 DROP CONSTRAINT zipchk
 SQL

 drop_table :distributors
 end
end

� of �72 219

someone tries to revert your migration, an error message will be displayed
saying that it can't be done.
3.11 Reverting Previous Migrations
You can use Active Record's ability to rollback migrations using the revert
method:

The revert method also accepts a block of instructions to reverse. This
could be useful to revert selected parts of previous migrations. For example,
let's imagine that ExampleMigration is committed and it is later decided it
would be best to use Active Record validations, in place of the CHECK
constraint, to verify the zipcode.

require_relative '20121212123456_example_migration'

class FixupExampleMigration <
ActiveRecord::Migration[5.0]
 def change
 revert ExampleMigration

 create_table(:apples) do |t|
 t.string :variety
 end
 end
end

� of �73 219

The same migration could also have been written without using revert but
this would have involved a few more steps: reversing the order of
create_table and reversible, replacing create_table by
drop_table, and finally replacing up by down and vice-versa. This is all
taken care of by revert.
If you want to add check constraints like in the examples above, you will have
to use structure.sql as dump method. See Schema Dumping and You.

4 Running Migrations
Rails provides a set of bin/rails tasks to run certain sets of migrations.
The very first migration related bin/rails task you will use will probably be
rails db:migrate. In its most basic form it just runs the change or up
method for all the migrations that have not yet been run. If there are no such
migrations, it exits. It will run these migrations in order based on the date of
the migration.

class DontUseConstraintForZipcodeValidationMigration <
ActiveRecord::Migration[5.0]
 def change
 revert do
 # copy-pasted code from ExampleMigration
 reversible do |dir|
 dir.up do
 # add a CHECK constraint
 execute <<-SQL
 ALTER TABLE distributors
 ADD CONSTRAINT zipchk
 CHECK (char_length(zipcode) = 5);
 SQL
 end
 dir.down do
 execute <<-SQL
 ALTER TABLE distributors
 DROP CONSTRAINT zipchk
 SQL
 end
 end

 # The rest of the migration was ok
 end
 end
end

� of �74 219

Note that running the db:migrate task also invokes the db:schema:dump
task, which will update your db/schema.rb file to match the structure of
your database.
If you specify a target version, Active Record will run the required migrations
(change, up, down) until it has reached the specified version. The version is
the numerical prefix on the migration's filename. For example, to migrate to
version 20080906120000 run:

If version 20080906120000 is greater than the current version (i.e., it is
migrating upwards), this will run the change (or up) method on all migrations
up to and including 20080906120000, and will not execute any later
migrations. If migrating downwards, this will run the down method on all the
migrations down to, but not including, 20080906120000.
4.1 Rolling Back
A common task is to rollback the last migration. For example, if you made a
mistake in it and wish to correct it. Rather than tracking down the version
number associated with the previous migration you can run:

This will rollback the latest migration, either by reverting the change method
or by running the down method. If you need to undo several migrations you
can provide a STEP parameter:

will revert the last 3 migrations.
The db:migrate:redo task is a shortcut for doing a rollback and then
migrating back up again. As with the db:rollback task, you can use the
STEP parameter if you need to go more than one version back, for example:

Neither of these bin/rails tasks do anything you could not do with
db:migrate. They are simply more convenient, since you do not need to
explicitly specify the version to migrate to.
4.2 Setup the Database
The rails db:setup task will create the database, load the schema and
initialize it with the seed data.
4.3 Resetting the Database
The rails db:reset task will drop the database and set it up again. This
is functionally equivalent to rails db:drop db:setup.
This is not the same as running all the migrations. It will only use the contents
of the current db/schema.rb or db/structure.sql file. If a migration
can't be rolled back, rails db:reset may not help you. To find out more
about dumping the schema see Schema Dumping and You section.

$ bin/rails db:migrate VERSION=20080906120000

$ bin/rails db:rollback

$ bin/rails db:rollback STEP=3

$ bin/rails db:migrate:redo STEP=3

� of �75 219

4.4 Running Specific Migrations
If you need to run a specific migration up or down, the db:migrate:up and
db:migrate:down tasks will do that. Just specify the appropriate version
and the corresponding migration will have its change, up or down method
invoked, for example:

will run the 20080906120000 migration by running the change method (or
the up method). This task will first check whether the migration is already
performed and will do nothing if Active Record believes that it has already
been run.
4.5 Running Migrations in Different Environments
By default running bin/rails db:migrate will run in the development
environment. To run migrations against another environment you can specify
it using the RAILS_ENV environment variable while running the command.
For example to run migrations against the test environment you could run:

4.6 Changing the Output of Running Migrations
By default migrations tell you exactly what they're doing and how long it took.
A migration creating a table and adding an index might produce output like
this

Several methods are provided in migrations that allow you to control all this:

$ bin/rails db:migrate:up VERSION=20080906120000

$ bin/rails db:migrate RAILS_ENV=test

== CreateProducts: migrating
===
-- create_table(:products)
 -> 0.0028s
== CreateProducts: migrated (0.0028s)
==

Method Purpose

suppress_mes
sages

Takes a block as an argument and suppresses any
output generated by the block.

say
Takes a message argument and outputs it as is. A
second boolean argument can be passed to specify
whether to indent or not.

say_with_time
Outputs text along with how long it took to run its block.
If the block returns an integer it assumes it is the
number of rows affected.

� of �76 219

For example, this migration:

generates the following output

If you want Active Record to not output anything, then running rails
db:migrate
VERBOSE=false will suppress all output.

5 Changing Existing Migrations
Occasionally you will make a mistake when writing a migration. If you have
already run the migration, then you cannot just edit the migration and run the
migration again: Rails thinks it has already run the migration and so will do
nothing when you run rails db:migrate. You must rollback the migration
(for example with bin/rails db:rollback), edit your migration and then
run rails db:migrate to run the corrected version.

class CreateProducts < ActiveRecord::Migration[5.0]
 def change
 suppress_messages do
 create_table :products do |t|
 t.string :name
 t.text :description
 t.timestamps
 end
 end

 say "Created a table"

 suppress_messages {add_index :products, :name}
 say "and an index!", true

 say_with_time 'Waiting for a while' do
 sleep 10
 250
 end
 end
end

== CreateProducts: migrating
===
-- Created a table
 -> and an index!
-- Waiting for a while
 -> 10.0013s
 -> 250 rows
== CreateProducts: migrated (10.0054s)
=======================================

� of �77 219

In general, editing existing migrations is not a good idea. You will be creating
extra work for yourself and your co-workers and cause major headaches if
the existing version of the migration has already been run on production
machines. Instead, you should write a new migration that performs the
changes you require. Editing a freshly generated migration that has not yet
been committed to source control (or, more generally, which has not been
propagated beyond your development machine) is relatively harmless.
The revert method can be helpful when writing a new migration to undo
previous migrations in whole or in part (see Reverting Previous Migrations
above).

6 Schema Dumping and You
6.1 What are Schema Files for?
Migrations, mighty as they may be, are not the authoritative source for your
database schema. That role falls to either db/schema.rb or an SQL file
which Active Record generates by examining the database. They are not
designed to be edited, they just represent the current state of the database.
There is no need (and it is error prone) to deploy a new instance of an app by
replaying the entire migration history. It is much simpler and faster to just load
into the database a description of the current schema.
For example, this is how the test database is created: the current
development database is dumped (either to db/schema.rb or db/
structure.sql) and then loaded into the test database.
Schema files are also useful if you want a quick look at what attributes an
Active Record object has. This information is not in the model's code and is
frequently spread across several migrations, but the information is nicely
summed up in the schema file. The annotate_models gem automatically adds
and updates comments at the top of each model summarizing the schema if
you desire that functionality.
6.2 Types of Schema Dumps
There are two ways to dump the schema. This is set in config/
application.rb by the config.active_record.schema_format
setting, which may be either :sql or :ruby.
If :ruby is selected, then the schema is stored in db/schema.rb. If you
look at this file you'll find that it looks an awful lot like one very big migration:

� of �78 219

https://github.com/ctran/annotate_models

In many ways this is exactly what it is. This file is created by inspecting the
database and expressing its structure using create_table, add_index,
and so on. Because this is database-independent, it could be loaded into any
database that Active Record supports. This could be very useful if you were
to distribute an application that is able to run against multiple databases.
db/schema.rb cannot express database specific items such as triggers,
sequences, stored procedures or check constraints, etc. Please note that
while custom SQL statements can be run in migrations, these statements
cannot be reconstituted by the schema dumper. If you are using features like
this, then you should set the schema format to :sql.
Instead of using Active Record's schema dumper, the database's structure
will be dumped using a tool specific to the database (via the
db:structure:dump rails task) into db/structure.sql. For example,
for PostgreSQL, the pg_dump utility is used. For MySQL and MariaDB, this
file will contain the output of SHOW CREATE TABLE for the various tables.
Loading these schemas is simply a question of executing the SQL statements
they contain. By definition, this will create a perfect copy of the database's
structure. Using the :sql schema format will, however, prevent loading the
schema into a RDBMS other than the one used to create it.
6.3 Schema Dumps and Source Control
Because schema dumps are the authoritative source for your database
schema, it is strongly recommended that you check them into source control.
db/schema.rb contains the current version number of the database. This
ensures conflicts are going to happen in the case of a merge where both
branches touched the schema. When that happens, solve conflicts manually,
keeping the highest version number of the two.

7 Active Record and Referential Integrity

ActiveRecord::Schema.define(version: 20080906171750) do
 create_table "authors", force: true do |t|
 t.string "name"
 t.datetime "created_at"
 t.datetime "updated_at"
 end

 create_table "products", force: true do |t|
 t.string "name"
 t.text "description"
 t.datetime "created_at"
 t.datetime "updated_at"
 t.string "part_number"
 end
end

� of �79 219

The Active Record way claims that intelligence belongs in your models, not in
the database. As such, features such as triggers or constraints, which push
some of that intelligence back into the database, are not heavily used.
Validations such as validates :foreign_key, uniqueness: true
are one way in which models can enforce data integrity. The :dependent
option on associations allows models to automatically destroy child objects
when the parent is destroyed. Like anything which operates at the application
level, these cannot guarantee referential integrity and so some people
augment them with foreign key constraints in the database.
Although Active Record does not provide all the tools for working directly with
such features, the execute method can be used to execute arbitrary SQL.

8 Migrations and Seed Data
The main purpose of Rails' migration feature is to issue commands that
modify the schema using a consistent process. Migrations can also be used
to add or modify data. This is useful in an existing database that can't be
destroyed and recreated, such as a production database.

To add initial data after a database is created, Rails has a built-in 'seeds'
feature that makes the process quick and easy. This is especially useful when
reloading the database frequently in development and test environments. It's
easy to get started with this feature: just fill up db/seeds.rb with some
Ruby code, and run rails db:seed:

This is generally a much cleaner way to set up the database of a blank
application.

class AddInitialProducts < ActiveRecord::Migration[5.0]
 def up
 5.times do |i|
 Product.create(name: "Product ##{i}", description:
"A product.")
 end
 end

 def down
 Product.delete_all
 end
end

5.times do |i|
 Product.create(name: "Product ##{i}", description: "A
product.")
end

� of �80 219

� of �81 219

1 What Does a Controller Do?

A controller is a middleman between models and views.

It makes the model data available to the view so it can display
that data to the user, and it saves or updates user data to the
model.

2 Controller Naming Convention

The naming convention of controllers in Rails favors pluralization of the last
word in the controller's name, although it is not strictly required (e.g.
ApplicationController).

For example, ClientsController is preferable to ClientController,

SiteAdminsController is preferable to SiteAdminController or
SitesAdminsController, and so on.

Following this convention will allow you to use the default route generators
(e.g. resources, etc) without needing to qualify each :path
or :controller, and will keep URL and path helpers' usage consistent
throughout your application.

The controller naming convention differs from the naming convention of
models, which are expected to be named in singular form.

� of �82 219

3 Methods and Actions
A controller is a Ruby class which inherits from ApplicationController
and has methods just like any other class. When your application receives a
request, the routing will determine which controller and action to run, then
Rails creates an instance of that controller and runs the method with the
same name as the action.

As an example, if a user goes to /clients/new in your application to add a
new client, Rails will create an instance of ClientsController and call its
new method. Note that the empty method from the example above would
work just fine because Rails will by default render the new.html.erb view
unless the action says otherwise. The new method could make available to
the view a @client instance variable by creating a new Client:

The Layouts & Rendering Guide explains this in more detail.
ApplicationController inherits from ActionController::Base,
which defines a number of helpful methods. This guide will cover some of
these, but if you're curious to see what's in there, you can see all of them in
the API documentation or in the source itself.
Only public methods are callable as actions. It is a best practice to lower the
visibility of methods (with private or protected) which are not intended to
be actions, like auxiliary methods or filters.

4 Parameters
You will probably want to access data sent in by the user or other parameters
in your controller actions. There are two kinds of parameters possible in a
web application. The first are parameters that are sent as part of the URL,
called query string parameters. The query string is everything after "?" in the
URL. The second type of parameter is usually referred to as POST data. This
information usually comes from an HTML form which has been filled in by the
user. It's called POST data because it can only be sent as part of an HTTP
POST request. Rails does not make any distinction between query string
parameters and POST parameters, and both are available in the params
hash in your controller:

class ClientsController < ApplicationController
 def new
 end
end

def new
 @client = Client.new
end

� of �83 219

https://guides.rubyonrails.org/layouts_and_rendering.html
http://api.rubyonrails.org/v5.2.2/classes/ActionController.html

4.1 Hash and Array Parameters
The params hash is not limited to one-dimensional keys and values. It can
contain nested arrays and hashes. To send an array of values, append an
empty pair of square brackets "[]" to the key name:

The actual URL in this example will be encoded as "/clients?
ids%5b%5d=1&ids%5b%5d=2&ids%5b%5d=3" as the "[" and "]" characters

class ClientsController < ApplicationController
 # This action uses query string parameters because it
gets run
 # by an HTTP GET request, but this does not make any
difference
 # to the way in which the parameters are accessed. The
URL for
 # this action would look like this in order to list
activated
 # clients: /clients?status=activated
 def index
 if params[:status] == "activated"
 @clients = Client.activated
 else
 @clients = Client.inactivated
 end
 end

 # This action uses POST parameters. They are most
likely coming
 # from an HTML form which the user has submitted. The
URL for
 # this RESTful request will be "/clients", and the
data will be
 # sent as part of the request body.
 def create
 @client = Client.new(params[:client])
 if @client.save
 redirect_to @client
 else
 # This line overrides the default rendering
behavior, which
 # would have been to render the "create" view.
 render "new"
 end
 end
end

GET /clients?ids[]=1&ids[]=2&ids[]=3

� of �84 219

are not allowed in URLs. Most of the time you don't have to worry about this
because the browser will encode it for you, and Rails will decode it
automatically, but if you ever find yourself having to send those requests to
the server manually you should keep this in mind.
The value of params[:ids] will now be ["1", "2", "3"]. Note that
parameter values are always strings; Rails makes no attempt to guess or cast
the type.
Values such as [nil] or [nil, nil, ...] in params are replaced with
[] for security reasons by default. See Security Guide for more information.
To send a hash, you include the key name inside the brackets:

When this form is submitted, the value of params[:client] will be
{ "name" => "Acme", "phone" => "12345", "address" =>
{ "postcode" => "12345", "city" => "Carrot City" } }. Note
the nested hash in params[:client][:address].
The params object acts like a Hash, but lets you use symbols and strings
interchangeably as keys.

4.2 JSON parameters
If you're writing a web service application, you might find yourself more
comfortable accepting parameters in JSON format. If the "Content-Type"
header of your request is set to "application/json", Rails will automatically load
your parameters into the params hash, which you can access as you would
normally.
So for example, if you are sending this JSON content:

Your controller will receive params[:company] as { "name" =>
"acme", "address" => "123 Carrot Street" }.
Also, if you've turned on config.wrap_parameters in your initializer or
called wrap_parameters in your controller, you can safely omit the root
element in the JSON parameter. In this case, the parameters will be cloned

<form accept-charset="UTF-8" action="/clients"
method="post">
 <input type="text" name="client[name]" value="Acme" />
 <input type="text" name="client[phone]"
value="12345" />
 <input type="text" name="client[address][postcode]"
value="12345" />
 <input type="text" name="client[address][city]"
value="Carrot City" />
</form>

{ "company": { "name": "acme", "address": "123 Carrot
Street" } }

� of �85 219

https://guides.rubyonrails.org/security.html#unsafe-query-generation

and wrapped with a key chosen based on your controller's name. So the
above JSON request can be written as:

And, assuming that you're sending the data to CompaniesController, it
would then be wrapped within the :company key like this:

You can customize the name of the key or specific parameters you want to
wrap by consulting the API documentation
Support for parsing XML parameters has been extracted into a gem named
actionpack-xml_parser.
4.3 Routing Parameters
The params hash will always contain the :controller and :action keys,
but you should use the methods controller_name and action_name
instead to access these values. Any other parameters defined by the routing,
such as :id, will also be available. As an example, consider a listing of
clients where the list can show either active or inactive clients. We can add a
route which captures the :status parameter in a "pretty" URL:

In this case, when a user opens the URL /clients/active,
params[:status] will be set to "active". When this route is used,
params[:foo] will also be set to "bar", as if it were passed in the query
string. Your controller will also receive params[:action] as "index" and
params[:controller] as "clients".
4.4 default_url_options
You can set global default parameters for URL generation by defining a
method called default_url_options in your controller. Such a method
must return a hash with the desired defaults, whose keys must be symbols:

These options will be used as a starting point when generating URLs, so it's
possible they'll be overridden by the options passed to url_for calls.
If you define default_url_options in ApplicationController, as in
the example above, these defaults will be used for all URL generation. The
method can also be defined in a specific controller, in which case it only
affects URLs generated there.

{ "name": "acme", "address": "123 Carrot Street" }

{ name: "acme", address: "123 Carrot Street", company: {
name: "acme", address: "123 Carrot Street" } }

get '/clients/:status' => 'clients#index', foo: 'bar'

class ApplicationController < ActionController::Base
 def default_url_options
 { locale: I18n.locale }
 end
end

� of �86 219

http://api.rubyonrails.org/v5.2.2/classes/ActionController/ParamsWrapper.html

In a given request, the method is not actually called for every single
generated URL; for performance reasons, the returned hash is cached, there
is at most one invocation per request.
4.5 Strong Parameters
With strong parameters, Action Controller parameters are forbidden to be
used in Active Model mass assignments until they have been whitelisted. This
means that you'll have to make a conscious decision about which attributes to
allow for mass update. This is a better security practice to help prevent
accidentally allowing users to update sensitive model attributes.
In addition, parameters can be marked as required and will flow through a
predefined raise/rescue flow that will result in a 400 Bad Request being
returned if not all required parameters are passed in.

� of �87 219

4.5.1 Permitted Scalar Values
Given

the key :id will pass the whitelisting if it appears in params and it has a
permitted scalar value associated. Otherwise, the key is going to be filtered
out, so arrays, hashes, or any other objects cannot be injected.

class PeopleController < ActionController::Base
 # This will raise an
ActiveModel::ForbiddenAttributesError exception
 # because it's using mass assignment without an
explicit permit
 # step.
 def create
 Person.create(params[:person])
 end

 # This will pass with flying colors as long as there's
a person key
 # in the parameters, otherwise it'll raise a
 # ActionController::ParameterMissing exception, which
will get
 # caught by ActionController::Base and turned into a
400 Bad
 # Request error.
 def update
 person = current_account.people.find(params[:id])
 person.update!(person_params)
 redirect_to person
 end

 private
 # Using a private method to encapsulate the
permissible parameters
 # is just a good pattern since you'll be able to
reuse the same
 # permit list between create and update. Also, you
can specialize
 # this method with per-user checking of permissible
attributes.
 def person_params
 params.require(:person).permit(:name, :age)
 end
end

params.permit(:id)

� of �88 219

The permitted scalar types are String, Symbol, NilClass, Numeric,
TrueClass, FalseClass, Date, Time, DateTime, StringIO, IO,
A c t i o n D i s p a t c h : : H t t p : : U p l o a d e d F i l e , a n d
Rack::Test::UploadedFile.
To declare that the value in params must be an array of permitted scalar
values, map the key to an empty array:

Sometimes it is not possible or convenient to declare the valid keys of a hash
parameter or its internal structure. Just map to an empty hash:

but be careful because this opens the door to arbitrary input. In this case,
permit ensures values in the returned structure are permitted scalars and
filters out anything else.
To whitelist an entire hash of parameters, the permit! method can be used:

This marks the :log_entry parameters hash and any sub-hash of it as
permitted and does not check for permitted scalars, anything is accepted.
Extreme care should be taken when using permit!, as it will allow all current
and future model attributes to be mass-assigned.
4.5.2 Nested Parameters
You can also use permit on nested parameters, like:

This declaration whitelists the name, emails, and friends attributes. It is
expected that emails will be an array of permitted scalar values, and that
friends will be an array of resources with specific attributes: they should
have a name attribute (any permitted scalar values allowed), a hobbies
attribute as an array of permitted scalar values, and a family attribute which
is restricted to having a name (any permitted scalar values allowed here, too).
4.5.3 More Examples
You may want to also use the permitted attributes in your new action. This
raises the problem that you can't use require on the root key because,
normally, it does not exist when calling new:

The model class method accepts_nested_attributes_for allows you
to update and destroy associated records. This is based on the id and
_destroy parameters:

params.permit(id: [])

params.permit(preferences: {})

params.require(:log_entry).permit!

params.permit(:name, { emails: [] },
 friends: [:name,
 { family: [:name], hobbies:
[] }])

using `fetch` you can supply a default and use
the Strong Parameters API from there.
params.fetch(:blog, {}).permit(:title, :author)

� of �89 219

Hashes with integer keys are treated differently, and you can declare the
attributes as if they were direct children. You get these kinds of parameters
when you use accepts_nested_attributes_for in combination with a
has_many association:

4.5.4 Outside the Scope of Strong Parameters
The strong parameter API was designed with the most common use cases in
mind. It is not meant as a silver bullet to handle all of your whitelisting
problems. However, you can easily mix the API with your own code to adapt
to your situation.
Imagine a scenario where you have parameters representing a product name
and a hash of arbitrary data associated with that product, and you want to
whitelist the product name attribute and also the whole data hash. The strong
parameters API doesn't let you directly whitelist the whole of a nested hash
with any keys, but you can use the keys of your nested hash to declare what
to whitelist:

5 Session
Your application has a session for each user in which you can store small
amounts of data that will be persisted between requests. The session is only
available in the controller and the view and can use one of a number of
different storage mechanisms:
• ActionDispatch::Session::CookieStore - Stores everything on

the client.
• ActionDispatch::Session::CacheStore - Stores the data in the

Rails cache.

permit :id and :_destroy
params.require(:author).permit(:name, books_attributes:
[:title, :id, :_destroy])

To whitelist the following data:
{"book" => {"title" => "Some Book",
"chapters_attributes" => { "1" => {"title"
=> "First Chapter"},
"2" => {"title"
=> "Second Chapter"}}}}

params.require(:book).permit(:title,
chapters_attributes: [:title])

def product_params
 params.require(:product).permit(:name, data:
params[:product][:data].try(:keys))
end

� of �90 219

• ActionDispatch::Session::ActiveRecordStore - Stores the
data in a database using Active Record. (require activerecord-
session_store gem).

• ActionDispatch::Session::MemCacheStore - Stores the data in
a memcached cluster (this is a legacy implementation; consider using
CacheStore instead).

All session stores use a cookie to store a unique ID for each session (you
must use a cookie, Rails will not allow you to pass the session ID in the URL
as this is less secure).
For most stores, this ID is used to look up the session data on the server, e.g.
in a database table. There is one exception, and that is the default and
recommended session store - the CookieStore - which stores all session data
in the cookie itself (the ID is still available to you if you need it). This has the
advantage of being very lightweight and it requires zero setup in a new
application in order to use the session. The cookie data is cryptographically
signed to make it tamper-proof. And it is also encrypted so anyone with
access to it can't read its contents. (Rails will not accept it if it has been
edited).
The CookieStore can store around 4kB of data - much less than the others -
but this is usually enough. Storing large amounts of data in the session is
discouraged no matter which session store your application uses. You should
especially avoid storing complex objects (anything other than basic Ruby
objects, the most common example being model instances) in the session, as
the server might not be able to reassemble them between requests, which will
result in an error.
If your user sessions don't store critical data or don't need to be around for
long periods (for instance if you just use the flash for messaging), you can
consider using ActionDispatch::Session::CacheStore. This will store
sessions using the cache implementation you have configured for your
application. The advantage of this is that you can use your existing cache
infrastructure for storing sessions without requiring any additional setup or
administration. The downside, of course, is that the sessions will be
ephemeral and could disappear at any time.
Read more about session storage in the Security Guide.
If you need a different session storage mechanism, you can change it in an
initializer:

� of �91 219

https://guides.rubyonrails.org/security.html

Rails sets up a session key (the name of the cookie) when signing the
session data. These can also be changed in an initializer:

You can also pass a :domain key and specify the domain name for the
cookie:

Rails sets up (for the CookieStore) a secret key used for signing the session
data in config/credentials.yml.enc. This can be changed with bin/
rails credentials:edit.

Changing the secret_key_base when using the CookieStore will invalidate
all existing sessions.
5.1 Accessing the Session
In your controller you can access the session through the session instance
method.
Sessions are lazily loaded. If you don't access sessions in your action's code,
they will not be loaded. Hence you will never need to disable sessions, just
not accessing them will do the job.
Session values are stored using key/value pairs like a hash:

Use the database for sessions instead of the cookie-
based default,
which shouldn't be used to store highly confidential
information
(create the session table with "rails g
active_record:session_migration")

Rails.application.config.session_store :active_record_st
ore

Be sure to restart your server when you modify this
file.
Rails.application.config.session_store :cookie_store,
key: '_your_app_session'

Be sure to restart your server when you modify this
file.
Rails.application.config.session_store :cookie_store,
key: '_your_app_session', domain: ".example.com"

aws:
access_key_id: 123
secret_access_key: 345

Used as the base secret for all MessageVerifiers in
Rails, including the one protecting cookies.
secret_key_base: 492f...

� of �92 219

To store something in the session, just assign it to the key like a hash:

To remove something from the session, assign that key to be nil:

To reset the entire session, use reset_session.
5.2 The Flash
The flash is a special part of the session which is cleared with each request.
This means that values stored there will only be available in the next request,
which is useful for passing error messages etc.

class ApplicationController < ActionController::Base

 private

 # Finds the User with the ID stored in the session
with the key
 # :current_user_id This is a common way to handle user
login in
 # a Rails application; logging in sets the session
value and
 # logging out removes it.
 def current_user
 @_current_user ||= session[:current_user_id] &&
 User.find_by(id: session[:current_user_id])
 end
end

class LoginsController < ApplicationController
 # "Create" a login, aka "log the user in"
 def create
 if user = User.authenticate(params[:username],
params[:password])
 # Save the user ID in the session so it can be
used in
 # subsequent requests
 session[:current_user_id] = user.id
 redirect_to root_url
 end
 end
end

class LoginsController < ApplicationController
 # "Delete" a login, aka "log the user out"
 def destroy
 # Remove the user id from the session
 @_current_user = session[:current_user_id] = nil
 redirect_to root_url
 end
end

� of �93 219

It is accessed in much the same way as the session, as a hash (it's a
FlashHash instance).
Let's use the act of logging out as an example. The controller can send a
message which will be displayed to the user on the next request:

Note that it is also possible to assign a flash message as part of the
redirection. You can assign :notice, :alert or the general
purpose :flash:

The destroy action redirects to the application's root_url, where the
message will be displayed. Note that it's entirely up to the next action to
decide what, if anything, it will do with what the previous action put in the
flash. It's conventional to display any error alerts or notices from the flash in
the application's layout:

This way, if an action sets a notice or an alert message, the layout will display
it automatically.
You can pass anything that the session can store; you're not limited to notices
and alerts:

If you want a flash value to be carried over to another request, use the keep
method:

class LoginsController < ApplicationController
 def destroy
 session[:current_user_id] = nil
 flash[:notice] = "You have successfully logged out."
 redirect_to root_url
 end
end

redirect_to root_url, notice: "You have successfully
logged out."
redirect_to root_url, alert: "You're stuck here!"
redirect_to root_url, flash: { referral_code: 1234 }

<html>
 <!-- <head/> -->
 <body>
 <% flash.each do |name, msg| -%>
 <%= content_tag :div, msg, class: name %>
 <% end -%>

 <!-- more content -->
 </body>
</html>

<% if flash[:just_signed_up] %>
 <p class="welcome">Welcome to our site!</p>
<% end %>

� of �94 219

http://api.rubyonrails.org/v5.2.2/classes/ActionDispatch/Flash/FlashHash.html

5.2.1 flash.now
By default, adding values to the flash will make them available to the next
request, but sometimes you may want to access those values in the same
request. For example, if the create action fails to save a resource and you
render the new template directly, that's not going to result in a new request,
but you may still want to display a message using the flash. To do this, you
can use flash.now in the same way you use the normal flash:

6 Cookies
Your application can store small amounts of data on the client - called cookies
- that will be persisted across requests and even sessions. Rails provides

class MainController < ApplicationController
 # Let's say this action corresponds to root_url, but
you want
 # all requests here to be redirected to
UsersController#index.
 # If an action sets the flash and redirects here, the
values
 # would normally be lost when another redirect
happens, but you
 # can use 'keep' to make it persist for another
request.
 def index
 # Will persist all flash values.
 flash.keep

 # You can also use a key to keep only some kind of
value.
 # flash.keep(:notice)
 redirect_to users_url
 end
end

class ClientsController < ApplicationController
 def create
 @client = Client.new(params[:client])
 if @client.save
 # ...
 else
 flash.now[:error] = "Could not save client"
 render action: "new"
 end
 end
end

� of �95 219

easy access to cookies via the cookies method, which - much like the
session - works like a hash:

Note that while for session values you set the key to nil, to delete a cookie
value you should use cookies.delete(:key).
Rails also provides a signed cookie jar and an encrypted cookie jar for storing
sensitive data. The signed cookie jar appends a cryptographic signature on
the cookie values to protect their integrity. The encrypted cookie jar encrypts
the values in addition to signing them, so that they cannot be read by the end
user. Refer to the API documentation for more details.
These special cookie jars use a serializer to serialize the assigned values into
strings and deserializes them into Ruby objects on read.
You can specify what serializer to use:

The default serializer for new applications is :json. For compatibility with old
applications with existing cookies, :marshal is used when serializer
option is not specified.

class CommentsController < ApplicationController
 def new
 # Auto-fill the commenter's name if it has been
stored in a cookie
 @comment = Comment.new(author:
cookies[:commenter_name])
 end

 def create
 @comment = Comment.new(params[:comment])
 if @comment.save
 flash[:notice] = "Thanks for your comment!"
 if params[:remember_name]
 # Remember the commenter's name.
 cookies[:commenter_name] = @comment.author
 else
 # Delete cookie for the commenter's name cookie,
if any.
 cookies.delete(:commenter_name)
 end
 redirect_to @comment.article
 else
 render action: "new"
 end
 end
end

Rails.application.config.action_dispatch.cookies_seriali
zer = :json

� of �96 219

http://api.rubyonrails.org/v5.2.2/classes/ActionDispatch/Cookies.html

You may also set this option to :hybrid, in which case Rails would
transparently deserialize existing (Marshal-serialized) cookies on read and
re-write them in the JSON format. This is useful for migrating existing
applications to the :json serializer.
It is also possible to pass a custom serializer that responds to load and
dump:

When using the :json or :hybrid serializer, you should beware that not all
Ruby objects can be serialized as JSON. For example, Date and Time
objects will be serialized as strings, and Hashes will have their keys
stringified.

It's advisable that you only store simple data (strings and numbers) in
cookies. If you have to store complex objects, you would need to handle the
conversion manually when reading the values on subsequent requests.
If you use the cookie session store, this would apply to the session and
flash hash as well.

7 Rendering XML and JSON data
ActionController makes it extremely easy to render XML or JSON data. If
you've generated a controller using scaffolding, it would look something like
this:

Rails.application.config.action_dispatch.cookies_seriali
zer = MyCustomSerializer

class CookiesController < ApplicationController
 def set_cookie
 cookies.encrypted[:expiration_date] = Date.tomorrow
=> Thu, 20 Mar 2014
 redirect_to action: 'read_cookie'
 end

 def read_cookie
 cookies.encrypted[:expiration_date] # =>
"2014-03-20"
 end
end

� of �97 219

You may notice in the above code that we're using render xml: @users,
not render xml: @users.to_xml. If the object is not a String, then Rails
will automatically invoke to_xml for us.

8 Filters
Filters are methods that are run "before", "after" or "around" a controller
action.
Filters are inherited, so if you set a filter on ApplicationController, it
will be run on every controller in your application.
"before" filters may halt the request cycle. A common "before" filter is one
which requires that a user is logged in for an action to be run. You can define
the filter method this way:

The method simply stores an error message in the flash and redirects to the
login form if the user is not logged in. If a "before" filter renders or redirects,
the action will not run. If there are additional filters scheduled to run after that
filter, they are also cancelled.
In this example the filter is added to ApplicationController and thus all
controllers in the application inherit it. This will make everything in the
application require the user to be logged in in order to use it. For obvious

class UsersController < ApplicationController
 def index
 @users = User.all
 respond_to do |format|
 format.html # index.html.erb
 format.xml { render xml: @users }
 format.json { render json: @users }
 end
 end
end

class ApplicationController < ActionController::Base
 before_action :require_login

 private

 def require_login
 unless logged_in?
 flash[:error] = "You must be logged in to access
this section"
 redirect_to new_login_url # halts request cycle
 end
 end
end

� of �98 219

reasons (the user wouldn't be able to log in in the first place!), not all
controllers or actions should require this. You can prevent this filter from
running before particular actions with skip_before_action:

Now, the LoginsController's new and create actions will work as before
without requiring the user to be logged in. The :only option is used to skip
this filter only for these actions, and there is also an :except option which
works the other way. These options can be used when adding filters too, so
you can add a filter which only runs for selected actions in the first place.
Calling the same filter multiple times with different options will not work, since
the last filter definition will overwrite the previous ones.
8.1 After Filters and Around Filters
In addition to "before" filters, you can also run filters after an action has been
executed, or both before and after.
"after" filters are similar to "before" filters, but because the action has already
been run they have access to the response data that's about to be sent to the
client. Obviously, "after" filters cannot stop the action from running. Please
note that "after" filters are executed only after a successful action, but not
when an exception is raised in the request cycle.
"around" filters are responsible for running their associated actions by
yielding, similar to how Rack middlewares work.
For example, in a website where changes have an approval workflow an
administrator could be able to preview them easily, just apply them within a
transaction:

class LoginsController < ApplicationController
 skip_before_action :require_login, only:
[:new, :create]
end

class ChangesController < ApplicationController
 around_action :wrap_in_transaction, only: :show

 private

 def wrap_in_transaction
 ActiveRecord::Base.transaction do
 begin
 yield
 ensure
 raise ActiveRecord::Rollback
 end
 end
 end
end

� of �99 219

Note that an "around" filter also wraps rendering. In particular, if in the
example above, the view itself reads from the database (e.g. via a scope), it
will do so within the transaction and thus present the data to preview.
You can choose not to yield and build the response yourself, in which case
the action will not be run.
8.2 Other Ways to Use Filters
While the most common way to use filters is by creating private methods and
using *_action to add them, there are two other ways to do the same thing.
The first is to use a block directly with the *_action methods. The block
receives the controller as an argument. The require_login filter from
above could be rewritten to use a block:

Note that the filter in this case uses send because the logged_in? method
is private and the filter does not run in the scope of the controller. This is not
the recommended way to implement this particular filter, but in more simple
cases it might be useful.
The second way is to use a class (actually, any object that responds to the
right methods will do) to handle the filtering. This is useful in cases that are
more complex and cannot be implemented in a readable and reusable way
using the two other methods. As an example, you could rewrite the login filter
again to use a class:

class ApplicationController < ActionController::Base
 before_action do |controller|
 unless controller.send(:logged_in?)
 flash[:error] = "You must be logged in to access
this section"
 redirect_to new_login_url
 end
 end
end

class ApplicationController < ActionController::Base
 before_action LoginFilter
end

class LoginFilter
 def self.before(controller)
 unless controller.send(:logged_in?)
 controller.flash[:error] = "You must be logged in
to access this section"
 controller.redirect_to controller.new_login_url
 end
 end
end

� of �100 219

Again, this is not an ideal example for this filter, because it's not run in the
scope of the controller but gets the controller passed as an argument. The
filter class must implement a method with the same name as the filter, so for
the before_action filter the class must implement a before method, and
so on. The around method must yield to execute the action.

9 Request Forgery Protection
Cross-site request forgery is a type of attack in which a site tricks a user into
making requests on another site, possibly adding, modifying or deleting data
on that site without the user's knowledge or permission.
The first step to avoid this is to make sure all "destructive" actions (create,
update and destroy) can only be accessed with non-GET requests. If you're
following RESTful conventions you're already doing this. However, a
malicious site can still send a non-GET request to your site quite easily, and
that's where the request forgery protection comes in. As the name says, it
protects from forged requests.
The way this is done is to add a non-guessable token which is only known to
your server to each request. This way, if a request comes in without the
proper token, it will be denied access.
If you generate a form like this:

You will see how the token gets added as a hidden field:

Rails adds this token to every form that's generated using the form helpers,
so most of the time you don't have to worry about it. If you're writing a form
manually or need to add the token for another reason, it's available through
the method form_authenticity_token:
The form_authenticity_token generates a valid authentication token.
That's useful in places where Rails does not add it automatically, like in
custom Ajax calls.
The Security Guide has more about this and a lot of other security-related
issues that you should be aware of when developing a web application.

<%= form_with model: @user, local: true do |form| %>
 <%= form.text_field :username %>
 <%= form.text_field :password %>
<% end %>

<form accept-charset="UTF-8" action="/users/1"
method="post">
<input type="hidden"
 value="67250ab105eb5ad10851c00a5621854a23af5489"
 name="authenticity_token"/>
<!-- fields -->
</form>

� of �101 219

https://guides.rubyonrails.org/form_helpers.html
https://guides.rubyonrails.org/security.html

10 The Request and Response Objects
In every controller there are two accessor methods pointing to the request
and the response objects associated with the request cycle that is currently in
e x e c u t i o n . T h e request me th o d co n ta i n s a n i n s ta n ce o f
ActionDispatch::Request and the response method returns a
response object representing what is going to be sent back to the client.
10.1 The request Object
The request object contains a lot of useful information about the request
coming in from the client. To get a full list of the available methods, refer to
the Rails API documentation and Rack Documentation. Among the properties
that you can access on this object are:

Property of request Purpose

host The hostname used for this request.

domain(n=2) The hostname's first n segments, starting from
the right (the TLD).

format The content type requested by the client.

method The HTTP method used for the request.

get?, post?, patch?,
put?, delete?, head?

Returns true if the HTTP method is GET/
POST/PATCH/PUT/DELETE/HEAD.

headers Returns a hash containing the headers
associated with the request.

port The port number (integer) used for the
request.

protocol Returns a string containing the protocol used
plus "://", for example "http://".

query_string The query string part of the URL, i.e.,
everything after "?".

remote_ip The IP address of the client.

� of �102 219

http://api.rubyonrails.org/v5.2.2/classes/ActionDispatch/Request.html
http://www.rubydoc.info/github/rack/rack/Rack/Request

1 0 . 1 . 1 p a t h _ p a r a m e t e r s , q u e r y _ p a r a m e t e r s , a n d
request_parameters
Rails collects all of the parameters sent along with the request in the params
hash, whether they are sent as part of the query string or the post body. The
request object has three accessors that give you access to these parameters
depending on where they came from. The query_parameters hash
contains parameters that were sent as part of the query string while the
request_parameters hash contains parameters sent as part of the post
body. The path_parameters hash contains parameters that were
recognized by the routing as being part of the path leading to this particular
controller and action.
10.2 The response Object
The response object is not usually used directly, but is built up during the
execution of the action and rendering of the data that is being sent back to
the user, but sometimes - like in an after filter - it can be useful to access the
response directly. Some of these accessor methods also have setters,
allowing you to change their values. To get a full list of the available methods,
refer to the Rails API documentation and Rack Documentation.

10.2.1 Setting Custom Headers
If you want to set custom headers for a response then response.headers
is the place to do it. The headers attribute is a hash which maps header

url The entire URL used for the request.

Property of
response Purpose

body This is the string of data being sent back to the client.
This is most often HTML.

status The HTTP status code for the response, like 200 for a
successful request or 404 for file not found.

location The URL the client is being redirected to, if any.

content_type The content type of the response.

charset The character set being used for the response. Default is
"utf-8".

headers Headers used for the response.

� of �103 219

http://api.rubyonrails.org/v5.2.2/classes/ActionDispatch/Response.html
http://www.rubydoc.info/github/rack/rack/Rack/Response

names to their values, and Rails will set some of them automatically. If you
want to add or change a header, just assign it to response.headers this
way:

Note: in the above case it would make more sense to use the
content_type setter directly.

11 HTTP Authentications
Rails comes with two built-in HTTP authentication mechanisms:

• Basic Authentication
• Digest Authentication

11.1 HTTP Basic Authentication
HTTP basic authentication is an authentication scheme that is supported by
the majority of browsers and other HTTP clients. As an example, consider an
administration section which will only be available by entering a username
and a password into the browser's HTTP basic dialog window. Using the built-
in authentication is quite easy and only requires you to use one method,
http_basic_authenticate_with.

With this in place, you can create namespaced controllers that inherit from
AdminsController. The filter will thus be run for all actions in those
controllers, protecting them with HTTP basic authentication.
11.2 HTTP Digest Authentication
HTTP digest authentication is superior to the basic authentication as it does
not require the client to send an unencrypted password over the network
(though HTTP basic authentication is safe over HTTPS). Using digest
authentication with Rails is quite easy and only requires using one method,
authenticate_or_request_with_http_digest.

response.headers["Content-Type"] = "application/pdf"

class AdminsController < ApplicationController
 http_basic_authenticate_with name: "humbaba",
password: "5baa61e4"
end

� of �104 219

A s s e e n i n t h e e x a m p l e a b o v e , t h e
authenticate_or_request_with_http_digest block takes only one
argument - the username. And the block returns the password. Returning
f a l s e o r n i l f r o m t h e
authenticate_or_request_with_http_digest wi l l cause
authentication failure.

12 Streaming and File Downloads
Sometimes you may want to send a file to the user instead of rendering an
HTML page. All controllers in Rails have the send_data and the send_file
methods, which will both stream data to the client. send_file is a
convenience method that lets you provide the name of a file on the disk and it
will stream the contents of that file for you.
To stream data to the client, use send_data:

class AdminsController < ApplicationController
 USERS = { "lifo" => "world" }

 before_action :authenticate

 private

 def authenticate
 authenticate_or_request_with_http_digest do |
username|
 USERS[username]
 end
 end
end

� of �105 219

The download_pdf action in the example above will call a private method
which actually generates the PDF document and returns it as a string. This
string will then be streamed to the client as a file download and a filename will
be suggested to the user. Sometimes when streaming files to the user, you
may not want them to download the file. Take images, for example, which can
be embedded into HTML pages. To tell the browser a file is not meant to be
downloaded, you can set the :disposition option to "inline". The opposite
and default value for this option is "attachment".
12.1 Sending Files
If you want to send a file that already exists on disk, use the send_file
method.

require "prawn"
class ClientsController < ApplicationController
 # Generates a PDF document with information on the
client and
 # returns it. The user will get the PDF as a file
download.
 def download_pdf
 client = Client.find(params[:id])
 send_data generate_pdf(client),
 filename: "#{client.name}.pdf",
 type: "application/pdf"
 end

 private

 def generate_pdf(client)
 Prawn::Document.new do
 text client.name, align: :center
 text "Address: #{client.address}"
 text "Email: #{client.email}"
 end.render
 end
end

� of �106 219

This will read and stream the file 4kB at the time, avoiding loading the entire
file into memory at once. You can turn off streaming with the :stream option
or adjust the block size with the :buffer_size option.
If :type is not specified, it will be guessed from the file extension specified in
:filename. If the content type is not registered for the extension,
application/octet-stream will be used.
Be careful when using data coming from the client (params, cookies, etc.) to
locate the file on disk, as this is a security risk that might allow someone to
gain access to files they are not meant to.
It is not recommended that you stream static files through Rails if you can
instead keep them in a public folder on your web server. It is much more
efficient to let the user download the file directly using Apache or another web
server, keeping the request from unnecessarily going through the whole Rails
stack.
12.2 RESTful Downloads
While send_data works just fine, if you are creating a RESTful application
having separate actions for file downloads is usually not necessary. In REST
terminology, the PDF file from the example above can be considered just
another representation of the client resource. Rails provides an easy and
quite sleek way of doing "RESTful downloads". Here's how you can rewrite
the example so that the PDF download is a part of the show action, without
any streaming:

class ClientsController < ApplicationController
 # Stream a file that has already been generated and
stored on disk.
 def download_pdf
 client = Client.find(params[:id])
 send_file("#{Rails.root}/files/clients/
#{client.id}.pdf",
 filename: "#{client.name}.pdf",
 type: "application/pdf")
 end
end

� of �107 219

In order for this example to work, you have to add the PDF MIME type to
Rails. This can be done by adding the following line to the file config/
initializers/mime_types.rb:

Configuration files are not reloaded on each request, so you have to restart
the server in order for their changes to take effect.
Now the user can request to get a PDF version of a client just by adding
".pdf" to the URL:

12.3 Live Streaming of Arbitrary Data
Rails allows you to stream more than just files. In fact, you can stream
a n y t h i n g y o u w o u l d l i k e i n a r e s p o n s e o b j e c t . T h e
ActionController::Live module allows you to create a persistent
connection with a browser. Using this module, you will be able to send
arbitrary data to the browser at specific points in time.
12.3.1 Incorporating Live Streaming
Including ActionController::Live inside of your controller class will
provide all actions inside of the controller the ability to stream data. You can
mix in the module like so:

class ClientsController < ApplicationController
 # The user can request to receive this resource as
HTML or PDF.
 def show
 @client = Client.find(params[:id])

 respond_to do |format|
 format.html
 format.pdf { render pdf: generate_pdf(@client) }
 end
 end
end

Mime::Type.register "application/pdf", :pdf

GET /clients/1.pdf

� of �108 219

The above code will keep a persistent connection with the browser and send
100 messages of "hello world\n", each one second apart.
There are a couple of things to notice in the above example. We need to
make sure to close the response stream. Forgetting to close the stream will
leave the socket open forever. We also have to set the content type to text/
event-stream before we write to the response stream. This is because
headers cannot be written after the response has been committed (when
response.committed? returns a truthy value), which occurs when you
write or commit the response stream.
12.3.2 Example Usage
Let's suppose that you were making a Karaoke machine and a user wants to
get the lyrics for a particular song. Each Song has a particular number of
lines and each line takes time num_beats to finish singing.
If we wanted to return the lyrics in Karaoke fashion (only sending the line
when the singer has finished the previous line), then we could use
ActionController::Live as follows:

class MyController < ActionController::Base
 include ActionController::Live

 def stream
 response.headers['Content-Type'] = 'text/event-
stream'
 100.times {
 response.stream.write "hello world\n"
 sleep 1
 }
 ensure
 response.stream.close
 end
end

� of �109 219

The above code sends the next line only after the singer has completed the
previous line.
12.3.3 Streaming Considerations
Streaming arbitrary data is an extremely powerful tool. As shown in the
previous examples, you can choose when and what to send across a
response stream. However, you should also note the following things:

• Each response stream creates a new thread and copies over the thread
local variables from the original thread. Having too many thread local
variables can negatively impact performance. Similarly, a large number
of threads can also hinder performance.

• Failing to close the response stream will leave the corresponding
socket open forever. Make sure to call close whenever you are using
a response stream.

• WEBrick servers buffer al l responses, and so including
ActionController::Live will not work. You must use a web server
which does not automatically buffer responses.

13 Log Filtering
Rails keeps a log file for each environment in the log folder. These are
extremely useful when debugging what's actually going on in your application,
but in a live application you may not want every bit of information to be stored
in the log file.
13.1 Parameters Filtering
You can filter out sensitive request parameters from your log files by
appending them to config.filter_parameters in the application
configuration. These parameters will be marked [FILTERED] in the log.

class LyricsController < ActionController::Base
 include ActionController::Live

 def show
 response.headers['Content-Type'] = 'text/event-
stream'
 song = Song.find(params[:id])

 song.each do |line|
 response.stream.write line.lyrics
 sleep line.num_beats
 end
 ensure
 response.stream.close
 end
end

config.filter_parameters << :password

� of �110 219

Provided parameters will be filtered out by partial matching regular
expression. Rails adds default :password in the appropriate initializer
(initializers/filter_parameter_logging.rb) and cares about
typical application parameters password and password_confirmation.
13.2 Redirects Filtering
Sometimes it's desirable to filter out from log files some sensitive locations
your application is redirecting to. You can do that by using the
config.filter_redirect configuration option:

You can set it to a String, a Regexp, or an array of both.

Matching URLs will be marked as '[FILTERED]'.

14 Rescue
Most likely your application is going to contain bugs or otherwise throw an
exception that needs to be handled. For example, if the user follows a link to
a resource that no longer exists in the database, Active Record will throw the
ActiveRecord::RecordNotFound exception.
Rails default exception handling displays a "500 Server Error" message for all
exceptions. If the request was made locally, a nice traceback and some
added information gets displayed so you can figure out what went wrong and
deal with it. If the request was remote Rails will just display a simple "500
Server Error" message to the user, or a "404 Not Found" if there was a
routing error or a record could not be found. Sometimes you might want to
customize how these errors are caught and how they're displayed to the user.
There are several levels of exception handling available in a Rails application:
14.1 The Default 500 and 404 Templates
By default a production application will render either a 404 or a 500 error
message, in the development environment all unhandled exceptions are
raised. These messages are contained in static HTML files in the public
folder, in 404.html and 500.html respectively. You can customize these
files to add some extra information and style, but remember that they are
static HTML; i.e. you can't use ERB, SCSS, CoffeeScript, or layouts for them.
14.2 rescue_from
If you want to do something a bit more elaborate when catching errors, you
can use rescue_from, which handles exceptions of a certain type (or
multiple types) in an entire controller and its subclasses.
When an exception occurs which is caught by a rescue_from directive, the
exception object is passed to the handler. The handler can be a method or a

config.filter_redirect << 's3.amazonaws.com'

config.filter_redirect.concat ['s3.amazonaws.com', /
private_path/]

� of �111 219

Proc object passed to the :with option. You can also use a block directly
instead of an explicit Proc object.
H e r e ' s h o w y o u c a n u s e rescue_from t o i n t e r c e p t a l l
ActiveRecord::RecordNotFound errors and do something with them.

Of course, this example is anything but elaborate and doesn't improve on the
default exception handling at all, but once you can catch all those exceptions
you're free to do whatever you want with them. For example, you could create
custom exception classes that will be thrown when a user doesn't have
access to a certain section of your application:

class ApplicationController < ActionController::Base
 rescue_from ActiveRecord::RecordNotFound,
with: :record_not_found

 private

 def record_not_found
 render plain: "404 Not Found", status: 404
 end
end

� of �112 219

Using rescue_from with Exception or StandardError would cause
serious side-effects as it prevents Rails from handling exceptions properly. As
such, it is not recommended to do so unless there is a strong reason.
W h e n r u n n i n g i n t h e p r o d u c t i o n e n v i r o n m e n t , a l l
ActiveRecord::RecordNotFound errors render the 404 error page.
Unless you need a custom behavior you don't need to handle this.
Certain exceptions are only rescuable from the ApplicationController
class, as they are raised before the controller gets initialized and the action
gets executed.

class ApplicationController < ActionController::Base
 rescue_from User::NotAuthorized,
with: :user_not_authorized

 private

 def user_not_authorized
 flash[:error] = "You don't have access to this
section."
 redirect_back(fallback_location: root_path)
 end
end

class ClientsController < ApplicationController
 # Check that the user has the right authorization to
access clients.
 before_action :check_authorization

 # Note how the actions don't have to worry about all
the auth stuff.
 def edit
 @client = Client.find(params[:id])
 end

 private

 # If the user is not authorized, just throw the
exception.
 def check_authorization
 raise User::NotAuthorized unless
current_user.admin?
 end
end

� of �113 219

15 Force HTTPS protocol
Sometime you might want to force a particular controller to only be accessible
via an HTTPS protocol for security reasons. You can use the force_ssl
method in your controller to enforce that:

Just like the filter, you could also pass :only and :except to enforce the
secure connection only to specific actions:

Please note that if you find yourself adding force_ssl to many controllers,
you may want to force the whole application to use HTTPS instead. In that
case, you can set the config.force_ssl in your environment file.

class DinnerController
 force_ssl
end

class DinnerController
 force_ssl only: :cheeseburger
 # or
 force_ssl except: :cheeseburger
end

� of �114 219

1 Dealing with Basic Forms
The most basic form helper is form_tag.

When called without arguments like this, it creates a <form> tag which, when
submitted, will POST to the current page. For instance, assuming the current
page is /home/index, the generated HTML will look like this (some line
breaks added for readability):

You'll notice that the HTML contains an input element with type hidden.
This input is important, because the form cannot be successfully submitted
without it. The hidden input element with the name utf8 enforces browsers
to properly respect your form's character encoding and is generated for all
forms whether their action is "GET" or "POST".
The second input element with the name authenticity_token is a
security feature of Rails called cross-site request forgery protection, and
form helpers generate it for every non-GET form (provided that this security
feature is enabled). You can read more about this in the Security Guide.
1.1 A Generic Search Form
One of the most basic forms you see on the web is a search form. This form
contains:

• a form element with "GET" method,
• a label for the input,
• a text input element, and
• a submit element.

To create this form you will use form_tag, label_tag, text_field_tag,
and submit_tag, respectively. Like this:

This will generate the following HTML:

<%= form_tag do %>
 Form contents
<% end %>

<form accept-charset="UTF-8" action="/" method="post">
 <input name="utf8" type="hidden" value="✓" />
 <input name="authenticity_token" type="hidden"
value="J7CBxfHalt49OSHp27hblqK20c9PgwJ108nDHX/8Cts=" />
 Form contents
</form>

<%= form_tag("/search", method: "get") do %>
 <%= label_tag(:q, "Search for:") %>
 <%= text_field_tag(:q) %>
 <%= submit_tag("Search") %>
<% end %>

� of �115 219

https://guides.rubyonrails.org/security.html#cross-site-request-forgery-csrf

For every form input, an ID attribute is generated from its name ("q" in above
example). These IDs can be very useful for CSS styling or manipulation of
form controls with JavaScript.
Besides text_field_tag and submit_tag, there is a similar helper for
every form control in HTML.
Always use "GET" as the method for search forms. This allows users to
bookmark a specific search and get back to it. More generally Rails
encourages you to use the right HTTP verb for an action.
1.2 Multiple Hashes in Form Helper Calls
The form_tag helper accepts 2 arguments: the path for the action and an
options hash. This hash specifies the method of form submission and HTML
options such as the form element's class.
As with the link_to helper, the path argument doesn't have to be a string; it
can be a hash of URL parameters recognizable by Rails' routing mechanism,
which will turn the hash into a valid URL. However, since both arguments to
form_tag are hashes, you can easily run into a problem if you would like to
specify both. For instance, let's say you write this:

Here, method and class are appended to the query string of the generated
URL because even though you mean to write two hashes, you really only
specified one. So you need to tell Ruby which is which by delimiting the first
hash (or both) with curly brackets. This will generate the HTML you expect:

1.3 Helpers for Generating Form Elements
Rails provides a series of helpers for generating form elements such as
checkboxes, text fields, and radio buttons. These basic helpers, with names
ending in _tag (such as text_field_tag and check_box_tag), generate
just a single <input> element. The first parameter to these is always the
name of the input. When the form is submitted, the name will be passed

<form accept-charset="UTF-8" action="/search"
method="get">
 <input name="utf8" type="hidden" value="✓" />
 <label for="q">Search for:</label>
 <input id="q" name="q" type="text" />
 <input name="commit" type="submit" value="Search" />
</form>

form_tag(controller: "people", action: "search", method:
"get", class: "nifty_form")
=> '<form accept-charset="UTF-8" action="/people/
search?method=get&class=nifty_form" method="post">'

form_tag({controller: "people", action: "search"},
method: "get", class: "nifty_form")
=> '<form accept-charset="UTF-8" action="/people/
search" method="get" class="nifty_form">'

� of �116 219

along with the form data, and will make its way to the params in the controller
with the value entered by the user for that field. For example, if the form
contains <%= text_field_tag(:query) %>, then you would be able to
get the value of this field in the controller with params[:query].
When naming inputs, Rails uses certain conventions that make it possible to
submit parameters with non-scalar values such as arrays or hashes, which
will also be accessible in params. You can read more about them in chapter
7 of this guide. For details on the precise usage of these helpers, please refer
to the API documentation.
1.3.1 Checkboxes
Checkboxes are form controls that give the user a set of options they can
enable or disable:

This generates the following:

The first parameter to check_box_tag, of course, is the name of the input.
The second parameter, naturally, is the value of the input. This value will be
included in the form data (and be present in params) when the checkbox is
checked.
1.3.2 Radio Buttons
Radio buttons, while similar to checkboxes, are controls that specify a set of
options in which they are mutually exclusive (i.e., the user can only pick one):

Output:

As with check_box_tag, the second parameter to radio_button_tag is
the value of the input. Because these two radio buttons share the same name

<%= check_box_tag(:pet_dog) %>
<%= label_tag(:pet_dog, "I own a dog") %>
<%= check_box_tag(:pet_cat) %>
<%= label_tag(:pet_cat, "I own a cat") %>

<input id="pet_dog" name="pet_dog" type="checkbox"
value="1" />
<label for="pet_dog">I own a dog</label>
<input id="pet_cat" name="pet_cat" type="checkbox"
value="1" />
<label for="pet_cat">I own a cat</label>

<%= radio_button_tag(:age, "child") %>
<%= label_tag(:age_child, "I am younger than 21") %>
<%= radio_button_tag(:age, "adult") %>
<%= label_tag(:age_adult, "I'm over 21") %>

<input id="age_child" name="age" type="radio"
value="child" />
<label for="age_child">I am younger than 21</label>
<input id="age_adult" name="age" type="radio"
value="adult" />
<label for="age_adult">I'm over 21</label>

� of �117 219

http://api.rubyonrails.org/v5.2.2/classes/ActionView/Helpers/FormTagHelper.html

(age), the user will only be able to select one of them, and params[:age]
will contain either "child" or "adult".
Always use labels for checkbox and radio buttons. They associate text with a
specific option and, by expanding the clickable region, make it easier for
users to click the inputs.
1.4 Other Helpers of Interest
Other form controls worth mentioning are textareas, password fields, hidden
fields, search fields, telephone fields, date fields, time fields, color fields,
datetime-local fields, month fields, week fields, URL fields, email fields,
number fields and range fields:

Output:

<%= text_area_tag(:message, "Hi, nice site", size:
"24x6") %>
<%= password_field_tag(:password) %>
<%= hidden_field_tag(:parent_id, "5") %>
<%= search_field(:user, :name) %>
<%= telephone_field(:user, :phone) %>
<%= date_field(:user, :born_on) %>
<%= datetime_local_field(:user, :graduation_day) %>
<%= month_field(:user, :birthday_month) %>
<%= week_field(:user, :birthday_week) %>
<%= url_field(:user, :homepage) %>
<%= email_field(:user, :address) %>
<%= color_field(:user, :favorite_color) %>
<%= time_field(:task, :started_at) %>
<%= number_field(:product, :price, in: 1.0..20.0, step:
0.5) %>
<%= range_field(:product, :discount, in: 1..100) %>

� of �118 219

Hidden inputs are not shown to the user but instead hold data like any textual
input. Values inside them can be changed with JavaScript.

The search, telephone, date, time, color, datetime, datetime-local, month,
week, URL, email, number and range inputs are HTML5 controls. If you
require your app to have a consistent experience in older browsers, you will
need an HTML5 polyfill (provided by CSS and/or JavaScript). There is
definitely no shortage of solutions for this, although a popular tool at the
moment is Modernizr, which provides a simple way to add functionality based
on the presence of detected HTML5 features.
If you're using password input fields (for any purpose), you might want to
configure your application to prevent those parameters from being logged.
You can learn about this in the Security Guide.

<textarea id="message" name="message" cols="24"
rows="6">Hi, nice site</textarea>
<input id="password" name="password" type="password" />
<input id="parent_id" name="parent_id" type="hidden"
value="5" />
<input id="user_name" name="user[name]" type="search" />
<input id="user_phone" name="user[phone]" type="tel" />
<input id="user_born_on" name="user[born_on]"
type="date" />
<input id="user_graduation_day"
name="user[graduation_day]" type="datetime-local" />
<input id="user_birthday_month"
name="user[birthday_month]" type="month" />
<input id="user_birthday_week"
name="user[birthday_week]" type="week" />
<input id="user_homepage" name="user[homepage]"
type="url" />
<input id="user_address" name="user[address]"
type="email" />
<input id="user_favorite_color"
name="user[favorite_color]" type="color" value="#000000"
/>
<input id="task_started_at" name="task[started_at]"
type="time" />
<input id="product_price" max="20.0" min="1.0"
name="product[price]" step="0.5" type="number" />
<input id="product_discount" max="100" min="1"
name="product[discount]" type="range" />

� of �119 219

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://modernizr.com/
https://guides.rubyonrails.org/security.html#logging

2 Dealing with Model Objects
2.1 Model Object Helpers
A particularly common task for a form is editing or creating a model object.
While the *_tag helpers can certainly be used for this task they are
somewhat verbose as for each tag you would have to ensure the correct
parameter name is used and set the default value of the input appropriately.
Rails provides helpers tailored to this task. These helpers lack the _tag
suffix, for example text_field, text_area.
For these helpers the first argument is the name of an instance variable and
the second is the name of a method (usually an attribute) to call on that
object. Rails will set the value of the input control to the return value of that
method for the object and set an appropriate input name. If your controller
has defined @person and that person's name is Henry then a form
containing:

will produce output similar to

Upon form submission the value entered by the user will be stored in
params[:person][:name]. The params[:person] hash is suitable for
passing to Person.new or, if @person is an instance of Person,
@person.update. While the name of an attribute is the most common
second parameter to these helpers this is not compulsory. In the example
above, as long as person objects have a name and a name= method Rails
will be happy.
You must pass the name of an instance variable, i.e. :person or "person",
not an actual instance of your model object.
Rails provides helpers for displaying the validation errors associated with a
model object. These are covered in detail by the Active Record Validations
guide.
2.2 Binding a Form to an Object
While this is an increase in comfort it is far from perfect. If Person has many
attributes to edit then we would be repeating the name of the edited object
many times. What we want to do is somehow bind a form to a model object,
which is exactly what form_for does.
Assume we have a controller for dealing with articles app/controllers/
articles_controller.rb:

<%= text_field(:person, :name) %>

<input id="person_name" name="person[name]" type="text"
value="Henry"/>

� of �120 219

https://guides.rubyonrails.org/active_record_validations.html#displaying-validation-errors-in-views

The corresponding view app/views/articles/new.html.erb using
form_for looks like this:

There are a few things to note here:
• @article is the actual object being edited.
• There is a single hash of options. Routing options are passed in

the :url hash, HTML options are passed in the :html hash. Also you
can provide a :namespace option for your form to ensure uniqueness
of id attributes on form elements. The namespace attribute will be
prefixed with underscore on the generated HTML id.

• The form_for method yields a form builder object (the f variable).
• Methods to create form controls are called on the form builder object f.

The resulting HTML is:

The name passed to form_for controls the key used in params to access
the form's values. Here the name is article and so all the inputs have
names of the form article[attribute_name]. Accordingly, in the
create action params[:article] will be a hash with keys :title
and :body. You can read more about the significance of input names in the
parameter_names section.
The helper methods called on the form builder are identical to the model
object helpers except that it is not necessary to specify which object is being
edited since this is already managed by the form builder.

def new
 @article = Article.new
end

<%= form_for @article, url: {action: "create"}, html:
{class: "nifty_form"} do |f| %>
 <%= f.text_field :title %>
 <%= f.text_area :body, size: "60x12" %>
 <%= f.submit "Create" %>
<% end %>

<form class="nifty_form" id="new_article" action="/
articles" accept-charset="UTF-8" method="post">
 <input name="utf8" type="hidden" value="✓" />
 <input type="hidden" name="authenticity_token"
value="NRkFyRWxdYNfUg7vYxLOp2SLf93lvnl+QwDWorR42Dp6yZXPh
HEb6arhDOIWcqGit8jfnrPwL781/xlrzj63TA==" />
 <input type="text" name="article[title]"
id="article_title" />
 <textarea name="article[body]" id="article_body"
cols="60" rows="12"></textarea>
 <input type="submit" name="commit" value="Create"
data-disable-with="Create" />
</form>

� of �121 219

You can create a similar binding without actually creating <form> tags with
the fields_for helper. This is useful for editing additional model objects
with the same form. For example, if you had a Person model with an
associated ContactDetail model, you could create a form for creating both
like so:

which produces the following output:

The object yielded by fields_for is a form builder like the one yielded by
form_for (in fact form_for calls fields_for internally).
2.3 Relying on Record Identification
The Article model is directly available to users of the application, so -
following the best practices for developing with Rails - you should declare it a
resource:

Declaring a resource has a number of side effects. See Rails Routing From
the Outside In for more information on setting up and using resources.
When dealing with RESTful resources, calls to form_for can get
significantly easier if you rely on record identification. In short, you can just
pass the model instance and have Rails figure out model name and the rest:

<%= form_for @person, url: {action: "create"} do |
person_form| %>
 <%= person_form.text_field :name %>
 <%= fields_for @person.contact_detail do |
contact_detail_form| %>
 <%= contact_detail_form.text_field :phone_number %>
 <% end %>
<% end %>

<form class="new_person" id="new_person" action="/
people" accept-charset="UTF-8" method="post">
 <input name="utf8" type="hidden" value="✓" />
 <input type="hidden" name="authenticity_token"
value="bL13x72pldyDD8bgtkjKQakJCpd4A8JdXGbfksxBDHdf1uC0k
CMqe2tvVdUYfidJt0fj3ihC4NxiVHv8GVYxJA==" />
 <input type="text" name="person[name]"
id="person_name" />
 <input type="text" name="contact_detail[phone_number]"
id="contact_detail_phone_number" />
</form>

resources :articles

� of �122 219

https://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default
https://guides.rubyonrails.org/routing.html#resource-routing-the-rails-default

Notice how the short-style form_for invocation is conveniently the same,
regardless of the record being new or existing. Record identification is smart
enough to figure out if the record is new by asking record.new_record?. It
also selects the correct path to submit to and the name based on the class of
the object.
Rails will also automatically set the class and id of the form appropriately: a
form creating an article would have id and class new_article. If you
were editing the article with id 23, the class would be set to edit_article
and the id to edit_article_23. These attributes will be omitted for brevity
in the rest of this guide.
When you're using STI (single-table inheritance) with your models, you can't
rely on record identification on a subclass if only their parent class is declared
a resource. You will have to specify the model name, :url, and :method
explicitly.
2.3.1 Dealing with Namespaces
If you have created namespaced routes, form_for has a nifty shorthand for
that too. If your application has an admin namespace then

will create a form that submits to the ArticlesController inside the
admin namespace (submitting to admin_article_path(@article) in the
case of an update). If you have several levels of namespacing then the
syntax is similar:

For more information on Rails' routing system and the associated
conventions, please see the routing guide.
2.4 How do forms with PATCH, PUT, or DELETE
methods work?
The Rails framework encourages RESTful design of your applications, which
means you'll be making a lot of "PATCH" and "DELETE" requests (besides

Creating a new article
long-style:
form_for(@article, url: articles_path)
same thing, short-style (record identification gets
used):
form_for(@article)

Editing an existing article
long-style:
form_for(@article, url: article_path(@article), html:
{method: "patch"})
short-style:
form_for(@article)

form_for [:admin, @article]

form_for [:admin, :management, @article]

� of �123 219

https://guides.rubyonrails.org/routing.html

"GET" and "POST"). However, most browsers don't support methods other
than "GET" and "POST" when it comes to submitting forms.
Rails works around this issue by emulating other methods over POST with a
hidden input named "_method", which is set to reflect the desired method:

output:

When parsing POSTed data, Rails will take into account the special _method
parameter and act as if the HTTP method was the one specified inside it
("PATCH" in this example).

3 Making Select Boxes with Ease
Select boxes in HTML require a significant amount of markup (one OPTION
element for each option to choose from), therefore it makes the most sense
for them to be dynamically generated.
Here is what the markup might look like:

Here you have a list of cities whose names are presented to the user.
Internally the application only wants to handle their IDs so they are used as
the options' value attribute. Let's see how Rails can help out here.
3.1 The Select and Option Tags
The most generic helper is select_tag, which - as the name implies -
simply generates the SELECT tag that encapsulates an options string:

This is a start, but it doesn't dynamically create the option tags. You can
generate option tags with the options_for_select helper:

form_tag(search_path, method: "patch")

<form accept-charset="UTF-8" action="/search"
method="post">
 <input name="_method" type="hidden" value="patch" />
 <input name="utf8" type="hidden" value="✓" />
 <input name="authenticity_token" type="hidden"
value="f755bb0ed134b76c432144748a6d4b7a7ddf2b71" />
 ...
</form>

<select name="city_id" id="city_id">
 <option value="1">Lisbon</option>
 <option value="2">Madrid</option>
 ...
 <option value="12">Berlin</option>
</select>

<%= select_tag(:city_id, '<option value="1">Lisbon</
option>...') %>

� of �124 219

The first argument to options_for_select is a nested array where each
element has two elements: option text (city name) and option value (city id).
The option value is what will be submitted to your controller. Often this will be
the id of a corresponding database object but this does not have to be the
case.
Knowing this, you can combine select_tag and options_for_select to
achieve the desired, complete markup:

options_for_select allows you to pre-select an option by passing its
value.

Whenever Rails sees that the internal value of an option being generated
matches this value, it will add the selected attribute to that option.
When :include_blank or :prompt are not present, :include_blank is
forced true if the select attribute required is true, display size is one and
multiple is not true.
You can add arbitrary attributes to the options using hashes:

<%= options_for_select([['Lisbon', 1], ['Madrid',
2], ...]) %>

output:

<option value="1">Lisbon</option>
<option value="2">Madrid</option>
...

<%= select_tag(:city_id, options_for_select(...)) %>

<%= options_for_select([['Lisbon', 1], ['Madrid',
2], ...], 2) %>

output:

<option value="1">Lisbon</option>
<option value="2" selected="selected">Madrid</option>
...

� of �125 219

3.2 Select Boxes for Dealing with Models
In most cases form controls will be tied to a specific database model and as
you might expect Rails provides helpers tailored for that purpose. Consistent
with other form helpers, when dealing with models you drop the _tag suffix
from select_tag:

Notice that the third parameter, the options array, is the same kind of
argument you pass to options_for_select. One advantage here is that
you don't have to worry about pre-selecting the correct city if the user already
has one - Rails will do this for you by reading from the @person.city_id
attribute.
As with other helpers, if you were to use the select helper on a form builder
scoped to the @person object, the syntax would be:

You can also pass a block to select helper:

If you are using select (or similar helpers such as collection_select,
select_tag) to set a belongs_to association you must pass the name of
the foreign key (in the example above city_id), not the name of association
itself. If you specify city instead of city_id Active Record will raise an

<%= options_for_select(
 [
 ['Lisbon', 1, { 'data-size' => '2.8 million' }],
 ['Madrid', 2, { 'data-size' => '3.2 million' }]
], 2
) %>

output:

<option value="1" data-size="2.8 million">Lisbon</
option>
<option value="2" selected="selected" data-size="3.2
million">Madrid</option>
...

controller:
@person = Person.new(city_id: 2)
view:
<%= select(:person, :city_id, [['Lisbon', 1], ['Madrid',
2], ...]) %>

select on a form builder
<%= f.select(:city_id, ...) %>

<%= f.select(:city_id) do %>
 <% [['Lisbon', 1], ['Madrid', 2]].each do |c| -%>
 <%= content_tag(:option, c.first, value: c.last) %>
 <% end %>
<% end %>

� of �126 219

error along the lines of ActiveRecord::AssociationTypeMismatch:
City(#17815740) expected, got String(#1138750) when you
pass the params hash to Person.new or update. Another way of looking at
this is that form helpers only edit attributes. You should also be aware of the
potential security ramifications of allowing users to edit foreign keys directly.
3.3 Option Tags from a Collection of Arbitrary Objects
Generating options tags with options_for_select requires that you
create an array containing the text and value for each option. But what if you
had a City model (perhaps an Active Record one) and you wanted to
generate option tags from a collection of those objects? One solution would
be to make a nested array by iterating over them:

This is a perfectly valid solution, but Rails provides a less verbose alternative:
options_from_collection_for_select. This helper expects a
collection of arbitrary objects and two additional arguments: the names of the
methods to read the option value and text from, respectively:

As the name implies, this only generates option tags. To generate a working
select box you would need to use it in conjunction with select_tag, just as
you would with options_for_select. When working with model objects,
just as select combines select_tag and options_for_select,
c o l l e c t i o n _ s e l e c t c o m b i n e s s e l e c t _ t a g w i t h
options_from_collection_for_select.

As with other helpers, if you were to use the collection_select helper on
a form builder scoped to the @person object, the syntax would be:

To recap , options_from_collection_for_select i s to
collection_select what options_for_select is to select.
Pairs passed to options_for_select should have the name first and the
id second, however with options_from_collection_for_select the
first argument is the value method and the second the text method.
3.4 Time Zone and Country Select
To leverage time zone support in Rails, you have to ask your users what time
zone they are in. Doing so would require generating select options from a list

<% cities_array = City.all.map { |city| [city.name,
city.id] } %>
<%= options_for_select(cities_array) %>

<%=
options_from_collection_for_select(City.all, :id, :name)
%>

<%= collection_select(:person, :city_id,
City.all, :id, :name) %>

<%= f.collection_select(:city_id, City.all, :id, :name)
%>

� of �127 219

of pre-defined TimeZone objects using collection_select, but you can
simply use the time_zone_select helper that already wraps this:

There is also time_zone_options_for_select helper for a more manual
(therefore more customizable) way of doing this. Read the API documentation
to learn about the possible arguments for these two methods.
Rails used to have a country_select helper for choosing countries, but
this has been extracted to the country_select plugin. When using this, be
aware that the exclusion or inclusion of certain names from the list can be
somewhat controversial (and was the reason this functionality was extracted
from Rails).

4 Using Date and Time Form Helpers
You can choose not to use the form helpers generating HTML5 date and time
input fields and use the alternative date and time helpers. These date and
time helpers differ from all the other form helpers in two important respects:

• Dates and times are not representable by a single input element.
Instead you have several, one for each component (year, month, day
etc.) and so there is no single value in your params hash with your
date or time.

• Other helpers use the _tag suffix to indicate whether a helper is a
barebones helper or one that operates on model objects. With dates
and times, select_date, select_time and select_datetime are
the barebones helpers, date_select, time_select and
datetime_select are the equivalent model object helpers.

Both of these families of helpers will create a series of select boxes for the
different components (year, month, day etc.).
4.1 Barebones Helpers
The select_* family of helpers take as their first argument an instance of
Date, Time or DateTime that is used as the currently selected value. You
may omit this parameter, in which case the current date is used. For example:

outputs (with actual option values omitted for brevity)

The above inputs would result in params[:start_date] being a hash with
keys :year, :month, :day. To get an actual Date, Time or DateTime

<%= time_zone_select(:person, :time_zone) %>

<%= select_date Date.today, prefix: :start_date %>

<select id="start_date_year"
name="start_date[year]"> ... </select>
<select id="start_date_month"
name="start_date[month]"> ... </select>
<select id="start_date_day" name="start_date[day]"> ...
</select>

� of �128 219

http://api.rubyonrails.org/v5.2.2/classes/ActionView/Helpers/FormOptionsHelper.html#method-i-time_zone_options_for_select
https://github.com/stefanpenner/country_select

object you would have to extract these values and pass them to the
appropriate constructor, for example:

The :prefix option is the key used to retrieve the hash of date components
from the params hash. Here it was set to start_date, if omitted it will
default to date.
4.2 Model Object Helpers
select_date does not work well with forms that update or create Active
Record objects as Active Record expects each element of the params hash
to correspond to one attribute. The model object helpers for dates and times
submit parameters with special names; when Active Record sees parameters
with such names it knows they must be combined with the other parameters
and given to a constructor appropriate to the column type. For example:

outputs (with actual option values omitted for brevity)

which results in a params hash like

When this is passed to Person.new (or update), Active Record spots that
these parameters should all be used to construct the birth_date attribute
and uses the suffixed information to determine in which order it should pass
these parameters to functions such as Date.civil.
4.3 Common Options
Both families of helpers use the same core set of functions to generate the
individual select tags and so both accept largely the same options. In
particular, by default Rails will generate year options 5 years either side of the
current year. If this is not an appropriate range, the :start_year
and :end_year options override this. For an exhaustive list of the available
options, refer to the API documentation.
As a rule of thumb you should be using date_select when working with
model objects and select_date in other cases, such as a search form
which filters results by date.
In many cases the built-in date pickers are clumsy as they do not aid the user
in working out the relationship between the date and the day of the week.

Date.civil(params[:start_date][:year].to_i,
params[:start_date][:month].to_i, params[:start_date]
[:day].to_i)

<%= date_select :person, :birth_date %>

<select id="person_birth_date_1i"
name="person[birth_date(1i)]"> ... </select>
<select id="person_birth_date_2i"
name="person[birth_date(2i)]"> ... </select>
<select id="person_birth_date_3i"
name="person[birth_date(3i)]"> ... </select>

{'person' => {'birth_date(1i)' => '2008',
'birth_date(2i)' => '11', 'birth_date(3i)' => '22'}}

� of �129 219

http://api.rubyonrails.org/v5.2.2/classes/ActionView/Helpers/DateHelper.html

4.4 Individual Components
Occasionally you need to display just a single date component such as a year
or a month. Rails provides a series of helpers for this, one for each
component select_year, select_month, select_day, select_hour,
select_minute, select_second. These helpers are fairly straightforward.
By default they will generate an input field named after the time component
(for example, "year" for select_year, "month" for select_month etc.)
although this can be overridden with the :field_name option. The :prefix
option works in the same way that it does for select_date and
select_time and has the same default value.
The first parameter specifies which value should be selected and can either
be an instance of a Date, Time or DateTime, in which case the relevant
component will be extracted, or a numerical value. For example:

will produce the same output if the current year is 2009 and the value chosen
by the user can be retrieved by params[:date][:year].

5 Uploading Files
A common task is uploading some sort of file, whether it's a picture of a
person or a CSV file containing data to process. The most important thing to
remember with file uploads is that the rendered form's encoding MUST be set
to "multipart/form-data". If you use form_for, this is done automatically. If
you use form_tag, you must set it yourself, as per the following example.
The following two forms both upload a file.

Rails provides the usual pair of helpers: the barebones file_field_tag
and the model oriented file_field. The only difference with other helpers
is that you cannot set a default value for file inputs as this would have no
meaning. As you would expect in the first case the uploaded file is in
params[:picture] and in the second case in params[:person]
[:picture].
5.1 What Gets Uploaded
The object in the params hash is an instance of a subclass of IO. Depending
on the size of the uploaded file it may in fact be a StringIO or an instance
of File backed by a temporary file. In both cases the object will have an

<%= select_year(2009) %>
<%= select_year(Time.now) %>

<%= form_tag({action: :upload}, multipart: true) do %>
 <%= file_field_tag 'picture' %>
<% end %>

<%= form_for @person do |f| %>
 <%= f.file_field :picture %>
<% end %>

� of �130 219

original_filename attribute containing the name the file had on the
user's computer and a content_type attribute containing the MIME type of
the uploaded file. The following snippet saves the uploaded content in
#{Rails.root}/public/uploads under the same name as the original
file (assuming the form was the one in the previous example).

Once a file has been uploaded, there are a multitude of potential tasks,
ranging from where to store the files (on disk, Amazon S3, etc) and
associating them with models to resizing image files and generating
thumbnails. The intricacies of this are beyond the scope of this guide, but
there are several libraries designed to assist with these. Two of the better
known ones are CarrierWave and Paperclip.
If the user has not selected a file the corresponding parameter will be an
empty string.
5.2 Dealing with Ajax
Unlike other forms, making an asynchronous file upload form is not as simple
as providing form_for with remote: true. With an Ajax form the
serialization is done by JavaScript running inside the browser and since
JavaScript cannot read files from your hard drive the file cannot be uploaded.
The most common workaround is to use an invisible iframe that serves as the
target for the form submission.

6 Customizing Form Builders
As mentioned previously the object yielded by form_for and fields_for
is an instance of FormBuilder (or a subclass thereof). Form builders
encapsulate the notion of displaying form elements for a single object. While
you can of course write helpers for your forms in the usual way, you can also
subclass FormBuilder and add the helpers there. For example:

can be replaced with

by defining a LabellingFormBuilder class similar to the following:

def upload
 uploaded_io = params[:person][:picture]
 File.open(Rails.root.join('public', 'uploads',
uploaded_io.original_filename), 'wb') do |file|
 file.write(uploaded_io.read)
 end
end

<%= form_for @person do |f| %>
 <%= text_field_with_label f, :first_name %>
<% end %>

<%= form_for @person, builder: LabellingFormBuilder do |
f| %>
 <%= f.text_field :first_name %>
<% end %>

� of �131 219

https://github.com/jnicklas/carrierwave
https://github.com/thoughtbot/paperclip

If you reuse this frequently you could define a labeled_form_for helper
that automatically applies the builder: LabellingFormBuilder option:

The form builder used also determines what happens when you do

If f is an instance of FormBuilder then this will render the form partial,
setting the partial's object to the form builder. If the form builder is of class
LabellingFormBuilder then the labelling_form partial would be
rendered instead.

7 Understanding Parameter Naming
Conventions
As you've seen in the previous sections, values from forms can be at the top
level of the params hash or nested in another hash. For example, in a
standard create action for a Person model, params[:person] would
usually be a hash of all the attributes for the person to create. The params
hash can also contain arrays, arrays of hashes and so on.
Fundamentally HTML forms don't know about any sort of structured data, all
they generate is name-value pairs, where pairs are just plain strings. The
arrays and hashes you see in your application are the result of some
parameter naming conventions that Rails uses.
7.1 Basic Structures
The two basic structures are arrays and hashes. Hashes mirror the syntax
used for accessing the value in params. For example, if a form contains:

the params hash will contain

and params[:person][:name] will retrieve the submitted value in the
controller.
Hashes can be nested as many levels as required, for example:

class LabellingFormBuilder <
ActionView::Helpers::FormBuilder
 def text_field(attribute, options={})
 label(attribute) + super
 end
end

def labeled_form_for(record, options = {}, &block)
 options.merge! builder: LabellingFormBuilder
 form_for record, options, &block
end

<%= render partial: f %>

<input id="person_name" name="person[name]" type="text"
value="Henry"/>

{'person' => {'name' => 'Henry'}}

� of �132 219

will result in the params hash being

Normally Rails ignores duplicate parameter names. If the parameter name
contains an empty set of square brackets [] then they will be accumulated in
an array. If you wanted users to be able to input multiple phone numbers, you
could place this in the form:

This would result in params[:person][:phone_number] being an array
containing the inputted phone numbers.
7.2 Combining Them
We can mix and match these two concepts. One element of a hash might be
an array as in the previous example, or you can have an array of hashes. For
example, a form might let you create any number of addresses by repeating
the following form fragment

This would result in params[:addresses] being an array of hashes with
keys line1, line2 and city. Rails decides to start accumulating values in
a new hash whenever it encounters an input name that already exists in the
current hash.
There's a restriction, however, while hashes can be nested arbitrarily, only
one level of "arrayness" is allowed. Arrays can usually be replaced by
hashes; for example, instead of having an array of model objects, one can
have a hash of model objects keyed by their id, an array index or some other
parameter.
Array parameters do not play well with the check_box helper. According to
the HTML specification unchecked checkboxes submit no value. However it is
often convenient for a checkbox to always submit a value. The check_box
helper fakes this by creating an auxiliary hidden input with the same name. If
the checkbox is unchecked only the hidden input is submitted and if it is
checked then both are submitted but the value submitted by the checkbox
takes precedence. When working with array parameters this duplicate
submission will confuse Rails since duplicate input names are how it decides
when to start a new array element. It is preferable to either use
check_box_tag or to use hashes instead of arrays.
7.3 Using Form Helpers

<input id="person_address_city" name="person[address]
[city]" type="text" value="New York"/>

{'person' => {'address' => {'city' => 'New York'}}}

<input name="person[phone_number][]" type="text"/>
<input name="person[phone_number][]" type="text"/>
<input name="person[phone_number][]" type="text"/>

<input name="addresses[][line1]" type="text"/>
<input name="addresses[][line2]" type="text"/>
<input name="addresses[][city]" type="text"/>

� of �133 219

The previous sections did not use the Rails form helpers at all. While you can
craft the input names yourself and pass them directly to helpers such as
text_field_tag Rails also provides higher level support. The two tools at
your disposal here are the name parameter to form_for and fields_for
and the :index option that helpers take.
You might want to render a form with a set of edit fields for each of a person's
addresses. For example:

Assuming the person had two addresses, with ids 23 and 45 this would
create output similar to this:

This will result in a params hash that looks like

Rails knows that all these inputs should be part of the person hash because
you called fields_for on the first form builder. By specifying an :index
option you're tel l ing Rails that instead of naming the inputs
person[address][city] it should insert that index surrounded by []
between the address and the city. This is often useful as it is then easy to
locate which Address record should be modified. You can pass numbers with
some other significance, strings or even nil (which will result in an array
parameter being created).
To create more intricate nestings, you can specify the first part of the input
name (person[address] in the previous example) explicitly:

<%= form_for @person do |person_form| %>
 <%= person_form.text_field :name %>
 <% @person.addresses.each do |address| %>
 <%= person_form.fields_for address, index:
address.id do |address_form|%>
 <%= address_form.text_field :city %>
 <% end %>
 <% end %>
<% end %>

<form accept-charset="UTF-8" action="/people/1"
class="edit_person" id="edit_person_1" method="post">
 <input id="person_name" name="person[name]"
type="text" />
 <input id="person_address_23_city"
name="person[address][23][city]" type="text" />
 <input id="person_address_45_city"
name="person[address][45][city]" type="text" />
</form>

{'person' => {'name' => 'Bob', 'address' => {'23' =>
{'city' => 'Paris'}, '45' => {'city' => 'London'}}}}

� of �134 219

will create inputs like

As a general rule the final input name is the concatenation of the name given
to fields_for/form_for, the index value and the name of the attribute.
You can also pass an :index option directly to helpers such as
text_field, but it is usually less repetitive to specify this at the form builder
level rather than on individual input controls.
As a shortcut you can append [] to the name and omit the :index option.
This is the same as specifying index: address so

produces exactly the same output as the previous example.

8 Forms to External Resources
Rails' form helpers can also be used to build a form for posting data to an
external resource. However, at times it can be necessary to set an
authenticity_token for the resource; this can be done by passing an
authenticity_token: 'your_external_token' parameter to the
form_tag options:

Sometimes when submitting data to an external resource, like a payment
gateway, the fields that can be used in the form are limited by an external API
and it may be undesirable to generate an authenticity_token. To not
send a token, simply pass false to the :authenticity_token option:

The same technique is also available for form_for:

<%= fields_for 'person[address][primary]', address,
index: address do |address_form| %>
 <%= address_form.text_field :city %>
<% end %>

<input id="person_address_primary_1_city"
name="person[address][primary][1][city]" type="text"
value="bologna" />

<%= fields_for 'person[address][primary][]', address do
|address_form| %>
 <%= address_form.text_field :city %>
<% end %>

<%= form_tag 'http://farfar.away/form',
authenticity_token: 'external_token' do %>
 Form contents
<% end %>

<%= form_tag 'http://farfar.away/form',
authenticity_token: false do %>
 Form contents
<% end %>

� of �135 219

Or if you don't want to render an authenticity_token field:

9 Building Complex Forms
Many apps grow beyond simple forms editing a single object. For example,
when creating a Person you might want to allow the user to (on the same
form) create multiple address records (home, work, etc.). When later editing
that person the user should be able to add, remove or amend addresses as
necessary.
9.1 Configuring the Model
A c t i v e R e c o r d p r o v i d e s m o d e l l e v e l s u p p o r t v i a t h e
accepts_nested_attributes_for method:

This creates an addresses_attributes= method on Person that allows
you to create, update and (optionally) destroy addresses.
9.2 Nested Forms
The following form allows a user to create a Person and its associated
addresses.

<%= form_for @invoice, url: external_url,
authenticity_token: 'external_token' do |f| %>
 Form contents
<% end %>

<%= form_for @invoice, url: external_url,
authenticity_token: false do |f| %>
 Form contents
<% end %>

class Person < ApplicationRecord
 has_many :addresses, inverse_of: :person
 accepts_nested_attributes_for :addresses
end

class Address < ApplicationRecord
 belongs_to :person
end

� of �136 219

When an association accepts nested attributes fields_for renders its
block once for every element of the association. In particular, if a person has
no addresses it renders nothing. A common pattern is for the controller to
build one or more empty children so that at least one set of fields is shown to
the user. The example below would result in 2 sets of address fields being
rendered on the new person form.

The fields_for yields a form builder. The parameters' name will be what
accepts_nested_attributes_for expects. For example, when creating
a user with 2 addresses, the submitted parameters would look like:

<%= form_for @person do |f| %>
 Addresses:

 <%= f.fields_for :addresses do |addresses_form| %>

 <%= addresses_form.label :kind %>
 <%= addresses_form.text_field :kind %>

 <%= addresses_form.label :street %>
 <%= addresses_form.text_field :street %>
 ...

 <% end %>

<% end %>

def new
 @person = Person.new
 2.times { @person.addresses.build }
end

{
 'person' => {
 'name' => 'John Doe',
 'addresses_attributes' => {
 '0' => {
 'kind' => 'Home',
 'street' => '221b Baker Street'
 },
 '1' => {
 'kind' => 'Office',
 'street' => '31 Spooner Street'
 }
 }
 }
}

� of �137 219

The keys of the :addresses_attributes hash are unimportant, they
need merely be different for each address.
If the associated object is already saved, fields_for autogenerates a
hidden input with the id of the saved record. You can disable this by passing
include_id: false to fields_for. You may wish to do this if the
autogenerated input is placed in a location where an input tag is not valid
HTML or when using an ORM where children do not have an id.
9.3 The Controller
As usual you need to whitelist the parameters in the controller before you
pass them to the model:

9.4 Removing Objects
You can allow users to delete associated objects by passing
allow_destroy: true to accepts_nested_attributes_for

If the hash of attributes for an object contains the key _destroy with a value
of 1 or true then the object will be destroyed. This form allows users to
remove addresses:

def create
 @person = Person.new(person_params)
 # ...
end

private
 def person_params
 params.require(:person).permit(:name,
addresses_attributes: [:id, :kind, :street])
 end

class Person < ApplicationRecord
 has_many :addresses
 accepts_nested_attributes_for :addresses,
allow_destroy: true
end

� of �138 219

https://guides.rubyonrails.org/action_controller_overview.html#strong-parameters

Don't forget to update the whitelisted params in your controller to also include
the _destroy field:

9.5 Preventing Empty Records
It is often useful to ignore sets of fields that the user has not filled in. You can
c o n t r o l t h i s b y p a s s i n g a : r e j e c t _ i f p r o c t o
accepts_nested_attributes_for. This proc will be called with each
hash of attributes submitted by the form. If the proc returns false then Active
Record will not build an associated object for that hash. The example below
only tries to build an address if the kind attribute is set.

As a convenience you can instead pass the symbol :all_blank which will
create a proc that will reject records where all the attributes are blank
excluding any value for _destroy.
9.6 Adding Fields on the Fly
Rather than rendering multiple sets of fields ahead of time you may wish to
add them only when a user clicks on an 'Add new address' button. Rails does
not provide any built-in support for this. When generating new sets of fields
you must ensure the key of the associated array is unique - the current
JavaScript date (milliseconds after the epoch) is a common choice.

<%= form_for @person do |f| %>
 Addresses:

 <%= f.fields_for :addresses do |addresses_form| %>

 <%= addresses_form.check_box :_destroy%>
 <%= addresses_form.label :kind %>
 <%= addresses_form.text_field :kind %>
 ...

 <% end %>

<% end %>

def person_params
 params.require(:person).
 permit(:name, addresses_attributes:
[:id, :kind, :street, :_destroy])
end

class Person < ApplicationRecord
 has_many :addresses
 accepts_nested_attributes_for :addresses, reject_if:
lambda {|attributes| attributes['kind'].blank?}
end

� of �139 219

Rails Image Upload: Using CarrierWave in
a Rails App
If you are building a web application, you definitely will want
to enable image uploading. Image uploading is an important
feature in modern-day applications, and images have been
known to be useful in search engine optimization.
In this tutorial (which is the first part of the Rails Image
Uploading series), I will show you how to enable image
uploading in your Rails application using CarrierWave. It will
be a simple application as the focus is on the image
uploading.
CarrierWave is a Ruby gem that provides a simple and
extremely flexible way to upload files from Ruby
applications. You need to have Rails on your machine to
follow along. To be sure, open up your terminal and enter
the command below:
1
rails -v
That will show you the version of Rails you have installed.
For this tutorial I will be using version 4.2.4, which you can
install like so:
1
gem install rails -v 4.2.4
With that done, you are good to go.

Rails Application Setup
� of �140 219

Now create a new Rails project:
1
rails new mypets
Open up your Gemfile and add the following gems.

Gemfile

...
gem 'carrierwave', '~> 0.10.0'
gem 'mini_magick', '~> 4.3'
...
The first gem is for CarrierWave, and the second gem called
mini_magick helps with the resizing of images in your Rails
application. With that done, run bundle install.
Generate a scaffold resource to add CarrierWave’s
functionality. Run the following command from your terminal:
1
rails g scaffold Pet name:string description:text
image:string
A scaffold in Rails is a full set of model, database migration
for that model, controller to manipulate it, views to view and
manipulate the data, and a test suite for each of the above.
Migrate your database next:
1
rake db:migrate
Setting Up CarrierWave
You need to create an initializer for CarrierWave, which will
be used for loading CarrierWave after loading ActiveRecord.
Navigate to config > initializers and create a file:
carrier_wave.rb.

� of �141 219

Paste the code below into it.
config/initializers/carrier_wave.rb

require 'carrierwave/orm/activerecord'
From your terminal, generate an uploader:
1
rails generate uploader Image
This will create a new directory called uploaders in the app
folder and a file inside called image_uploader.rb. The content
of the file should look like this:
01

Ruby on RailsRubyWeb Apps

1 rails -v

1 gem install rails -v 4.2.4

1 rails new mypets

1
2
3
4
5
6

Gemfile

...
gem 'carrierwave', '~> 0.10.0'
gem 'mini_magick', '~> 4.3'
...

1 rails g scaffold Pet name:string description:text
image:string

1 rake db:migrate

� of �142 219

https://code.tutsplus.com/categories/ruby-on-rails
https://code.tutsplus.com/categories/ruby
https://code.tutsplus.com/categories/web-apps

app/uploaders/image_uploader.rb

encoding: utf-8

class ImageUploader < CarrierWave::Uploader::Base

 # Include RMagick or MiniMagick support:
 # include CarrierWave::RMagick
 # include CarrierWave::MiniMagick

 # Choose what kind of storage to use for this uploader:
 storage :file
 # storage :fog

 # Override the directory where uploaded files will be
stored.
 # This is a sensible default for uploaders that are
meant to be mounted:
 def store_dir
 "uploads/#{model.class.to_s.underscore}/
#{mounted_as}/#{model.id}"
 end

 # Provide a default URL as a default if there hasn't
been a file uploaded:
 # def default_url
 # # For Rails 3.1+ asset pipeline compatibility:

1
2
3

config/initializers/carrier_wave.rb

require 'carrierwave/orm/activerecord'

1 rails generate uploader Image

� of �143 219

 # #
ActionController::Base.helpers.asset_path("fallback/" +
[version_name, "default.png"].compact.join('_'))
 #
 # "/images/fallback/" + [version_name,
"default.png"].compact.join('_')
 # end

 # Process files as they are uploaded:
 # process :scale => [200, 300]

 #
 # def scale(width, height)
 # # do something
 # end

 # Create different versions of your uploaded files:
 # version :thumb do
 # process :resize_to_fit => [50, 50]
 # end

 # Add a white list of extensions which are allowed to
be uploaded.
 # For images you might use something like this:
 # def extension_white_list
 # %w(jpg jpeg gif png)
 # end

 # Override the filename of the uploaded files:
 # Avoid using model.id or version_name here, see
uploader/store.rb for details.
 # def filename
 # "something.jpg" if original_filename
 # end

end

� of �144 219

include CarrierWave::MiniMagick

version :thumb do
 process :resize_to_fill => [50, 50]
end

def extension_white_list
 %w(jpg jpeg gif png)
end

app/model/pet.rb

mount_uploader :image, ImageUploader

� of �145 219

app/views/pets/_form.html.erb

<%= form_for @pet, html: { multipart: true } do |f| %>
 <% if @pet.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@pet.errors.count, "error") %>
prohibited this pet from being saved:</h2>

 <% @pet.errors.full_messages.each do |message| %>
 <%= message %>
 <% end %>

 </div>
 <% end %>

 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :description %>

 <%= f.text_area :description %>
 </div>
 <div class="field">
 <%= f.label :image %>

 <%= f.file_field :image %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

� of �146 219

app/views/pets/show.html.erb

<p id="notice"><%= notice %></p>

<p>
 Name:
 <%= @pet.name %>
</p>

<p>
 Description:
 <%= @pet.description %>
</p>

<p>
 Image:
 <%= image_tag @pet.image.thumb.url %>
</p>

<%= link_to 'Edit', edit_pet_path(@pet) %> |
<%= link_to 'Back', pets_path %>

� of �147 219

app/views/pets/_form.html.erb
<%= form_for @pet, html: { multipart: true } do |f| %>
 <% if @pet.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@pet.errors.count, "error") %>
prohibited this pet from being saved:</h2>

 <% @pet.errors.full_messages.each do |message| %>
 <%= message %>
 <% end %>

 </div>
 <% end %>

 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :description %>

 <%= f.text_area :description %>
 </div>
 <div class="field">
 <%= f.label :image %>

 <%= f.file_field :image %>
 <% if f.object.image? %>
 <%= image_tag f.object.image.thumb.url %>
 <%= f.label :remove_image %>

� of �148 219

 <%= f.check_box :remove_image %>
 <% end %>
 </div>

 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

*app/model/pet.rb
validates_processing_of :image
validate :image_size_validation

private
 def image_size_validation
 errors[:image] << "should be less than 500KB" if
image.size > 0.5.megabytes
 end

� of �149 219

Layouts and Rendering in Rails

1 Overview: How the Pieces Fit Together

How does the interaction between Controller and View in the Model-

View-Controller triangle takes place?.

As you know, the Controller is responsible for orchestrating the whole process

of handling a request in Rails, though it normally hands off any heavy code to

the Model. But then, when it's time to send a response back to the user, the

Controller hands things off to the View.

In broad strokes, this involves deciding what should be sent as the response

and calling an appropriate method to create that response. If the response is

a full-blown view, Rails also does some extra work to wrap the view in a

layout and possibly to pull in partial views. You'll see all of those paths later in

this guide.

2 Creating Responses
From the controller's point of view, there are three ways to create an HTTP
response:

• Call render to create a full response to send back to the browser
• Call redirect_to to send an HTTP redirect status code to the

browser
• Call head to create a response consisting solely of HTTP headers to

send back to the browser

2.1 Render ing by Defaul t : Convent ion Over
Configuration in Action

� of �150 219

https://guides.rubyonrails.org/layouts_and_rendering.html#creating-responses
https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-by-default-convention-over-configuration-in-action
https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-by-default-convention-over-configuration-in-action

By default, controllers in Rails automatically render views with names
that correspond to valid routes.

 For example, if you have this code in your BooksController class:

And the following in your routes file:

And you have a view file app/views/books/index.html.erb:

Rails will automatically render app/views/books/index.html.erb when
you navigate to /books and you will see "Books are coming soon!" on your
screen.

However a coming soon screen is only minimally useful, so you will soon
create your Book model and add the index action to BooksController:

Note that we don't have explicit render at the end of the index action in
accordance with "convention over configuration" principle. The rule is that if
you do not explicitly render something at the end of a controller action, Rails
will automatically look for the action_name.html.erb template in the
controller's view path and render it. So in this case, Rails will render
the app/views/books/index.html.erb file.

If we want to display the properties of all the books in our view, we can do so
with an ERB template like this:

class BooksController < ApplicationController
end

resources :books

<h1>Books are coming soon!</h1>

class BooksController < ApplicationController
 def index
 @books = Book.all
 end
end

� of �151 219

2.2 Using render
In most cases, the ActionController::Base#render method does the
heavy lifting of rendering your application's content for use by a browser.
There are a variety of ways to customize the behavior of render. You can
render the default view for a Rails template, or a specific template, or a file, or
inline code, or nothing at all. You can render text, JSON, or XML. You can
specify the content type or HTTP status of the rendered response as well.

<h1>Listing Books</h1>

<table>
 <thead>
 <tr>
 <th>Title</th>
 <th>Content</th>
 <th colspan="3"></th>
 </tr>
 </thead>

 <tbody>
 <% @books.each do |book| %>
 <tr>
 <td><%= book.title %></td>
 <td><%= book.content %></td>
 <td><%= link_to "Show", book %></td>
 <td><%= link_to "Edit", edit_book_path(book)
%></td>
 <td><%= link_to "Destroy", book,
method: :delete, data: { confirm: "Are you sure?" } %></
td>
 </tr>
 <% end %>
 </tbody>
</table>

<%= link_to "New book", new_book_path %>

� of �152 219

https://guides.rubyonrails.org/layouts_and_rendering.html#using-render

If you want to see the exact results of a call to render without needing to
inspect it in a browser, you can call render_to_string. This method takes
exactly the same options as render, but it returns a string instead of sending
a response back to the browser.

2.2.1 Rendering an Action's View
If you want to render the view that corresponds to a different template within
the same controller, you can use render with the name of the view:

If the call to update fails, calling the update action in this controller will
render the edit.html.erb template belonging to the same controller.

If you prefer, you can use a symbol instead of a string to specify the action to
render:

2.2.2 Rendering an Action's Template from Another Controller
What if you want to render a template from an entirely different controller from
the one that contains the action code? You can also do that with render,
which accepts the full path (relative to app/views) of the template to render.
For example, if you're running code in an AdminProductsController that

def update
 @book = Book.find(params[:id])
 if @book.update(book_params)
 redirect_to(@book)
 else
 render "edit"
 end
end

def update
 @book = Book.find(params[:id])
 if @book.update(book_params)
 redirect_to(@book)
 else
 render :edit
 end
end

� of �153 219

https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-an-action-s-view
https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-an-action-s-template-from-another-controller

lives in app/controllers/admin, you can render the results of an action
to a template in app/views/products this way:

Rails knows that this view belongs to a different controller because of the
embedded slash character in the string. If you want to be explicit, you can use
the :template option (which was required on Rails 2.2 and earlier):

2.2.3 Rendering an Arbitrary File
The render method can also use a view that's entirely outside of your
application:

The :file option takes an absolute file-system path. Of course, you need to
have rights to the view that you're using to render the content.

Using the :file option in combination with users input can lead to security
problems since an attacker could use this action to access security sensitive
files in your file system.

By default, the file is rendered using the current layout.

If you're running Rails on Microsoft Windows, you should use
the :file option to render a file, because Windows filenames do not have
the same format as Unix filenames.

2.2.4 Wrapping it up
The above three ways of rendering (rendering another template within the
controller, rendering a template within another controller and rendering an
arbitrary file on the file system) are actually variants of the same action.

render "products/show"

render template: "products/show"

render file: "/u/apps/warehouse_app/current/app/views/
products/show"

� of �154 219

https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-an-arbitrary-file
https://guides.rubyonrails.org/layouts_and_rendering.html#wrapping-it-up

In fact, in the BooksController class, inside of the update action where we
want to render the edit template if the book does not update successfully, all
of the following render calls would all render the edit.html.erb template in
the views/books directory:

Which one you use is really a matter of style and convention, but the rule of
thumb is to use the simplest one that makes sense for the code you are
writing.

2.2.5 Using render with :inline
The render method can do without a view completely, if you're willing to use
the :inline option to supply ERB as part of the method call. This is
perfectly valid:

There is seldom any good reason to use this option. Mixing ERB into your
controllers defeats the MVC orientation of Rails and will make it harder for
other developers to follow the logic of your project. Use a separate erb view
instead.

By default, inline rendering uses ERB. You can force it to use Builder instead
with the :type option:

render :edit
render action: :edit
render "edit"
render "edit.html.erb"
render action: "edit"
render action: "edit.html.erb"
render "books/edit"
render "books/edit.html.erb"
render template: "books/edit"
render template: "books/edit.html.erb"
render "/path/to/rails/app/views/books/edit"
render "/path/to/rails/app/views/books/edit.html.erb"
render file: "/path/to/rails/app/views/books/edit"
render file: "/path/to/rails/app/views/books/
edit.html.erb"

render inline: "<% products.each do |p| %><p><%= p.name
%></p><% end %>"

� of �155 219

https://guides.rubyonrails.org/layouts_and_rendering.html#using-render-with-inline

2.2.6 Rendering Text
You can send plain text - with no markup at all - back to the browser by using
the :plain option to render:

Rendering pure text is most useful when you're responding to Ajax or web
service requests that are expecting something other than proper HTML.

By default, if you use the :plain option, the text is rendered without using
the current layout. If you want Rails to put the text into the current layout, you
need to add the layout: true option and use the .text.erb extension
for the layout file.

2.2.7 Rendering HTML
You can send an HTML string back to the browser by using the :html option
to render:

This is useful when you're rendering a small snippet of HTML code. However,
you might want to consider moving it to a template file if the markup is
complex.

When using html: option, HTML entities will be escaped if the string is not
composed with html_safe-aware APIs.

2.2.8 Rendering JSON
JSON is a JavaScript data format used by many Ajax libraries. Rails has built-
in support for converting objects to JSON and rendering that JSON back to
the browser:

render inline: "xml.p {'Horrid coding practice!'}",
type: :builder

render plain: "OK"

render html: helpers.tag.strong('Not Found')

render json: @product

� of �156 219

https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-text
https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-html
https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-json

You don't need to call to_json on the object that you want to render. If you
use the :jsonoption, render will automatically call to_json for you.

2.2.9 Rendering XML
Rails also has built-in support for converting objects to XML and rendering
that XML back to the caller:

You don't need to call to_xml on the object that you want to render. If you
use the :xmloption, render will automatically call to_xml for you.

2.2.10 Rendering Vanilla JavaScript
Rails can render vanilla JavaScript:

This will send the supplied string to the browser with a MIME type of text/
javascript.

2.2.11 Rendering raw body
You can send a raw content back to the browser, without setting any content
type, by using the :body option to render:

This option should be used only if you don't care about the content type of the
response. Using :plain or :html might be more appropriate most of the
time.

Unless overridden, your response returned from this render option will
be text/plain, as that is the default content type of Action Dispatch
response.

2.2.12 Options for render
Calls to the render method generally accept five options:

• :content_type
• :layout

render xml: @product

render js: "alert('Hello Rails');"

render body: "raw"

� of �157 219

https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-xml
https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-vanilla-javascript
https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-raw-body
https://guides.rubyonrails.org/layouts_and_rendering.html#options-for-render

• :location
• :status
• :formats

2.2.12.1 The :content_type Option
By default, Rails will serve the results of a rendering operation with the MIME
content-type of text/html (or application/json if you use
the :json option, or application/xml for the :xml option.). There are
times when you might like to change this, and you can do so by setting
the :content_type option:

2.2.12.2 The :layout Option
With most of the options to render, the rendered content is displayed as part
of the current layout.

You can use the :layout option to tell Rails to use a specific file as the
layout for the current action:

You can also tell Rails to render with no layout at all:

2.2.12.3 The :location Option
You can use the :location option to set the HTTP Location header:

2.2.12.4 The :status Option
Rails will automatically generate a response with the correct HTTP status
code (in most cases, this is 200 OK). You can use the :status option to
change this:

render file: filename, content_type: "application/rss"

render layout: "special_layout"

render layout: false

render xml: photo, location: photo_url(photo)

render status: 500
render status: :forbidden

� of �158 219

https://guides.rubyonrails.org/layouts_and_rendering.html#the-content-type-option
https://guides.rubyonrails.org/layouts_and_rendering.html#the-layout-option
https://guides.rubyonrails.org/layouts_and_rendering.html#the-location-option
https://guides.rubyonrails.org/layouts_and_rendering.html#the-status-option

Rails understands both numeric status codes and the corresponding symbols
shown below.

Response
Class

HTTP Status
Code Symbol

Informational 100 :continue

101 :switching_protocols

102 :processing

Success 200 :ok

201 :created

202 :accepted

203 :non_authoritative_information

204 :no_content

205 :reset_content

206 :partial_content

207 :multi_status

208 :already_reported

226 :im_used

Redirection 300 :multiple_choices

301 :moved_permanently

302 :found

303 :see_other

� of �159 219

304 :not_modified

305 :use_proxy

307 :temporary_redirect

308 :permanent_redirect

Client Error 400 :bad_request

401 :unauthorized

402 :payment_required

403 :forbidden

404 :not_found

405 :method_not_allowed

406 :not_acceptable

407 :proxy_authentication_required

408 :request_timeout

409 :conflict

410 :gone

411 :length_required

412 :precondition_failed

413 :payload_too_large

414 :uri_too_long

415 :unsupported_media_type

� of �160 219

416 :range_not_satisfiable

417 :expectation_failed

421 :misdirected_request

422 :unprocessable_entity

423 :locked

424 :failed_dependency

426 :upgrade_required

428 :precondition_required

429 :too_many_requests

431 :request_header_fields_too_lar
ge

451 :unavailable_for_legal_reasons

Server Error 500 :internal_server_error

501 :not_implemented

502 :bad_gateway

503 :service_unavailable

504 :gateway_timeout

505 :http_version_not_supported

506 :variant_also_negotiates

507 :insufficient_storage

� of �161 219

If you try to render content along with a non-content status code (100-199,
204, 205 or 304), it will be dropped from the response.

2.2.12.5 The :formats Option
Rails uses the format specified in the request (or :html by default). You can
change this passing the :formats option with a symbol or an array:

I f a t e m p l a t e w i t h t h e s p e c i fi e d f o r m a t d o e s n o t e x i s t
an ActionView::MissingTemplate error is raised.

2.2.13 Finding Layouts
To find the current layout, Rails first looks for a file in app/views/
layouts with the same base name as the controller. For example, rendering
actions from the PhotosController class will use app/views/layouts/
photos.html.erb (or app/views/layouts/photos.builder).

If there is no such controller-specific layout, Rails will use

app/views/layouts/application.html.erb or

 app/views/layouts/application.builder.

If there is no .erb layout, Rails will use a .builder layout if one exists.
Rails also provides several ways to more precisely assign specific layouts to
individual controllers and actions.

508 :loop_detected

510 :not_extended

511 :network_authentication_requir
ed

render formats: :xml
render formats: [:json, :xml]

� of �162 219

https://guides.rubyonrails.org/layouts_and_rendering.html#the-formats-option
https://guides.rubyonrails.org/layouts_and_rendering.html#finding-layouts

2.2.13.1 Specifying Layouts for Controllers
You can override the default layout conventions in your controllers by using
the layout declaration. For example:

W i t h t h i s d e c l a r a t i o n , a l l o f t h e v i e w s r e n d e r e d b y
the ProductsController wi l l use app/views/layouts/
inventory.html.erb as their layout.

To ass ign a spec ific layout fo r the en t i re app l ica t ion , use
a layout declaration in your ApplicationController class:

With this declaration, all of the views in the entire application will use app/
views/layouts/main.html.erb for their layout.

2.2.13.2 Choosing Layouts at Runtime
You can use a symbol to defer the choice of layout until a request is
processed:

class ProductsController < ApplicationController
 layout "inventory"
 #...
end

class ApplicationController < ActionController::Base
 layout "main"
 #...
end

� of �163 219

https://guides.rubyonrails.org/layouts_and_rendering.html#specifying-layouts-for-controllers
https://guides.rubyonrails.org/layouts_and_rendering.html#choosing-layouts-at-runtime

Now, if the current user is a special user, they'll get a special layout when
viewing a product.

You can even use an inline method, such as a Proc, to determine the layout.
For example, if you pass a Proc object, the block you give the Proc will be
given the controller instance, so the layout can be determined based on
the current request:

2.2.13.3 Conditional Layouts
L a y o u t s s p e c i fi e d a t t h e c o n t r o l l e r l e v e l s u p p o r t
the :only and :except options. These options take either a method name,
or an array of method names, corresponding to method names within the
controller:

With this declaration, the product layout would be used for everything but
the rss and index methods.

class ProductsController < ApplicationController
 layout :products_layout

 def show
 @product = Product.find(params[:id])
 end

 private
 def products_layout
 @current_user.special? ? "special" : "products"
 end

end

class ProductsController < ApplicationController
 layout Proc.new { |controller| controller.request.xhr?
? "popup" : "application" }
end

class ProductsController < ApplicationController
 layout "product", except: [:index, :rss]
end

� of �164 219

https://guides.rubyonrails.org/layouts_and_rendering.html#conditional-layouts

2.2.13.4 Layout Inheritance
Layout declarations cascade downward in the hierarchy, and more specific
layout declarations always override more general ones. For example:

• application_controller.rb

• articles_controller.rb

• special_articles_controller.rb

• old_articles_controller.rb

• class ApplicationController < ActionController::Base 
 layout "main"  
end

• class ArticlesController < ApplicationController  
end

• class SpecialArticlesController < ArticlesController 
 layout "special"  
end  

� of �165 219

https://guides.rubyonrails.org/layouts_and_rendering.html#layout-inheritance

In this application:

• In general, views will be rendered in the main layout
• ArticlesController#index will use the main layout
• SpecialArticlesController#index will use the special layout
• OldArticlesController#show will use no layout at all
• OldArticlesController#index will use the old layout

2.2.13.5 Template Inheritance
Similar to the Layout Inheritance logic, if a template or partial is not found in
the conventional path, the controller will look for a template or partial to
render in its inheritance chain. For example:

• class OldArticlesController < SpecialArticlesController 
 layout false  
  
 def show  
 @article = Article.find(params[:id])  
 end  
  
 def index  
 @old_articles = Article.older  
 render layout: "old"  
 end  
 # ...  
end  
 

• •

� of �166 219

https://guides.rubyonrails.org/layouts_and_rendering.html#template-inheritance

The lookup order for an admin/products#index action will be:

• app/views/admin/products/
• app/views/admin/
• app/views/application/

This makes app/views/application/ a great place for your shared
partials, which can then be rendered in your ERB as such:

2.2.14 Avoiding Double Render Errors
Sooner or later, most Rails developers will see the error message "Can only
render or redirect once per action". While this is annoying, it's relatively easy
to fix. Usually it happens because of a fundamental misunderstanding of the
way that render works.

For example, here's some code that will trigger this error:

in app/controllers/application_controller
class ApplicationController < ActionController::Base
end

in app/controllers/admin_controller
class AdminController < ApplicationController
end

in app/controllers/admin/products_controller
class Admin::ProductsController < AdminController
 def index
 end
end

<%# app/views/admin/products/index.html.erb %>
<%= render @products || "empty_list" %>

<%# app/views/application/_empty_list.html.erb %>
There are no items in this list yet.

� of �167 219

https://guides.rubyonrails.org/layouts_and_rendering.html#avoiding-double-render-errors

If @book.special? evaluates to true, Rails will start the rendering process
to dump the @bookvariable into the special_show view. But this
will not stop the rest of the code in the show action from running, and when
Rails hits the end of the action, it will start to render the regular_show view
- and throw an error. The solution is simple: make sure that you have only
one call to render or redirect in a single code path. One thing that can
help is and return. Here's a patched version of the method:

Make sure to use and return instead of && return because &&
return will not work due to the operator precedence in the Ruby Language.

Note that the implicit render done by ActionController detects if render has
been called, so the following will work without errors:

This will render a book with special? set with the special_show template,
while other books will render with the default show template.

def show
 @book = Book.find(params[:id])
 if @book.special?
 render action: "special_show"
 end
 render action: "regular_show"
end

def show
 @book = Book.find(params[:id])
 if @book.special?
 render action: "special_show" and return
 end
 render action: "regular_show"
end

def show
 @book = Book.find(params[:id])
 if @book.special?
 render action: "special_show"
 end
end

� of �168 219

2.3 Using redirect_to
Another way to handle returning responses to an HTTP request is
with redirect_to. As you've seen, render tells Rails which view (or other
asset) to use in constructing a response.

The redirect_to tells the browser to send a new request for a different
URL.

For example, you could redirect from wherever you are in your code to the
index of photos in your application with this call:

You can use redirect_back to return the user to the page they just came
from. This location is pulled from the HTTP_REFERER header which is not
guaranteed to be set by the browser, so you must provide
the fallback_location to use in this case.

redirect_to and redirect_back do not halt and return immediately from
method execution, but simply set HTTP responses. Statements occurring
after them in a method will be executed. You can halt by an
explicit return or some other halting mechanism, if needed.

2.3.1 Getting a Different Redirect Status Code
Rails uses HTTP status code 302, a temporary redirect, when you
call redirect_to. If you'd like to use a different status code, perhaps 301, a
permanent redirect, you can use the :status option:

J u s t l i k e t h e : s t a t u s o p t i o n
for render, :status for redirect_to accepts both numeric and symbolic
header designations.

redirect_to photos_url

redirect_back(fallback_location: root_path)

redirect_to photos_path, status: 301

� of �169 219

https://guides.rubyonrails.org/layouts_and_rendering.html#using-redirect-to
https://guides.rubyonrails.org/layouts_and_rendering.html#getting-a-different-redirect-status-code

2.3.2 The Difference Between render and redirect_to
Sometimes inexperienced developers think of redirect_to as a sort
of goto command, moving execution from one place to another in your Rails
code. This is not correct. Your code stops running and waits for a new request
for the browser. It just happens that you've told the browser what request it
should make next, by sending back an HTTP 302 status code.

Consider these actions to see the difference:

With the code in this form, there will likely be a problem if the @book variable
is nil. Remember, a render :action doesn't run any code in the target
action, so nothing will set up the @books variable that the index view will
probably require. One way to fix this is to redirect instead of rendering:

With this code, the browser will make a fresh request for the index page, the
code in the index method will run, and all will be well.

def index
 @books = Book.all
end

def show
 @book = Book.find_by(id: params[:id])
 if @book.nil?
 render action: "index"
 end
end

def index
 @books = Book.all
end

def show
 @book = Book.find_by(id: params[:id])
 if @book.nil?
 redirect_to action: :index
 end
end

� of �170 219

https://guides.rubyonrails.org/layouts_and_rendering.html#the-difference-between-render-and-redirect-to

The only downside to this code is that it requires a round trip to the browser:
the browser requested the show action with /books/1 and the controller
finds that there are no books, so the controller sends out a 302 redirect
response to the browser telling it to go to /books/, the browser complies
and sends a new request back to the controller asking now for
the index action, the controller then gets all the books in the database and
renders the index template, sending it back down to the browser which then
shows it on your screen.

While in a small application, this added latency might not be a problem, it is
something to think about if response time is a concern. We can demonstrate
one way to handle this with a contrived example:

This would detect that there are no books with the specified ID, populate
the @books instance variable with all the books in the model, and then
directly render the index.html.erb template, returning it to the browser
with a flash alert message to tell the user what happened.

2.4 Using head To Build Header-Only Responses
The head method can be used to send responses with only headers to the
browser. The head method accepts a number or symbol (see reference
table) representing an HTTP status code. The options argument is interpreted
as a hash of header names and values. For example, you can return only an
error header:

def index
 @books = Book.all
end

def show
 @book = Book.find_by(id: params[:id])
 if @book.nil?
 @books = Book.all
 flash.now[:alert] = "Your book was not found"
 render "index"
 end
end

head :bad_request

� of �171 219

https://guides.rubyonrails.org/layouts_and_rendering.html#using-head-to-build-header-only-responses
https://guides.rubyonrails.org/layouts_and_rendering.html#the-status-option
https://guides.rubyonrails.org/layouts_and_rendering.html#the-status-option

This would produce the following header:

Or you can use other HTTP headers to convey other information:

Which would produce:

3 Structuring Layouts
When Rails renders a view as a response, it does so by combining the view
with the current layout, using the rules for finding the current layout that were
covered earlier in this guide. Within a layout, you have access to three tools
for combining different bits of output to form the overall response:

• Asset tags
• yield and content_for
• Partials

HTTP/1.1 400 Bad Request
Connection: close
Date: Sun, 24 Jan 2010 12:15:53 GMT
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
X-Runtime: 0.013483
Set-Cookie: _blog_session=...snip...; path=/; HttpOnly
Cache-Control: no-cache

head :created, location: photo_path(@photo)

HTTP/1.1 201 Created
Connection: close
Date: Sun, 24 Jan 2010 12:16:44 GMT
Transfer-Encoding: chunked
Location: /photos/1
Content-Type: text/html; charset=utf-8
X-Runtime: 0.083496
Set-Cookie: _blog_session=...snip...; path=/; HttpOnly
Cache-Control: no-cache

� of �172 219

https://guides.rubyonrails.org/layouts_and_rendering.html#structuring-layouts

3.1 Asset Tag Helpers
Asset tag helpers provide methods for generating HTML that link views to
feeds, JavaScript, stylesheets, images, videos, and audios. There are six
asset tag helpers available in Rails:

• auto_discovery_link_tag
• javascript_include_tag
• stylesheet_link_tag
• image_tag
• video_tag
• audio_tag

You can use these tags in layouts or other views, although
the auto_discovery_link_tag, javascript_include_tag,
and stylesheet_link_tag , a re mos t common ly used i n
the <head> section of a layout.

The asset tag helpers do not verify the existence of the assets at the
specified locations; they simply assume that you know what you're doing and
generate the link.

3.1.1 Linking to Feeds with the auto_discovery_link_tag
The auto_discovery_link_tag helper builds HTML that most browsers
and feed readers can use to detect the presence of RSS, Atom, or JSON
feeds. It takes the type of the link (:rss, :atom, or :json), a hash of
options that are passed through to url_for, and a hash of options for the tag:

Note: RSS (originally RDF Site Summary; later, two competing
approaches emerged, which used the backronyms Rich Site Summary
and Really Simple Syndication respectively) is a type of web feed which
allows users and applications to access updates to online content in a
standardized, computer-readable format.

There are three tag options available for the auto_discovery_link_tag:

<%= auto_discovery_link_tag(:rss, {action: "feed"},
 {title: "RSS Feed"}) %>

� of �173 219

https://guides.rubyonrails.org/layouts_and_rendering.html#asset-tag-helpers
https://guides.rubyonrails.org/layouts_and_rendering.html#linking-to-feeds-with-the-auto-discovery-link-tag

• :rel specifies the rel value in the link. The default value is
"alternate".

• :type specifies an explicit MIME type. Rails will generate an
appropriate MIME type automatically.

• :title specifies the title of the link. The default value is the
uppercase :type value, for example, "ATOM" or "RSS".

3.1.2 Linking to JavaScript Files with the javascript_include_tag
The javascript_include_tag helper returns an HTML script tag for
each source provided.

If you are using Rails with the Asset Pipeline enabled, this helper will
generate a link to /assets/javascripts/ rather than public/
javascripts which was used in earlier versions of Rails. This link is then
served by the asset pipeline.

A JavaScript file within a Rails application or Rails engine goes in one of three
locations: app/assets, lib/assets or vendor/assets. These locations
are explained in detail in the Asset Organization section in the Asset Pipeline
Guide.

You can specify a full path relative to the document root, or a URL, if you
prefer. For example, to link to a JavaScript file that is inside a directory
ca l led javascripts i ns ide o f one o f app/assets , lib/
assets or vendor/assets, you would do this:

Rails will then output a script tag such as this:

The request to this asset is then served by the Sprockets gem.

To include multiple files such as app/assets/javascripts/
main.js and app/assets/javascripts/columns.js at the same time:

<%= javascript_include_tag "main" %>

<script src='/assets/main.js'></script>

<%= javascript_include_tag "main", "columns" %>

� of �174 219

https://guides.rubyonrails.org/layouts_and_rendering.html#linking-to-javascript-files-with-the-javascript-include-tag
https://guides.rubyonrails.org/asset_pipeline.html
https://guides.rubyonrails.org/asset_pipeline.html#asset-organization
https://guides.rubyonrails.org/asset_pipeline.html#asset-organization

To include app/assets/javascripts/main.js and app/assets/
javascripts/photos/columns.js:

To include http://example.com/main.js:

3.1.3 Linking to CSS Files with the stylesheet_link_tag
The stylesheet_link_tag helper returns an HTML <link> tag for each
source provided.

If you are using Rails with the "Asset Pipeline" enabled, this helper will
generate a link to /assets/stylesheets/. This link is then processed by
the Sprockets gem. A stylesheet file can be stored in one of three
locations: app/assets, lib/assets or vendor/assets.

You can specify a full path relative to the document root, or a URL. For
example, to link to a stylesheet file that is inside a directory
ca l led stylesheets i ns ide o f one o f app/assets , lib/
assets or vendor/assets, you would do this:

To include app/assets/stylesheets/main.css and app/assets/
stylesheets/columns.css:

To include app/assets/stylesheets/main.css and app/assets/
stylesheets/photos/columns.css:

To include http://example.com/main.css:

<%= javascript_include_tag "main", "/photos/columns" %>

<%= javascript_include_tag "http://example.com/main.js"
%>

<%= stylesheet_link_tag "main" %>

<%= stylesheet_link_tag "main", "columns" %>

<%= stylesheet_link_tag "main", "photos/columns" %>

� of �175 219

https://guides.rubyonrails.org/layouts_and_rendering.html#linking-to-css-files-with-the-stylesheet-link-tag

B y d e f a u l t , t h e s t y l e s h e e t _ l i n k _ t a g c r e a t e s l i n k s
with media="screen" rel="stylesheet". You can override any of
these defaults by specifying an appropriate option (:media, :rel):

3.1.4 Linking to Images with the image_tag
The image_tag helper builds an HTML tag to the specified file. By
default, files are loaded from public/images.

Note that you must specify the extension of the image.

You can supply a path to the image if you like:

You can supply a hash of additional HTML options:

You can supply alternate text for the image which will be used if the user has
images turned off in their browser. If you do not specify an alt text explicitly, it
defaults to the file name of the file, capitalized and with no extension. For
example, these two image tags would return the same code:

You can also specify a special size tag, in the format "{width}x{height}":

In addition to the above special tags, you can supply a final hash of standard
HTML options, such as :class, :id or :name:

<%= stylesheet_link_tag "http://example.com/main.css" %>

<%= stylesheet_link_tag "main_print", media: "print" %>

<%= image_tag "header.png" %>

<%= image_tag "icons/delete.gif" %>

<%= image_tag "icons/delete.gif", {height: 45} %>

<%= image_tag "home.gif" %>
<%= image_tag "home.gif", alt: "Home" %>

<%= image_tag "home.gif", size: "50x20" %>

� of �176 219

https://guides.rubyonrails.org/layouts_and_rendering.html#linking-to-images-with-the-image-tag

3.1.5 Linking to Videos with the video_tag
The video_tag helper builds an HTML 5 <video> tag to the specified file.
By default, files are loaded from public/videos.

Produces

Like an image_tag you can supply a path, either absolute, or relative to
the public/videosdirectory. Additionally you can specify the size:
"#{width}x#{height}" option just like an image_tag. Video tags can
also have any of the HTML options specified at the end (id, class et al).

The video tag also supports all of the <video> HTML options through the
HTML options hash, including:

• poster: "image_name.png", provides an image to put in place of
the video before it starts playing.

• autoplay: true, starts playing the video on page load.
• loop: true, loops the video once it gets to the end.
• controls: true, provides browser supplied controls for the user to

interact with the video.
• autobuffer: true, the video will pre load the file for the user on

page load.
You can also specify multiple videos to play by passing an array of videos to
the video_tag:

This will produce:

<%= image_tag "home.gif", alt: "Go Home",
 id: "HomeImage",
 class: "nav_bar" %>

<%= video_tag "movie.ogg" %>

<video src="/videos/movie.ogg" />

<%= video_tag ["trailer.ogg", "movie.ogg"] %>

� of �177 219

https://guides.rubyonrails.org/layouts_and_rendering.html#linking-to-videos-with-the-video-tag

3.1.6 Linking to Audio Files with the audio_tag
The audio_tag helper builds an HTML 5 <audio> tag to the specified file.
By default, files are loaded from public/audios.

You can supply a path to the audio file if you like:

You can also supply a hash of additional options, such as :id, :class etc.

Like the video_tag, the audio_tag has special options:

• autoplay: true, starts playing the audio on page load
• controls: true, provides browser supplied controls for the user to

interact with the audio.
• autobuffer: true, the audio will pre load the file for the user on

page load.
3.2 Understanding yield
Within the context of a layout, yield identifies a section where content from
the view should be inserted. The simplest way to use this is to have a
single yield, into which the entire contents of the view currently being
rendered is inserted:

<video>
 <source src="/videos/trailer.ogg">
 <source src="/videos/movie.ogg">
</video>

<%= audio_tag "music.mp3" %>

<%= audio_tag "music/first_song.mp3" %>

<html>
 <head>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

� of �178 219

https://guides.rubyonrails.org/layouts_and_rendering.html#linking-to-audio-files-with-the-audio-tag
https://guides.rubyonrails.org/layouts_and_rendering.html#understanding-yield

You can also create a layout with multiple yielding regions:

The main body of the view will always render into the unnamed yield. To
render content into a named yield, you use the content_for method.

3.3 Using the content_for Method
The content_for method allows you to insert content into a
named yield block in your layout. For example, this view would work with
the layout that you just saw:

The result of rendering this page into the supplied layout would be this HTML:

The content_for method is very helpful when your layout contains distinct
regions such as sidebars and footers that should get their own blocks of

<html>
 <head>
 <%= yield :head %>
 </head>
 <body>
 <%= yield %>
 </body>
</html>

<% content_for :head do %>
 <title>A simple page</title>
<% end %>

<p>Hello, Rails!</p>

<html>
 <head>
 <title>A simple page</title>
 </head>
 <body>
 <p>Hello, Rails!</p>
 </body>
</html>

� of �179 219

https://guides.rubyonrails.org/layouts_and_rendering.html#using-the-content-for-method

content inserted. It's also useful for inserting tags that load page-specific
JavaScript or css files into the header of an otherwise generic layout.

3.4 Using Partials
Partial templates - usually just called "partials" - are another device for
breaking the rendering process into more manageable chunks. With a partial,
you can move the code for rendering a particular piece of a response to its
own file.

3.4.1 Naming Partials
To render a partial as part of a view, you use the render method within the
view:

This will render a file named _menu.html.erb at that point within the view
being rendered. Note the leading underscore character: partials are named
with a leading underscore to distinguish them from regular views, even
though they are referred to without the underscore. This holds true even
when you're pulling in a partial from another folder:

That code wil l pul l in the part ial from app/views/shared/
_menu.html.erb.

3.4.2 Using Partials to Simplify Views
One way to use partials is to treat them as the equivalent of subroutines: as a
way to move details out of a view so that you can grasp what's going on more
easily. For example, you might have a view that looked like this:

<%= render "menu" %>

<%= render "shared/menu" %>

� of �180 219

https://guides.rubyonrails.org/layouts_and_rendering.html#using-partials
https://guides.rubyonrails.org/layouts_and_rendering.html#naming-partials
https://guides.rubyonrails.org/layouts_and_rendering.html#using-partials-to-simplify-views

Here, the _ad_banner.html.erb and _footer.html.erb partials could
contain content that is shared by many pages in your application. You don't
need to see the details of these sections when you're concentrating on a
particular page.

As seen in the previous sections of this guide, yield is a very powerful tool
for cleaning up your layouts. Keep in mind that it's pure Ruby, so you can use
it almost everywhere. For example, we can use it to DRY up form layout
definitions for several similar resources:

• users/index.html.erb

• roles/index.html.erb

<%= render "shared/ad_banner" %>

<h1>Products</h1>

<p>Here are a few of our fine products:</p>
...

<%= render "shared/footer" %>

• <%= render "shared/search_filters", search: @q do |f|
%>  
 <p>  
 Name contains: <%= f.text_field :name_contains %>  
 </p>  
<% end %>  
 

• •

� of �181 219

• shared/_search_filters.html.erb

For content that is shared among all pages in your application, you can use
partials directly from layouts.

3.4.3 Partial Layouts
A partial can use its own layout file, just as a view can use a layout. For
example, you might call a partial like this:

This would look for a partial named _link_area.html.erb and render it
using the layout _graybar.html.erb. Note that layouts for partials follow
the same leading-underscore naming as regular partials, and are placed in
the same folder with the partial that they belong to (not in the
master layouts folder).

• <%= render "shared/search_filters", search: @q do |f|
%>  
 <p>  
 Title contains: <%= f.text_field :title_contains %>  
 </p>  
<% end %>  
 

• •

• <%= form_for(search) do |f| %>  
 <h1>Search form:</h1>  
 <fieldset>  
 <%= yield f %>  
 </fieldset>  
 <p>  
 <%= f.submit "Search" %>  
 </p>  
<% end %>  
 

• •

<%= render partial: "link_area", layout: "graybar" %>

� of �182 219

https://guides.rubyonrails.org/layouts_and_rendering.html#partial-layouts

Also note that explicitly specifying :partial is required when passing
additional options such as :layout.

3.4.4 Passing Local Variables
You can also pass local variables into partials, making them even more
powerful and flexible. For example, you can use this technique to reduce
duplication between new and edit pages, while still keeping a bit of distinct
content:

• new.html.erb

• edit.html.erb

• _form.html.erb

• <h1>New zone</h1>  
<%= render partial: "form", locals: {zone: @zone} %>  
 

• •

• <h1>Editing zone</h1>  
<%= render partial: "form", locals: {zone: @zone} %>  
 

• •

• <%= form_for(zone) do |f| %>  
 <p>  
 Zone name
  
 <%= f.text_field :name %>  
 </p>  
 <p>  
 <%= f.submit %>  
 </p>  
<% end %>  
 

• •
� of �183 219

https://guides.rubyonrails.org/layouts_and_rendering.html#passing-local-variables

Although the same partial will be rendered into both views, Action View's
submit helper will return "Create Zone" for the new action and "Update Zone"
for the edit action.

To pass a local variable to a partial in only specific cases use
the local_assigns.

• index.html.erb

• show.html.erb

• _article.html.erb

This way it is possible to use the partial without the need to declare all local
variables.

Every partial also has a local variable with the same name as the partial
(minus the leading underscore). You can pass an object in to this local
variable via the :object option:

Within the customer partial, the customer variable will refer
to @new_customer from the parent view.

If you have an instance of a model to render into a partial, you can use a
shorthand syntax:

<%= render user.articles %>

<%= render article, full: true %>

<h2><%= article.title %></h2>

<% if local_assigns[:full] %>
 <%= simple_format article.body %>
<% else %>
 <%= truncate article.body %>
<% end %>

<%= render partial: "customer", object: @new_customer %>

<%= render @customer %>

� of �184 219

Assuming that the @customer instance variable contains an instance of
the Customer model, this will use _customer.html.erb to render it and
will pass the local variable customer into the partial which will refer to
the @customer instance variable in the parent view.

3.4.5 Rendering Collections
Partials are very useful in rendering collections. When you pass a collection
to a partial via the :collection option, the partial will be inserted once for
each member in the collection:

• index.html.erb

• _product.html.erb

When a partial is called with a pluralized collection, then the individual
instances of the partial have access to the member of the collection being
rendered via a variable named after the partial. In this case, the partial
is _product, and within the _product partial, you can refer to product to
get the instance that is being rendered.

There is also a shorthand for this. Assuming @products is a collection
of product instances, you can simply write this in the index.html.erb to
produce the same result:

• <h1>Products</h1>  
<%= render partial: "product", collection: @products %>  
 

• •

• <p>Product Name: <%= product.name %></p>  
 

• •

<h1>Products</h1>
<%= render @products %>

� of �185 219

https://guides.rubyonrails.org/layouts_and_rendering.html#rendering-collections

Rails determines the name of the partial to use by looking at the model name
in the collection. In fact, you can even create a heterogeneous collection and
render it this way, and Rails will choose the proper partial for each member of
the collection:

• index.html.erb

• customers/_customer.html.erb

• employees/_employee.html.erb

In this case, Rails will use the customer or employee partials as appropriate
for each member of the collection.

In the event that the collection is empty, render will return nil, so it should be
fairly simple to provide alternative content.

3.4.6 Local Variables

• <h1>Contacts</h1>  
<%= render [customer1, employee1, customer2, employee2]
%>  
 

• •

• <p>Customer: <%= customer.name %></p>  
 

• •

• <p>Employee: <%= employee.name %></p>  
 

• •

<h1>Products</h1>
<%= render(@products) || "There are no products
available." %>

� of �186 219

https://guides.rubyonrails.org/layouts_and_rendering.html#local-variables

To use a custom local variable name within the partial, specify the :as option
in the call to the partial:

With this change, you can access an instance of the @products collection
as the item local variable within the partial.

You can also pass in arbitrary local variables to any partial you are rendering
with the locals: {}option:

In this case, the partial will have access to a local variable title with the
value "Products Page".

Rails also makes a counter variable available within a partial called by the
collection, named after the title of the partial followed by _counter. For
e x a m p l e , w h e n r e n d e r i n g a c o l l e c t i o n @ p r o d u c t s t h e
p a r t i a l _ p r o d u c t . h t m l . e r b c a n a c c e s s t h e
variable product_counter which indexes the number of times it has been
rendered within the enclosing view.

You can also specify a second partial to be rendered between instances of
the main partial by using the :spacer_template option:

3.4.7 Spacer Templates

Rails will render the _product_ruler partial (with no data passed in to it)
between each pair of _product partials.

3.4.8 Collection Partial Layouts
When rendering collections it is also possible to use the :layout option:

<%= render partial: "product", collection: @products,
as: :item %>

<%= render partial: "product", collection: @products,
 as: :item, locals: {title: "Products Page"}
%>

<%= render partial: @products, spacer_template:
"product_ruler" %>

� of �187 219

https://guides.rubyonrails.org/layouts_and_rendering.html#spacer-templates
https://guides.rubyonrails.org/layouts_and_rendering.html#collection-partial-layouts

The layout will be rendered together with the partial for each item in the
collection. The current object and object_counter variables will be available in
the layout as well, the same way they are within the partial.

3.5 Using Nested Layouts
You may find that your application requires a layout that differs slightly from
your regular application layout to support one particular controller. Rather
than repeating the main layout and editing it, you can accomplish this by
using nested layouts (sometimes called sub-templates). Here's an example:

Suppose you have the following ApplicationController layout:

• app/views/layouts/application.html.erb

On pages generated by NewsController, you want to hide the top menu
and add a right menu:

• app/views/layouts/news.html.erb

<%= render partial: "product", collection: @products,
layout: "special_layout" %>

• <html>  
<head>  
 <title><%= @page_title or "Page Title" %></title>  
 <%= stylesheet_link_tag "layout" %>  
 <style><%= yield :stylesheets %></style>  
</head>  
<body>  
 <div id="top_menu">Top menu items here</div>  
 <div id="menu">Menu items here</div>  
 <div id="content"><%= content_for?(:content) ?
yield(:content) : yield %></div>  
</body>  
</html>  
 

• •

� of �188 219

https://guides.rubyonrails.org/layouts_and_rendering.html#using-nested-layouts

That's it. The News views will use the new layout, hiding the top menu and
adding a new right menu inside the "content" div.

There are several ways of getting similar results with different sub-templating
schemes using this technique. Note that there is no limit in nesting levels.
One can use the ActionView::rendermethod via render template:
'layouts/news' to base a new layout on the News layout. If you are sure
you wi l l not subtemplate the News layout, you can replace
the content_for?(:news_content) ? yield(:news_content) :
yield with simply yield.

• <% content_for :stylesheets do %>  
 #top_menu {display: none}  
 #right_menu {float: right; background-color: yellow;
color: black}  
<% end %>  
<% content_for :content do %>  
 <div id="right_menu">Right menu items here</div>  
 <%= content_for?(:news_content) ?
yield(:news_content) : yield %>  
<% end %>  
<%= render template: "layouts/application" %>  
 

• •

� of �189 219

6. Ruby/ Rails JSON

1. Ruby support for JSON

2. HTTParty helps with communicating with RESTful services

3. HTTParty gets Classy

What is JSON?
JSON (JavaScript Object Notation) is a lightweight data-
interchange format. More important, JSON is a human
readable serialization format, like the popular YAML format
all Rubyist are probably familiar with.

Compared to other serialization alternatives such as XML,
YAML or Binary-serialization, JSON offers the following
advantages:

• it's a human readable format

• it's largely adopted and supported by the most part of

programming languages

• it's a language-independent format

• can be compressed in one line to reduce stream size

• can represent the most part of standard objects

• seamlessly integrates with JavaScript which makes

JSON the standard for streaming data over AJAX calls

All these features make JSON an excellent serialization
format. Of course, there are also some drawbacks, but this
is material for an other article.

� of �190 219

http://www.json.org/

Installation

The library can be installed via rubygems:

gem install json
If you have to use the pure variant, you can use:

gem install json_pure
The gem and the source archive can also be downloaded directly
from rubyforge.org.

Usage

If you require JSON like this:

require 'json'
JSON first tries to load the extension variant. If this fails, the pure
variant is loaded and used.

To determine, which variant is active you can use the follwing
methods:

• Ext variant:[JSON.parser, JSON.generator] # =>
[JSON::Ext::Parser, JSON::Ext::Generator]

•  

• Pure variant:[JSON.parser, JSON.generator] #
=> [JSON::Pure::Parser, JSON::Pure::Generator]

•  

If you want to enforce loading of a special variant, use

require 'json/ext'
to load the extension variant. Or use

require 'json/pure'
to use the pure variant.

You can choose to load a set of common additions to ruby core's
objects if you

 require 'json/add/core'
To get the best compatibility to rails' JSON implementation, you can

� of �191 219

http://www.ping.de/~flori

 require 'json/add/rails'
Both of the additions attempt to require 'json' (like above) first, if it
has not been required yet.

JSON.parse(document)
If you want to generate a JSON document from a ruby data
structure call

JSON.generate(data)
You can also use the pretty_generate method (which formats the
output more verbosely and nicely) or fast_generate(which doesn't
do any of the security checks generate performs, e. g. nesting
deepness checks).

There are also the JSON and JSON[] methods which use parse on
a String or generate a JSON document from an array or hash:

document = JSON 'test' => 23 # => "{\"test\":23}"
document = JSON['test' => 23] # => "{\"test\":23}"
and

data = JSON '{"test":23}' # => {"test"=>23}
data = JSON['{"test":23}'] # => {"test"=>23}

You can choose to load a set of common additions to ruby core's
objects if you

require 'json/add/core'
After requiring this you can, e. g., serialise/deserialise Ruby ranges:

JSON JSON(1..10) # => 1..10
To find out how to add JSON support to other or your own classes,
read the section "More Examples" below.

To get the best compatibility to rails' JSON implementation, you can

require 'json/add/rails'

� of �192 219

Both of the additions attempt to require 'json' (like above) first, if it
has not been required yet.

Serializing exceptions

The JSON module doesn't extend Exception by default. If you
convert an Exception object to JSON, it will by default only include
the exception message.

To include the full details, you must either load the json/add/
core mentioned above, or specifically load the exception addition:

require 'json/add/exception'

More Examples

To create a JSON document from a ruby data structure, you can
call JSON.generate like that:

json = JSON.generate [1, 2, {"a"=>3.141}, false, true,
nil, 4..10]

=> “[1,2,{\"a\":3.141},false,true,null,\"4..10\"]"

To get back a ruby data structure from a JSON document, you have
to call JSON.parse on it:

JSON.parse json
=> [1, 2, {"a"=>3.141}, false, true, nil, “4..10"]

Note, that the range from the original data structure is a simple
string now. The reason for this is, that JSON doesn't support ranges
or arbitrary classes. In this case the json library falls back to
call Object#to_json, which is the same as #to_s.to_json.

It's possible to add JSON support serialization to arbitrary classes
by simply implementing a more specialized version of the #to_json
method, that should return a JSON object (a hash converted to

� of �193 219

JSON with #to_json) like this (don't forget the *a for all the
arguments):

class Range
 def to_json(*a)
 {
 'json_class' => self.class.name, # = 'Range'
 'data' => [first, last, exclude_end?]
 }.to_json(*a)
 end
end
The hash key json_class is the class, that will be asked to
deserialise the JSON representation later. In this case it's Range, but
any namespace of the form A::B or ::A::B will do. All other keys
are arbitrary and can be used to store the necessary data to
configure the object to be deserialised.

If the key json_class is found in a JSON object, the JSON parser
checks if the given class responds to the json_createclass method.
If so, it is called with the JSON object converted to a Ruby hash.

So a range can be deserialised by
implementing Range.json_create like this:

class Range
 def self.json_create(o)
 new(*o['data'])
 end
end
Now it possible to serialise/deserialise ranges as well:

json =JSON.generate [1, 2, {"a"=>3.141}, false, true, nil,
4..10]
=> "[1,2,{\"a\":3.141},false,true,null,{\"json_class\":
\"Range\",\"data\":[4,10,false]}]"

JSON.parse json
=> [1, 2, {"a"=>3.141}, false, true, nil, 4..10]

� of �194 219

json = JSON.generate [1, 2, {"a"=>3.141}, false, true,
nil, 4..10]

=> "[1,2,{\"a\":3.141},false,true,null,{\"json_class\":
\"Range\",\"data\":[4,10,false]}]"

JSON.parse json, :create_additions => true
=> [1, 2, {"a"=>3.141}, false, true, nil, 4..10]

JSON.generate always creates the shortest possible string
representation of a ruby data structure in one line. This is good for
data storage or network protocols, but not so good for humans to
read. Fortunately there's

also JSON.pretty_generate(or JSON.pretty_generate) that creates
a more readable output:

 puts JSON.pretty_generate([1, 2, {"a"=>3.141}, false,
true, nil, 4..10])
 [
 1,
 2,
 {
 "a": 3.141
 },
 false,
 true,
 null,
 {
 "json_class": "Range",
 "data": [
 4,
 10,
 false
]
 }
]

� of �195 219

There are a lso the methods Kernel#j for generate,
and Kernel#jj for pretty_generate output to the console, that
work analogous to Core Ruby's p and the pp library's pp methods.

JSON and Ruby on Rails
Ruby on Rails is a web application framework and JSON is
strictly related to the web ecosystem as a subset of the
JavaScript programming language. There are many different
parts of a Ruby on Rails application where you might need
to manipulate, encode and decode a JSON string into a
Ruby object and vice-versa.

JSON support in Ruby on Rails is provided by
the ActiveSupport::JSON module . Beh ind the
scenes, ActiveSupport wraps the JSON library, a standard
Ruby Gem which you can use in any Ruby project.
However, ActiveSupport goes beyond the boundary of a
simple wrapper: it provides a JSON definition for the most
part of the Ruby objects making JSON an effective full
drop-in replacement for YAML.

ActiveSupport::JSON

As I mentioned before, ActiveSupport::JSON relies on the
JSON Gem thus you need to have both libraries installed on
your system. If you installed the Ruby on Rails framework,
then you already have everything you need to start working
with JSON.

The module provides a super-simple API composed by two
methods:

� of �196 219

https://rubygems.org/gems/json

• ActiveSupport::JSON.encode(object): takes a
Ruby object as value and returns a JSON-encoded
string.

• ActiveSupport::JSON.decode(string): takes a
JSON-encoded string and returns the corresponding
Ruby object

Here's a few examples:

j = ActiveSupport::JSON
ruby-1.8.7-p249 > j.encode(23)
=> "23"
j.encode("A string")
=> "A string"
j.encode({ :color => ["red", "green", "jellow"]
})
=> {"color":["red","green","jellow"]}
j.encode({ :color => ["red", "green",
"jellow"], :date => Time.now })
= > { " c o l o r " :
["red","green","jellow"],"date":"2010-04-29T00:
28:56+02:00"}

j.decode(j.encode({ :color => ["red", "green",
"jellow"], :date => Time.now }))
=> {"date"=>"2010-04-29T00:25:52+02:00",
"color"=>["red", "green", "jellow"]}
As you can see, the usage is really straightforward and the
JSON-encoded result size is smaller compared to the
YAML and XML counterparts.

v = { : c o l o r = > [" r e d " , " g r e e n " ,
"jellow"], :date => Time.now }

� of �197 219

= > { : c o l o r = > [" r e d " , " g r e e n " ,
"jellow"], :date=>Thu Apr 29 00:28:56 +0200
2010}

ActiveSupport::JSON.encode(v)
69 bytes
= > { " c o l o r " :
["red","green","jellow"],"date":"2010-04-29T00:
28:56+02:00"}

YAML.dump(v)

:color:
- red
- green
- jellow
:date: 2016-08-06 13:08:09.592621000 +02:00

ActiveSupport::JSON vs
JSON
A t t h e b e g i n n i n g o f t h e a r t i c l e , I
said ActiveSupport::JSON is something more than a mere
JSON wrapper. Now it's the time to explain that statement.

The JSON format natively supports only a limited subset of
variable types such as String, Number, Array and Hash.
Easy to understand, being a language-agnostic format, it
doesn't support complex or ruby-specific objects such
as Object, Exception or Range. For this reason, JSON

� of �198 219

library delegates to each class the implementation of the
J S O N r e p r e s e n t a t i o n o f t h e o b j e c t u s i n g
the to_json method. Similar to other standard
transformation methods such as to_s or to_f, to_json is
supposed to return a JSON-compatible representation.

While the JSON library now ships with a number of
prepackaged definitions, by default it doesn't support most
of the standard Ruby objects. Also it doesn't support the
serialization of ActiveRecord objects and, working with
Rails projects and database records, this might be a huge
limitation.

ActiveSupport::JSON solves this problem and provides a
predefined to_json implementation for the most part of
R u b y / R a i l s o b j e c t s . I t a l s o d e fi n e s a
simple Object#to_json making virtually every Ruby object
JSON-compatible.

As of ActiveSupport 2.3.5, the following classes are
supported: String, Symbol, Date, Time, DateTime, Enumer
able, Array, Hash, FalseClass, TrueClass, NilClass, Num
eric, Float, Integer, Regexp, and Object. You can find
them in the lib/active_support/json/encoders folder.
The ActiveRecordserialization/deserialization strategy is
defined in the ActiveRecord library in lib/active_record/
serializers/json_serializer.rb:

def to_json(options = {})
 super
end

def as_json(options = nil) #:nodoc:

� of �199 219

 h a s h = S e r i a l i z e r . n e w (s e l f ,
options).serializable_record
 hash = { self.class.model_name.element =>
hash } if include_root_in_json
 hash
end

def from_json(json)
 s e l f . a t t r i b u t e s =
ActiveSupport::JSON.decode(json)
 self
end
Compared with JSON Gem, ActiveSupport::JSON is the
solution to the following Alan's statement:

There is bad news of course, in that your objects won't
automagically be converted to JSON, unless all you're using is
hashes, arrays and primitives. You need to do a little bit of work to
make sure your custom object is serializable. Let's make one of the
classes we introduced previously serializable using JSON.

As a side note, it also provides some additional features
such as an interchangeable encoding/decoding backend.

� of �200 219

JSON with Ruby and Rails

JSON is a beautiful format for storing objects as human
readable text. It’s succeeded where XML has failed. Not
only is it not shit, it’s actually quite good! But don’t just take
my word for it, have a look at some of the “cool” ways you
can generate and consume JSON.

Ruby support for JSON

Ruby’s JSON library makes parsing and generating JSON
simple.

Converting between hash and json in Ruby

$ irb

>> require 'json'

=> true

>> json_text = { :name => 'Mike', :age => 70 }.to_json

=> "{\"name\":\"Mike\",\"age\":70}"

>> JSON.parse(json_text)

=> {"name"=>"Mike", “age"=>70}

� of �201 219

HTTParty helps with communicating with RESTful services

Here we grab a record from Facebook.

Retrieve a JSON Resource

$ irb

>> require 'awesome_print'

=> true

>> require 'json'

=> true

>> require 'httparty'

=> true

> > a p J S O N . p a r s e H T T P a r t y . g e t (' h t t p s : / /
graph.facebook.com/Stoptheclock').response.body

{

 "about" => "Abolish the 28 Day Rule for
V i c t o r i a n S h e l t e r s \ n \ n h t t p : / /
stoptheclock.com.au\n\ninfo@stoptheclock.com.au",

 "category" => "Community",

 "founded" => "2010",

 "is_published" => true,

 "mission" => "To bring an end to the law requiring
Victorian shelters to kill healthy adoptable cats and dogs
after four weeks.",

� of �202 219

 "talking_about_count" => 3,

 "username" => "Stoptheclock",

 "website" => "http://stoptheclock.com.au",

 "were_here_count" => 0,

 "id" => "167163086642552",

 "name" => "Stop The Clock",

 "link" => "http://www.facebook.com/
Stoptheclock",

 "likes" => 5517

}

=> nil

HTTParty gets Classy

Creating a simple class allows you to DRY things up a bit

$ irb

>> require 'httparty'

=> true

>> class Facebook

>> include HTTParty

� of �203 219

>> base_uri 'https://graph.facebook.com/'

>> # default_params :output => 'json'

?> format :json

>>

?> def self.object(id)

>> get "/#{id}"

>> end

>> end

=> nil

>>

>> require 'awesome_print'

>> ap Facebook.object('Stoptheclock').parsed_response

{

 "about" => "Abolish the 28 Day Rule for
V i c t o r i a n S h e l t e r s \ n \ n h t t p : / /
stoptheclock.com.au\n\ninfo@stoptheclock.com.au",

 "category" => "Community",

 "founded" => "2010",

 "is_published" => true,

� of �204 219

 "mission" => "To bring an end to the law requiring
Victorian shelters to kill healthy adoptable cats and dogs
after four weeks.",

 "talking_about_count" => 3,

 "username" => "Stoptheclock",

 "website" => "http://stoptheclock.com.au",

 "were_here_count" => 0,

 "id" => "167163086642552",

 "name" => "Stop The Clock",

 "link" => "http://www.facebook.com/
Stoptheclock",

 "likes" => 5517

}

=> nil

Rails support for JSON

ActiveSupport::JSON knows how to convert ActiveRecord
objects (and more) to JSON. Simone Carletti explains how
this differs from the standard lib.

Encode

json = ActiveSupport::JSON.encode(object) # extra
methods like :include

� of �205 219

http://www.simonecarletti.com/blog/2010/04/inside-ruby-on-rails-serializing-ruby-objects-with-json/
http://www.simonecarletti.com/blog/2010/04/inside-ruby-on-rails-serializing-ruby-objects-with-json/

json = Offering.first.to_json(:include => :outlet, :methods =>
[:days_waiting])

Decode

ActiveSupport::JSON.decode(json)

Rails3 niceness

Adding JSON to your Rails3 app doesn’t require a lot of
extra code. You can specify method calls and associated
objects to include as well as restrict the attributes returned.
Simple eh?

class PostController < ApplicationController

 respond_to :json, :html, :jpg, :xml

 def index

 respond_with(@posts = Post.all),

 :methods => [:average_rating],

 :include => :comments

 end

 def show

 respond_with(@post = Post.find(params[:id])), :only =>
[:name, :body]

� of �206 219

 end

end

HTTP Requests in Ruby

If you’d like to get information from a website, or if you’d
like to submit forms, upload files…

…you’ll need to send an HTTP request & then process the
response.

In this article you’ll learn how to:

Make a simple HTTP request using net/http

Send SSL requests

Submit data using a POST request

Send custom headers

Choose the best HTTP client for your situation

Let’s do this!

How to Send an HTTP Request

Ruby comes with a built-in http client, it’s called net/http &
you can use it to send any kind of request you need.

Here’s a net/http example:

require 'net/http'

� of �207 219

Net::HTTP.get('example.com', '/index.html')

This will return a string with the HTML content of the page.

But often you want more than the HTML content.

Like the HTTP response status.

Without the response status you don’t know if your request
was successful, or if it failed.

This is how you get that:

response = Net::HTTP.get_response('example.com', '/')

response.code

200

Now if you want the response content you call
the body method:

response.body

How to Use the HTTParty Gem

There are many gems that can make things easier for you.

One of these gems is httparty.

Here’s how to use it:

require 'httparty'

� of �208 219

response = HTTParty.get('http://example.com')

response.code

200

response.body

...

The benefits of using an HTTP gem:

It’s easier to use.

There is no separate get_response method, get already
gives you a response object.

As you’ll see in the next section they make SSL request
transparent

Sending SSL Requests

If you try to send an SSL request with net/http:

Net::HTTP.get_response("example.com", "/", 443)

You get:

Errno::ECONNRESET: Connection reset by peer

You’d have to do this instead:

net = Net::HTTP.new("example.com", 443)

� of �209 219

net.use_ssl = true

net.get_response("/")

Save yourself some work & use a gem

How to Submit Data With a Post Request

A GET request is used to request information.

Like downloading an image, css, javascript…

But if you want to submit information use a POST request.

Here’s an example:

HTTParty.post("http://example.com/login", body: { user:
"test@example.com", password: "chunky_bacon" })

To upload a file you’ll need a multipart request, which is not
supported by HTTParty.

You can use the rest client gem:

require 'rest-client'

RestClient.post '/profile', file: File.new('photo.jpg', 'rb')

Or the Faraday gem:

require 'faraday'

� of �210 219

conn =

Faraday.new do |f|

 f.request :multipart

 f.request :url_encoded

 f.adapter :net_http

end

file_io = Faraday::UploadIO.new('photo.jpg', 'image/jpeg')

conn.post('http://example.com/profile', file: file_io)

How to Send Custom HTTP Headers

You can send custom headers with an HTTP request.

This helps you send extra data with your request,
including cookies, user-agent, and caching information.

Here’s how:

Faraday.new('http://example.com', headers: { 'User-Agent'
=> 'test' }).get

I’m creating a Faraday object (using new), then
calling get on it.

This doesn’t work if you call get directly.

� of �211 219

https://en.wikipedia.org/wiki/HTTP_cookie
https://en.wikipedia.org/wiki/User_agent

Choosing The Best Ruby HTTP Client

There are many HTTP clients available in Ruby.

Authentication using digest

Green Field
We start with a fresh Rails application:
$ rails new shop
$ cd shop
Later we are going to redirect to root. So we start
with creating an empty root page:
$ rails g controller home index
Please add the following code to config/routes.rb :
Rails.application.routes.draw do
 root ‘home#index’
end
And some content for that page in the file app/
views/home/index.html.erb :
<p id=”notice”><%= notice %></p>
<h1>Example</h1>
<p>Lorem ipsum …</p>

Password Digest
Obviously we do not store the clear text password in
the database but a digest of it. For that we need to
activate the bcrypt gem in the file Gemfile:

� of �212 219

Use ActiveModel has_secure_password
gem ‘bcrypt’, ‘~> 3.1.7’
And run bundle afterwords:
$ bundle

User Model
Now we create a User scaffold. Feel free to add any
additional fields you might need (e.g. first_name,
last_name). I just use email:uniq to store the email
address (and create an unique database index)
and password:digest to create a password_digest field
in the new users table.
$ rails g scaffold User email:uniq password:digest
$ rails db:migrate

The digest part puts some Rails magic into action.
The Rails generator creates a password_digest field
in the table and asks for an
additional password_confirmation in the form and
the controllers user_params without you having to do
anything extra. has_secure_password in the model
takes care of encrypting the password and provides
theauthenticate method to authenticate with that
password.

� of �213 219

Before a first test we need to add some validations
in app/models/user.rb to make sure that we have an
email address and that it is unique:
class User < ApplicationRecord
 has_secure_password
 validates :email, presence: true, uniqueness: true
end

Now we can fire up Rails and create a new user in
the browser:
$ rails s

Screencast: Create a new user at http://localhost:3000/
users/new

Let’s just check how Rails stores the password
digest in the table:

� of �214 219

http://localhost:3000/users/new
http://localhost:3000/users/new
http://localhost:3000/users/new

$ rails c
Running via Spring preloader in process 3204
Loading development environment (Rails 5.2.1)
>> User.first
User Load (0.2ms) SELECT “users”.* FROM “users”
ORDER BY “users”.”id” ASC LIMIT ? [[“LIMIT”, 1]]
=> #<User id: 1, email: “sw@wintermeyer-
consulting.de”, password_digest:
“$2a$10$t6Q2R.N5fevFjhL/
W1X.EulEJQ8TDWIzCvHpbDrAtQo…”, created_at: “2018–
09–18 12:13:26”, updated_at: “2018–09–18
12:13:26”>
So only the digest is saved. Everything is secure.
But we still need to create some sort of login to
actually use it.

Sessions
When a user logs in he/she creates a new session.
When the same user logs out that session gets
destroyed. Therefor we create a sessions controller
with three actions:
$ rails g controller sessions new create destroy
We put the following code into app/controllers/
sessions_controller.rb:
class SessionsController < ApplicationController
 def new
 end
 def create
 user = User.find_by_email(params[:email])
 if user && user.authenticate(params[:password])
 session[:user_id] = user.id
 redirect_to root_url, notice: "Logged in!"

� of �215 219

 else
 flash.now[:alert] = "Email or password is invalid"
 render "new"
 end
 end

 def destroy
 session[:user_id] = nil
 redirect_to root_url, notice: "Logged out!"
 end
end

As you can see we use session[:user_id] to store the
logged in user id. In case you haven’t worked with
sessions yet have a look at https://
guides.rubyonrails.org/security.html#sessions
We need to put this code for the form in app/views/
sessions/new.html.erb :
<p id=”alert”><%= alert %></p>
<h1>Login</h1>
<%= form_tag sessions_path do |form| %>
 <div class=”field”>
 <%= label_tag :email %>
 <%= text_field_tag :email %>
 </div>
 <div class=”field”>
 <%= label_tag :password %>
 <%= password_field_tag :password %>
 </div>
 <div class=”actions”>
 <%= submit_tag “Login” %>
 </div>
<% end %>

� of �216 219

https://guides.rubyonrails.org/security.html#sessions
https://guides.rubyonrails.org/security.html#sessions

Routes
The routes are a bit cumbersome. But we can fix
this with this code in config/routes.rb :
Rails.application.routes.draw do
 root ‘home#index’
 resources :users
 resources :sessions, only: [:new, :create, :destroy]
 get ‘signup’, to: ‘users#new’, as: ‘signup’
 get ‘login’, to: ‘sessions#new’, as: ‘login’
 get ‘logout’, to: ‘sessions#destroy’, as: ‘logout’
end

Now a user can use http://localhost:3000/login to
login and http://localhost:3000/logout to logout.
Much easier for everybody.

current_user
In most Rails applications the logged in user is available with

a current_user helper. This come handy too if you want to use an

authorization gem like cancancan. The most popular way to add this

functionality is this code in app/controllers/application_controller.rb:

class ApplicationController < ActionController::Base
 helper_method :current_user
 def current_user
 if session[:user_id]
 @current_user ||= User.find(session[:user_id])
 else
 @current_user = nil
 end
 end
end

� of �217 219

http://localhost:3000/sessions/new
http://localhost:3000/logout
https://github.com/CanCanCommunity/cancancan

To put it into use we change the content of app/
views/home/index.html.erb:
<% if current_user %>
 Logged in as <%= current_user.email %>.
 <%= link_to “Log Out”, logout_path %>
<% else %>
 <%= link_to “Sign Up”, signup_path %> or
 <%= link_to “Log In”, login_path %>
<% end %>
<p id=”notice”><%= notice %></p>
<h1>Example</h1>
<p>Lorem ipsum …</p>

The End
And here is the screencast where I log in with my
account and log out afterwards:

� of �218 219

Screencast: Log in and Log out

� of �219 219

