
Advance Ruby on Rails Topics

1. Rspec, Automation Testing
2. Cucumber
3. Capybara
4. Mocks and Stubs
5. Action Mailer

RAILS: RSPEC AND CAPYBARA BY EXAMPLE

How to setup and use two popular gems used in tests in Rails: RSpec
and Capybara.

Post’s example based on TDD approach.

Post based on example application to get context in testing and its purpose is
a managing library with books. In this I focus only on the adding new books
feature.

Setup Project

Ruby version: ruby 2.2.2p95
Rails version: rails 4.2.6

Let’s start by creating project:
rails new my_app -d mysql

If you prefer to use NO-SQL database, use following command:
rails new my_app

If you choose MySQL database, you need to setup database access:
username and password. It’s better to keep this data secret, so I use config/
s e c r e t s . y m l . A d d t o t h i s f i l e 2 k e y - v a l u e p a i r s a n d
replace root and password_to_database:
development:
 secret_key_base: 6904e69fc...118
 database_username: root
 database_password: password_to_database

1 rails new my_app -d mysql / Postgres

1 rails new my_app

Page � of �1 101

Open config/database.yml and add just created secret keys:
default: &default
 adapter: mysql2
 encoding: utf8
 pool: 5
 username: <%= Rails.application.secrets[:database_username] %>
 password: <%= Rails.application.secrets[:database_password] %>
 socket: /var/run/mysqld/mysqld.sock

Before you push any changes to repository, tell GIT to ignore our secrets.
Open .gitignore file:
nano .gitignore

Add files to ignore:
config/secrets.yml
config/database.yml

And finally create database:

rake db:create

Let’s run application:

rails s

If you run application on external server (like VPS), probably you will need to
run like below by adding IP and port:

rails s -b 12.34.567.891 -p 3000

1
2
3
4

development:
 secret_key_base: 6904e69fc...118
 database_username: root
 database_password: password_to_database

1
2
3
4
5
6
7

default: &default
 adapter: mysql2
 encoding: utf8
 pool: 5
 username: <%= Rails.application.secrets[:database_username] %>
 password: <%= Rails.application.secrets[:database_password] %>
 socket: /var/run/mysqld/mysqld.sock

1 nano .gitignore

1
2

config/secrets.yml
config/database.yml

1 rake db:create

1 rails s

1 rails s -b 12.34.567.891 -p 3000

Page � of �2 101

Open application in web browser. If everything is OK, you should see
following screen:

Test Gems

• RSpec – testing framework for Rails
• Capybara – to testing web pages

Installing Gems
Add to Gemfile:
group :development, :test do
 gem 'rspec-rails', '~> 3.0'
end

group :test do
 gem 'capybara'
end

Page � of �3 101

Run:
bundle install

rails generate rspec:install

Second command should create spec/spec_helper.rb and spec/
rails_helper.rb files. Add following to spec/rails_helper.rb:
require 'capybara/rails'

Testing: RSpec and Capybara
The example application is a CMS-like application to managing library with
books. First feature will be the adding new books to library.
I start from defining a scenario for this feature’s test:
1. Go to root path (there will be button to add new book)
2. Click on "Add new book" button
3. Fill out the form
4. Submit form
5. See 'show' page of created book

Next, I’ll implement it.
I create folder spec/books and file spec/books/creating_book_spec.rb:
require 'rails_helper.rb'

feature 'Creating book' do
 scenario 'can create a book' do
 # 1. go to root where will be button to Add New Book:
 visit '/'
 # 2. click on Add New Book button
 click_link 'Add New Book'
 # 3. Fill form - add title

1
2
3
4
5
6
7

group :development, :test do
 gem 'rspec-rails', '~> 3.0'
end

group :test do
 gem 'capybara'
end

1
2
3

bundle install

rails generate rspec:install

1 require 'capybara/rails'

1
2
3
4
5

1. Go to root path (there will be button to add new book)
2. Click on "Add new book" button
3. Fill out the form
4. Submit form
5. See 'show' page of created book

Page � of �4 101

 fill_in 'book_title', with: 'Ulisses'
 # 4. Click on submit form button
 click_button 'Save Book'
 # 5. Then we should be redirected to show page with book details (book
title)
 expect(page).to have_content('Ulisses')
 end
end

require 'rails_helper.rb'

feature 'Creating book' do
 scenario 'can create a book' do
 # 1. go to root where will be button to Add New Book:
 visit '/'
 # 2. click on Add New Book button
 click_link 'Add New Book'
 # 3. Fill form - add title
 fill_in 'book_title', with: 'Ulisses'
 # 4. Click on submit form button
 click_button 'Save Book'
 # 5. Then we should be redirected to show page with book details (book
title)
 expect(page).to have_content('Ulisses')
 end
end

To run all test:
rspec

To run specific test:
rspec spec/books/creating_book_spec.rb

The test for creating book should failed, because nothing were implemented
yet:

1 rspec

1 rspec spec/books/creating_book_spec.rb

Page � of �5 101

Currently, the test fails due to root_path ” / “.
I’ll try to pass this test. To do that, I have to create new model Book, controller
with (at least) index, new, create actions and views for specific actions. I have
too set the route path to Book Index action in routes.rb.
$ rails g model Book title:string
$ rake db:migrate
$ rails g controller books

I add required actions to app/controllers/book_controller.rb:
class BooksController < ApplicationController
 def index
 end

 def new
 end

 def create
 end

end

1
2
3

$ rails g model Book title:string
$ rake db:migrate
$ rails g controller books

Page � of �6 101

I set routes in config/routes.rb:
Rails.application.routes.draw do

 # root_path:
 root 'books#index'

 # It generates CRUD paths for Book:
 resources :books

end

Create views for Book index and new actions: app/views/books/
index.html.erb and app/views/books/new.html.erb. Before I implement
actions and views, I’ll run a test again:
rspec spec/books/creating_book_spec.rb

1
2
3
4
5
6
7
8
9
1
0
11

class BooksController < ApplicationController
 def index
 end

 def new
 end

 def create
 end

end

1
2
3
4
5
6
7
8
9

Rails.application.routes.draw do

 # root_path:
 root 'books#index'

 # It generates CRUD paths for Book:
 resources :books

end

1 rspec spec/books/creating_book_spec.rb

Page � of �7 101

This time the test fails because it couldn’t find a button “Add New Book”. It’s
(2) step in our test scenario. I’ll add the “Add New Book” button on index page
(app/views/books/index.html.erb):
<%= link_to 'Add New Book', new_book_path %>

In web browser you should see link:

Let’s run test again:
rspec spec/books/creating_book_spec.rb

And as I expected, test passed 2nd step (link was found) and failed on 3rd
step (it didn’t find a form):

To pass 3rd step I need add form to app/views/books/new.html.erb:
<%= form_for Book.new do |f| %>

 <%= f.label :title %>

1 <%= link_to 'Add New Book', new_book_path %>

1 rspec spec/books/creating_book_spec.rb

Page � of �8 101

 <%= f.text_field :title %>

 <%= f.submit 'Save Book' %>

<% end %>

Let’s open in web browser Home page and click on Add New Book link:

It should redirect you on new.html.erb page where you should see simple
following form:

If you click on “Save Book” button, you should get error about “No route
matches [POST] /books/new“, because the controller part is not ready. The
same error you should get from test. So let’s add controller stuff to create new
book and show it. To app/controller/books_controller.html.erb add following:
class BooksController < ApplicationController
 def index
 end

 def new
 end

 def create
 @book = Book.new(book_params)

 if @book.save!

1
2
3
4
5
6
7
8

<%= form_for Book.new do |f| %>

<%= f.label :title %>

<%= f.text_field :title %>

<%= f.submit 'Save Book' %>

<% end %>

Page � of �9 101

 redirect_to @book
 else
 render 'new'
 end
 end

 def show
 @book = Book.find(params[:id])
 end

 private
 def book_params
 params.require(:book).permit(:title)
 end

end

class BooksController < ApplicationController
 def index
 end

 def new
 end

 def create
 @book = Book.new(book_params)

 if @book.save!
 redirect_to @book
 else
 render 'new'
 end
 end

 def show
 @book = Book.find(params[:id])
 end

Page � of �10 101

 private
 def book_params
 params.require(:book).permit(:title)
 end

end

And add show.html.erb to app/views/books/ directory:
<p>Title: <%= @book.title %></p>

We should be able to add any book via web browser. Let’s check the test
result:
rspec spec/books/creating_book_spec.rb

The result:

Introduction to Writing Acceptance Tests with Cucumber

Improve your testing skills with acceptance testing. Cucumber makes you a

better developer by helping you see your code through the eyes of the user.

Introduction

1 <p>Title: <%= @book.title %></p>

1 rspec spec/books/creating_book_spec.rb

Page � of �11 101

We're going to look at Cucumber as a tool for writing your customer

acceptance tests. More specifically, we're going to look at how a Cucumber

acceptance test might look in practice. After reading this article, you should

have a clearer picture of why Cucumber is a good candidate for writing your

acceptance tests.

It's also worth mentioning that, in a BDD fashion, you should start writing your

acceptance test first, and it should drive your next steps, pushing you into

deeper layers of testing and writing implementation code. So, as an example,

your workflow should look similar to this:

1. Write your acceptance test

2. See it fail so you know what the next step is

3. Write a unit test for that next step

4. See it fail so you know what the implementation needs to be

5. Repeat steps 3 and 4 until you have everything you need, and all your

tests (including the acceptance one) are passing

6. Rinse and repeat for every new feature.

If you would like to see the final code listed in the examples, there's a GitHub

repository available.

Hello Cucumber Example

To get things started, we're going to look at a rather simple example, so you

can familiarise yourself with the syntax and basic file structure:

Page � of �12 101

https://cucumber.io/
https://semaphoreci.com/community/tutorials/behavior-driven-development
https://github.com/chalmagean/cucumber_example
https://github.com/chalmagean/cucumber_example

feature/hello_cucumber.feature
Feature: Hello Cucumber
As a product manager
I want our users to be greeted when they visit our site
So that they have a better experience

Scenario: User sees the welcome message
When I go to the homepage
Then I should see the welcome message

The first part starting with the keyword Feature is called a feature description.

It needs to have a feature title, which is the string "Hello Cucumber" in our

case. It can also have an optional description (the text underneath the title),

which is meant to help the reader understand the feature and its context.

When writing your Cucumber features, it's good practice to follow the user

story style, which looks like the following:

Feature: <feature title>
As a <persona|role>
I want to <action>
So that <outcome>
Steps and Step Definitions

The Cucumber feature we've written is readable, but how do we get it to do

something? Does that plain text have anything to do with our code? Well,

Page � of �13 101

those scenario instructions are called steps, and we're going to use them to

drive our tests.

The way it works is, for each step in our scenario, we're going to provide a

block of Ruby code to be executed. We're going to place our step

definitions (the blocks of code) in a file called hello_steps.rb.

When(/^I go to the homepage$/) do
 visit root_path
end

Then(/^I should see the welcome message$/) do
 expect(page).to have_content("Hello Cucumber")
end
As you can see, we're simply associating each line in our Cucumber feature

file, called a scenario step, with its corresponding step definition, matching

the step definition string with the use of a regular expression.

So, in the first step definition, we're saying that, in order to go to the

homepage, the user will visit the root_path (which is standard Rails

terminology, and it's something we define in your config/routes.rb file). For the

expectation step, we're going to check that the homepage contains the "Hello

Cucumber" text.

config/routes.rb
Rails.application.routes.draw do
 root 'welcome#index'
end

app/controllers/welcome_controller.rb
Page � of �14 101

class WelcomeController < ApplicationController
 def index
 end
end
app/views/welcome/index.html.erb
<h1>Hello Cucumber</h1>
$ cucumber -s
Using the default profile…
Feature: Hello Cucumber

 Scenario: User sees the welcome message
 When I go to the homepage
 Then I should see the welcome message

1 scenario (1 passed)
2 steps (2 passed)
0m0.168s
The -s flag tells Cucumber to hide the location of each step definition, which

is the default behavior.

Can I Test My JavaScript?

Cucumber lets you test your application from the user's perspective, and in

some cases that means having to deal with JavaScript-driven user interface

elements. Cucumber does this by starting a browser in the background, and

doing what a real user would do by clicking on links, filling out forms, etc. You

should not use Cucumber to unit test your JavaScript-drivencript code, but it's

perfect for testing user interaction.

The default driver Cucumber uses through Capybara is called :rack_test. It

has some limitations, mainly the fact that it does not support JavaScript, so

Page � of �15 101

we'll need to add another driver that supports JavaScript, and use it for those

features that require it.

We will use the :rack_test driver for all of our tests that don't depend on

JavaScript because it's faster, as it doesn't have to open a web browser

program. For tests that require JavaScript, we will use the Selenium driver.

Selenium is based on launching and controlling an instance of your local

Firefox browser, so you need to make sure you have Firefox installed.

Add the following line to your Gemfile's :test group:

gem 'selenium-webdriver'
Let's See a Cucumber and JavaScript Example

For this example, we're going to have a link that, when clicked, replaces the

contents of the page with the string "Link Clicked" via Javascript. In order to

differentiate between our regular (rack_test driven tests) and the ones that

require JavaScript, we will use a Cucumber tag. It looks like this: @javascript.

features/link_click.feature
Feature: Link Click

@javascript
Scenario: User clicks the link
Given I am on the homepage
When I click the provided link
Then I should see the link click confirmation

Page � of �16 101

https://github.com/cucumber/cucumber/wiki/Tags

Now that we have our feature, we need to add some step definitions. Note

that in this case we have a new Given step, which sets the context in which

the action (When) is triggered.

features/step_definitions/link_click_steps.rb
Given(/^I am on the homepage$/) do
 visit root_path
end

When(/^I click the provided link$/) do
 click_on "js-click-me"
end

Then(/^I should see the link click confirmation$/) do
 expect(page).to have_content("Link Clicked")
end
For the Given step, we're going to do the same thing we did in our first

example — we're going to visit the homepage. Next, we're going to click the

link on the homepage, and finally we're going to check that the page contains

the string "Link Clicked".

Let's also add the link to our homepage, so that we have something to click

on:

<h1>Hello Cucumber</h1>

<%= link_to "Click Me", "", :id => "js-click-me" %>
The last missing piece of the puzzle is the JavaScript code that is going to

listen for the clickevent on the link, and when it receives it, it will go ahead

and replace the page contents with the "Link Clicked" string:

Page � of �17 101

$(document).click("#js-click-me", function(event) {
 event.preventDefault();
 $("body").html("Link Clicked");
});
Without the @javascript tag in the Cucumber feature file, this JavaScript code

would never get executed, since it requires a JavaScript-aware browser.

Why Not Use RSpec and Capybara Instead?

Just in case you were wondering, since Capybara seems to be a popular

choice among Ruby on Rails developers, we're going to take a short detour

and list a few things that make Cucumber a better choice for writing

acceptance tests compared to using RSpec and Capybara directly together.

Choosing Cucumber over Capybara has a few benefits, some of which are

less apparent at first sight. Note, though, that Cucumber uses Capybara

behind the scenes, it's just that it provides a nice language abstraction layer

on top of it.

• The most obvious reason for choosing Cucumber is that it seems to

appeal to non-technical people, and it's said that, in an ideal world, the

customer would be able to write the acceptance tests himself.

• The second, less obvious, but most important reason is the fact that it

forces you (the developer) into business mode. It helps you switch

gears for a second and look at your code architecture from a different

point of view, one which helps you plan and implement each feature

systematically.

Page � of �18 101

https://github.com/jnicklas/capybara
https://semaphoreci.com/community/tutorials/applying-bdd-to-ruby-on-rails-web-applications
https://semaphoreci.com/community/tutorials/applying-bdd-to-ruby-on-rails-web-applications

• Documentation is also another great benefit you can get as a side effect

of writing your features in a language that is easier to read.

Continuous Integration for Cucumber on Semaphore

By setting up continuous integration the tests you have written can run

automatically on every git push you do.

Semaphore is a hosted CI service which comes with all recent versions of

Ruby preinstalled, so it takes minimum effort to get started.

First, sign up for a free Semaphore account if you don’t have one already. All

there's left to do is to add your repository.

Semaphore will analyze your project and recommend commands for

everything to run smoothly. Also, the cucumber job command we need will be

added:

bundle exec rake cucumber
From now on, Semaphore will run your tests for you on every git push.

Page � of �19 101

https://semaphoreci.com/community/tutorials/continuous-integration
https://semaphoreci.com/
http://semaphoreci.com/docs/languages/ruby/ruby-support-on-semaphore.html
http://semaphoreci.com/docs/languages/ruby/ruby-support-on-semaphore.html
https://semaphoreci.com/users/sign_up
http://semaphoreci.com/docs/adding-github-bitbucket-project-to-semaphore.html

Capybara, aside from being the largest rodent in the world, is also a fantastic
tool to aid you in interacting with browser functionality in your code, either for
testing or just to interact with or scrape data from a website.

Capybara isn’t what actually interacts with the website — rather, it’s a layer
that sits between you and the actual web driver. This could be Selenium,
PhantomJS, or any of the other drivers that Capybara supports. It provides a
common interface and a large number of helper methods for extracting
information, inputting data, testing, or clicking around.

Just like any abstraction, sometimes you need to go deeper, and Capybara
won’t stop you from doing that. You can easily bypass it to get at the
underlying drivers if you need more fine-tuned functionality.

“Capybara is a fantastic tool to aid you in interacting with browser functionality

in your code.”

Testing with Capybara

Capybara integrates really nicely with all of the common test frameworks
used with Rails. It has extensions for RSpec, Cucumber, Test::Unit, and
Minitest. It’s used mostly with integration (or feature) tests, which test not so
much a single piece of functionality but rather an entire user flow.

Page � of �20 101

https://github.com/jnicklas/capybara
https://en.wikipedia.org/wiki/Capybara
https://twitter.com/share?text=%22Capybara+is+a+fantastic+tool+to+aid+you+in+interacting+with+browser+functionality+in+your+code.%22&url=https://blog.codeship.com/capybara-selenium-testing/
https://twitter.com/share?text=%22Capybara+is+a+fantastic+tool+to+aid+you+in+interacting+with+browser+functionality+in+your+code.%22&url=https://blog.codeship.com/capybara-selenium-testing/

“Capybara integrates really nicely with all of the common test frameworks

used with Rails.”

You can use Capybara to test whether certain content exists on the page or
to input data into a form and then submit it. This is where you try to ensure
that the same key flows (such as registration, checkout, etc.) that your user
will take work not just in isolation but flow nicely from one to another.

With RSpec, we need to first ensure that in our rspec_helper.rb file we include
the line require 'capybara/rails'. Next, let’s create a new folder
called features where we’ll put all of the tests which include Capybara.

Imagine that we have an application for managing coffee farms. In this
application, creating a coffee farm is one of the most important functions you
can perform, and therefore should be tested thoroughly.

spec/features/creating_farm_spec.rb
require 'rails_helper'

RSpec.describe 'creating a farm', type: :feature do
 it 'successfully creates farm' do
 visit '/farms'
 click_link 'New Farm'

 within '#new_farm' do
 fill_in 'Acres', with: 10
 fill_in 'Name', with: 'Castillo Andino'
 fill_in 'Owner', with: 'Albita'
 fill_in 'Address', with: 'Andes, Colombia'
 fill_in 'Varieties', with: 'Colombia, Geisha, Bourbon'
 fill_in 'Rating', with: 10
 end
 click_button 'Create Farm'

 expect(page).to have_content 'Farm was successfully created.'
 expect(page).to have_content 'Castillo Andino'
 end
end
There are a few things to note with Capybara. The first is that it provides a ton
of great helpers such as click_link, fill_in, click_button, etc. Many of these

Page � of �21 101

https://twitter.com/share?text=%22Capybara+integrates+really+nicely+with+all+of+the+common+test+frameworks+used+with+Rails.%22&url=https://blog.codeship.com/capybara-selenium-testing/
https://twitter.com/share?text=%22Capybara+integrates+really+nicely+with+all+of+the+common+test+frameworks+used+with+Rails.%22&url=https://blog.codeship.com/capybara-selenium-testing/

helpers provide a variety of ways to actually find the HTML element that
you’re looking for.

In the example above, we see CSS selectors used with the within method.
We also see selecting and filling in an input field by using the text in its label.

There’s also a third way, not shown here, which allows you to select elements
using xpath. While xpath is the most powerful for selecting, it’s the least clear
way. For the purposes of your own sanity, you should probably aim to include
an ID or class property in your HTML to ensure that selecting is
straightforward.

Scraping with Capybara

Capybara isn’t only for testing. It can also be used in web scraping. I’ll admit
that it isn’t the fastest method, and if all you are doing is visiting a page to
extract information without too much interaction with the DOM in terms of
data input or clicking, it may not be the best approach. For that, you may want
to investigate something like mechanize or even nokogiri if all you are doing
is reading HTML to extract information from it.

“Capybara isn’t only for testing.” via @leighchalliday

CLICK TO TWEET

But for the situation where you maybe have to first log in as a user, click on a
tab, and then extract some information, this is the sweet spot for Capybara.

I’ve recently had to rent a car, and I ended up using Hotwire for this. Let’s use
Capybara to log in and retrieve my confirmation number. In this case, it would
be more difficult to use a different scraping tool because it is an Angular SPA,
so Capybara works perfectly.

I’ll create a Rake task which will log in to my account and then loop through
all of the confirmation codes and print them to the screen. I’ve used
an xpathselector here to show that even if there isn’t an easy CSS selector to

Page � of �22 101

https://github.com/sparklemotion/mechanize
https://github.com/sparklemotion/nokogiri
https://twitter.com/share?text=%22Capybara+isn%27t+only+for+testing.%22+via+%40leighchalliday&url=https://blog.codeship.com/capybara-selenium-testing/
https://twitter.com/share?text=%22Capybara+isn%27t+only+for+testing.%22+via+%40leighchalliday&url=https://blog.codeship.com/capybara-selenium-testing/
https://www.hotwire.com/

use, you can still find the element that you’re looking for. This also
demonstrates how to use Capybara outside of your testing environment.

namespace :automate do
 desc 'Grab hotwire confirmation code'
 task hotwire: :environment do |t, args|
 session = Capybara::Session.new(:selenium)
 session.visit 'https://www.hotwire.com/checkout/#!/account/login'

 session.find('#sign-in-email').set(ENV.fetch('EMAIL'))
 s e s s i o n . f i n d (: x p a t h , ' / /
input[@type="password"]').set(ENV.fetch('PASSWORD'))
 session.find('.hw-btn-primary').click

 session.all('.confirmation-code').each do |code|
 puts code.text
 end
 end
end
On the screen, we get Car confirmation 31233321CA3 outputted (not my real
confirmation number, of course).

Any time we use the find method or all, we are given an instance of
the Capybara::Node::Element object. This object allows us to click it, extract
the text, ask for its DOM path, and interact with it in a variety of other ways.

One other interesting method is the native method, which returns us the
u n d e r l y i n g d r i v e r ’ s o b j e c t . I n t h i s c a s e , i t ’ s a n i n s t a n c e
of Selenium::WebDriver::Element because we are using Selenium. As useful
of an abstraction as Capybara is, there will always be times when you need to
gain access to the underlying layer.

As you can see, this could be an easy way to automate a task that has no
other alternative than to use the “Screen Scraping” approach. Keep in mind
that this is quite brittle, as a slight change to one of their classes or IDs
means that the whole thing will stop working.

Interacting with JavaScript

Page � of �23 101

One of the things that Capybara gives you is the ability to interact with your
webpages using JavaScript. You aren’t limited to only using Ruby to find and
interact with the DOM nodes on your page.

Capybara gives you two methods to invoke some JavaScript:

• execute_script (does not return values)
• evaluate_script (does return values)

These work great, but as usual you can bypass Capybara if needed and use
the underlying driver to execute JavaScript. This allows us to pass arguments
to our JavaScript code:

example of returning values from javascript
classes = session.driver.browser.execute_script(
 "return document.getElementById(arguments[0]).className;",
 'sign-in-password'
)
puts classes
=> ng-pristine ng-untouched ng-invalid ng-invalid-required
The execute_script method allows you to return values from JS functions
which are called. If you imagine that your code is being invoked like this:

var result =
 (function(arguments) {
 return document.getElementById(arguments[0]).className;
 })(['sign-in-password']);
You’ll see that the arguments you pass in the second and higher parameter
positions get placed into an array and passed to an anonymous function. The
anonymous function contains, as its body, the code which was in the first
parameter. This is why you must explicitly include a return statement if you
want to use the value it returns.

Selenium takes care of how to convert what would end up being a JavaScript
return value into something you can use in Ruby.

Configuring Capybara

As I mentioned in the introduction, Capybara works by allowing you to work
with a number of different web drivers. These could be lightweight headless

Page � of �24 101

drivers such as PhantomJS (via poltergeist) or RackTest, but it could also
be Seleniumeither running locally or connecting to a Selenium grid server
remotely.

Here is an example of how you might configure Capybara to work with a
remote Selenium server.

Capybara.register_driver(:firefox) do |app|
 Capybara::Selenium::Driver.new(
 app,
 browser: :remote,
 url: ENV.fetch('SELENIUM_URL'),
 desired_capabilities: Selenium::WebDriver::Remote::Capabilities.firefox
)
end
Which would now allow you to set the driver to :firefox with the
code Capybara.default_driver = :firefox.

Debugging Capybara

With a headless driver, it is sometimes hard to see what the page looks like at
the time you are interacting with it. Just because it is headless doesn’t mean
you need to be blind. You are able to request a screenshot of how the page
looks and also extract the source code of the page.

File.open('/tmp/source.html', 'w') do |file|
 io = StringIO.new(session.driver.browser.page_source)
 file.write(io.read)
end

File.open('/tmp/screenshot.png', 'w', encoding: 'ascii-8bit') do |file|
 io = StringIO.new(session.driver.browser.screenshot_as(:png))
 file.write(io.read)
end
Another way to help with debugging is by placing a binding.pry call, which will
pause the script and allow you to step into the code and perform commands
that interact with the web page. You can even open up the Firefox/Chrome
developer console and play with the JavaScript of the page in its current
state.

Conclusion

Page � of �25 101

http://phantomjs.org/
https://github.com/teampoltergeist/poltergeist
http://www.seleniumhq.org/

The truth is that I don’t generally use Capybara when testing my Rails
applications. It slows the tests down and potentially binds your tests quite
closely to the DOM.

However, it does have its place, especially when you need to guarantee that
certain important user flows work exactly as expected. It also finds the odd
use in scraping when tools such as mechanize or nokogiri aren’t enough.

Capybara is a great tool to have in your Ruby toolbelt. Give it a try the next
time you want to make sure that a certain key user flow works or you need to
automate a task via scraping. You can also read about Selenium on
this Codeship Selenium documentation article.

Mocking in Ruby with Minitest

Mocking is used to improve the performance of your tests. This tutorial will

show you how to use mocks and stubs in Ruby with Minitest.

Introduction

Page � of �26 101

http://documentation.codeship.com/continuous-integration/browser-testing/

In this tutorial, we will cover how to use mocks and stubs in Minitest to

improve the performance of your tests and avoid testing dependencies.

Prerequisites

To follow this tutorial, you'll need Ruby installed along with Rails. This tutorial

was tested using Ruby version 2.3.1, Rails version 5.0, and Minitest version

5.9.1.

Currently, there is no known issue with using earlier or later versions of any of

those, however there will be some differences. Models inherit

from ActiveRecord::Base instead of ApplicationRecord, which is the new

default in Rails 5.0. We'll also demonstrate that assert_mock can be used to

verify mocks as of Minitest 5.9, but that will not work with earlier versions

where assert mock.verify was the method used to verify mocks.

To get started you can use gem install rails, and you should be good to go,

provided you have Ruby installed.

gem install rails

What is Minitest?

Minitest is a complete testing suite for Ruby, supporting test-driven

development (TDD), behavior-driven development (BDD), mocking, and

benchmarking. It's small, fast, and it aims to make tests clean and readable.

Page � of �27 101

https://semaphoreci.com/community/tutorials/behavior-driven-development

If you're new to Minitest, then you can take a look at our tutorial on getting

started with Minitest.

Minitest is the default testing suite which is included by default with new Rails

applications, so no further setting up is required to get it to work. Minitest and

RSpec are the two most common testing suites used in Ruby. If you'd like to

learn more about RSpec, you can read our tutorial on getting started with

RSpec as well as this tutorial on mocking with RSpec: doubles and

expectations.

Test Doubles and Terminology

The terminology surrounding mocks and stubs can be a bit confusing. The

main terms you might come across are stubs, mocks, doubles,

 dummies, fakes, and spies.

The umbrella term for all of these is double. A test double is any object used

in testing to replace a real object used in production. We'll cover dummies,

stubs, and mocks, because they are the ones used commonly in Minitest.

Dummies

The simplest of these terms is a dummy. It refers to a test double that is

passed in a method call, but never actually used. Much of the time, the

purpose of these is to avoid Argument Error in Ruby.

Page � of �28 101

https://semaphoreci.com/community/tutorials/getting-started-with-minitest
https://semaphoreci.com/community/tutorials/getting-started-with-minitest
https://semaphoreci.com/community/tutorials/getting-started-with-rspec
https://semaphoreci.com/community/tutorials/getting-started-with-rspec
https://semaphoreci.com/community/tutorials/mocking-with-rspec-doubles-and-expectations
https://semaphoreci.com/community/tutorials/mocking-with-rspec-doubles-and-expectations

Minitest does not have a feature for dummies, because it isn't really needed.

You can pass in Object.new (or anything else) as a placeholder.

Stubs

Stubs are like dummies, except in that they provide canned answers to the

methods which are called on them. They return hard coded information in

order to reduce test dependencies and avoid time consuming operations.

Mocks

Mocks are "smart" stubs, their purpose is to verify that some method was

called. They are created with some expectations (expected method calls) and

can then be verified to ensure those methods were called.

Mocks and Stubs

The easiest way to understand mocks and stubs is by example. Let's set up a

Rails project and add some code that we can use mocks and stubs to test.

For this example, we'll create user and subscription models with a

subscription service which can be used to create or extend subscriptions.

Assuming you have Ruby and Ruby on Rails set up, we can start by creating

our Rails application.

rails new mocking-in-ruby-with-minitest
Now, let's add our user model and tests by using the Rails generator:

Page � of �29 101

rails g model user name:string
Running via Spring preloader in process 14377
 invoke active_record
 create db/migrate/20161017213701_create_users.rb
 create app/models/user.rb
 invoke test_unit
 create test/models/user_test.rb
 create test/fixtures/users.yml
Next, let's create the model for subscriptions which has a reference to the

user model:

rails g model subscription expires_at:date user:references
Running via Spring preloader in process 15028
 invoke active_record
 create db/migrate/20161017214307_create_subscriptions.rb
 create app/models/subscription.rb
 invoke test_unit
 create test/models/subscription_test.rb
 create test/fixtures/subscriptions.yml
Then, migrate the database:

rake db:migrate
Finally, let's create a service which creates and manages subscriptions. Start

by adding a reference from User to Subscription.

class User < ApplicationRecord
 has_one :subscription
end
Now, let's add our subscription service tests. To keep things simple, we don't

test that the expires_at attribute is always correct.

test/services/subscription_service_test.rb

Page � of �30 101

require 'test_helper'

class SubscriptionServiceTest < ActiveSupport::TestCase
 test '#create_or_extend new subscription' do
 user = users :no_sub
 subscription_service = SubscriptionService.new user
 assert_difference 'Subscription.count' do
 assert subscription_service.apply
 end
 end

 test '#create_or_extend existing subscription' do
 user = users :one
 subscription_service = SubscriptionService.new user
 assert_no_difference 'Subscription.count' do
 assert subscription_service.apply
 end
 end
end
Let's also add a user fixture for the user which has no subscriptions. Add the

following two lines to the user fixture file:

no_sub:
 name: No Subscription
Now, let's make our test pass by adding SubscriptionService.

app/services/subscription_service.rb

class SubscriptionService
 SUBSCRIPTION_LENGTH = 1.month

 def initialize(user)
 @user = user
 end

 def apply
Page � of �31 101

 if Subscription.exists?(user_id: @user.id)
 extend_subscription
 else
 create_subscription
 end
 end

 private

 def create_subscription
 subscription = Subscription.new(
 user: @user,
 expires_at: SUBSCRIPTION_LENGTH.from_now
)

 subscription.save
 end

 def extend_subscription
 subscription = Subscription.find_by user_id: @user.id

 subsc r ip t i on .exp i res_a t = subsc r ip t i on .exp i res_a t +
SUBSCRIPTION_LENGTH
 subscription.save
 end
end
Now, run the tests to make sure everything is passing.

rake

Running via Spring preloader in process 19998
Run options: --seed 23654

Running:

..

Page � of �32 101

Finished in 0.083658s, 23.9069 runs/s, 23.9069 assertions/s.

2 runs, 2 assertions, 0 failures, 0 errors, 0 skips
Note that app/services and test/services do not exist by default so you will

have to create them.

Great! We're now ready to add some functionality, which we can benefit from

by using mocks and stubs in the tests.

Stubbing

Stubbing is useful when we want to replace a dependency method which

takes a long time to run with another method that has the return value we

expect.

However, it's usually not a good idea to do this if the method belongs to the

class you are testing, because then you're replacing the method you should

be testing with a stub. It's fine to do this for methods of other classes that

have their own tests already, but are called from the class we are testing.

Let's add a method to User called #apply_subscription. This method will

callSubscriptionService to apply the subscription. In this case, we have

already tested the subscription service, so we don't need to do that again.

Instead, we can just make sure it is called with a combination of stubbing and

mocking.

Page � of �33 101

In order to create mocks, we also need to load Minitest in test_helper.rb. Add

this requirecall to the ones in test_helper.rb:

test/test_helper.rb

require 'minitest/autorun'
Now, let's add tests where we use a mock to mock SubscriptionService and

s t u b # a p p l y t o j u s t r e t u r n t r u e w i t h o u t e v e r c a l l i n g t h e

real SubscriptionService.

test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase
 test '#apply_subscription' do
 mock = Minitest::Mock.new
 def mock.apply; true; end

 SubscriptionService.stub :new, mock do
 user = users(:one)
 assert user.apply_subscription
 end
 end
end
Since we have already tested SubscriptionService, we don't need to do it

again. That way, we don't have to worry about the setup and the overhead of

accessing the database, which makes our test faster and simpler.

Now, let's add the code to make the test pass.

app/models/user.rb
Page � of �34 101

class User < ApplicationRecord
 has_one :subscription

 def apply_subscription
 SubscriptionService.new(self).apply
 end
end
Although we have demonstrated how stubbing works here, we are not really

testing anything, to do that we need to make full use of mocks.

Mocking

One of the core functionalities of mocks is to be able to verify that we called a

method that we stubbed. Sometimes this isn't something we want to, however

a lot of the time, we want to make sure we called some method, but we don't

care to test if it works or not, because it's already been tested.

Let's change our test to verify that SubscriptionService#apply was called,

even though it calls our stub instead of the real thing.

test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase
 test '#apply_subscription' do
 mock = Minitest::Mock.new
 mock.expect :apply, true

 SubscriptionService.stub :new, mock do
 user = users(:one)

Page � of �35 101

 assert user.apply_subscription
 end

 assert_mock mock # New in Minitest 5.9.0
 assert mock.verify # Old way of verifying mocks
 end
end
Note how we tell our mock what method call we are expecting along with the

return value. It's possible to pass in a third argument, which is an array of

arguments that the method is expected to receive. This needs to be included

if the method has any arguments passed to it in the method call.

Stubbing Constants

Sometimes we want to be able to change the return value of calling a

constant in a class from a test. If you're coming from RSpec, you might be

used to having this feature in your toolbelt. However, Minitest doesn't ship

with such a feature.

There's a gem which provides this functionality for Minitest called minitest-

stub-const.

It can be quite useful when you want to change the value of a constant in

your class, e.g when you need to test some numerical limits. One common

use is results per page in pagination. If you have 25 results per page set in a

constant, it can be easier to stub that constant to return 2, reducing the setup

required to test your pagination.

Overusing Mocks or Stubs
Page � of �36 101

https://github.com/adammck/minitest-stub-const
https://github.com/adammck/minitest-stub-const

It's possible to overuse mocks or stubs, and it's important to be careful and

a v o i d d o i n g t h a t . F o r e x a m p l e , i f w e s t u b b e d t h e t e s t

for SubscriptionService in order to just return some data instead of opening a

real file and performing the search on it, we wouldn't actually know

if SubscriptionService works.

This is a rather obvious case. However, there are more subtle scenarios

where mocks and stubs should be avoided.

RSpec Mocks

rspec-mocks is a test-double framework for rspec with support for method
stubs, fakes, and message expectations on generated test-doubles and real
objects alike.

Install

gem install rspec # for rspec-core, rspec-expectations, rspec-mocks
gem install rspec-mocks # for rspec-mocks only
Want to run against the master branch? You'll need to include the dependent
RSpec repos as well. Add the following to your Gemfile:

%w[rspec-core rspec-expectations rspec-mocks rspec-support].each do |lib|
 gem lib, :git => "https://github.com/rspec/#{lib}.git", :branch => 'master'
end

Contributing

Page � of �37 101

Once you've set up the environment, you'll need to cd into the working
directory of whichever repo you want to work in. From there you can run the
specs and cucumber features, and make patches.

NOTE: You do not need to use rspec-dev to work on a specific RSpec repo.
You can treat each RSpec repo as an independent project.

For information about contributing to RSpec, please refer to the following
markdown files:

• Build details
• Code of Conduct
• Detailed contributing guide
• Development setup guide

Test Doubles

A test double is an object that stands in for another object in your system
during a code example. Use the double method, passing in an optional
identifier, to create one:

book = double(“book")

Most of the time you will want some confidence that your doubles resemble
an existing object in your system. Verifying doubles are provided for this
purpose. If the existing object is available, they will prevent you from adding
stubs and expectations for methods that do not exist or that have an invalid
number of parameters.

book = instance_double("Book", :pages => 250)

Verifying doubles have some clever tricks to enable you to both test in
isolation without your dependencies loaded while still being able to validate
them against real objects. More detail is available in their documentation.

Verifying doubles can also accept custom identifiers, just like double(), e.g.:

books = []
books << instance_double("Book", :rspec_book, :pages => 250)
books << instance_double("Book", "(Untitled)", :pages => 5000)

Page � of �38 101

https://github.com/rspec/rspec-mocks/blob/master/BUILD_DETAIL.md
https://github.com/rspec/rspec-mocks/blob/master/CODE_OF_CONDUCT.md
https://github.com/rspec/rspec-mocks/blob/master/CONTRIBUTING.md
https://github.com/rspec/rspec-mocks/blob/master/DEVELOPMENT.md
https://github.com/rspec/rspec-mocks/blob/master/features/verifying_doubles

puts books.inspect # with names, it's clearer which were actually added

Method Stubs

A method stub is an implementation that returns a pre-determined value.
Method stubs can be declared on test doubles or real objects using the same
syntax. rspec-mocks supports 3 forms for declaring method stubs:

allow(book).to receive(:title) { "The RSpec Book" }
allow(book).to receive(:title).and_return("The RSpec Book")
allow(book).to receive_messages(
 :title => "The RSpec Book",
 :subtitle => "Behaviour-Driven Development with RSpec, Cucumber, and
Friends")
You can also use this shortcut, which creates a test double and declares a
method stub in one statement:

book = double("book", :title => "The RSpec Book")
The first argument is a name, which is used for documentation and appears
in failure messages. If you don't care about the name, you can leave it out,
making the combined instantiation/stub declaration very terse:

double(:foo => 'bar')
This is particularly nice when providing a list of test doubles to a method that
iterates through them:

order.calculate_total_price(double(:price => 1.99), double(:price => 2.99))

Stubbing a chain of methods

You can use receive_message_chain in place of receive to stub a chain of
messages:

allow(double).to receive_message_chain("foo.bar") { :baz }
allow(double).to receive_message_chain(:foo, :bar => :baz)
allow(double).to receive_message_chain(:foo, :bar) { :baz }

Given any of the above forms:
double.foo.bar # => :baz

Page � of �39 101

Chains can be arbitrarily long, which makes it quite painless to violate the
Law of Demeter in violent ways, so you should consider any use
of receive_message_chain a code smell. Even though not all code smells
indicate real problems (think fluent interfaces), receive_message_chain still
results in brittle examples. For example, if you write allow(foo).to
receive_message_chain(:bar, :baz => 37) in a spec and then the
implementation calls foo.baz.bar, the stub will not work.

Consecutive return values

When a stub might be invoked more than once, you can provide additional
arguments to and_return. The invocations cycle through the list. The last
value is returned for any subsequent invocations:

allow(die).to receive(:roll).and_return(1, 2, 3)
die.roll # => 1
die.roll # => 2
die.roll # => 3
die.roll # => 3
die.roll # => 3
To return an array in a single invocation, declare an array:

allow(team).to receive(:players).and_return([double(:name => "David")])

Message Expectations

A message expectation is an expectation that the test double will receive a
message some time before the example ends. If the message is received, the
expectation is satisfied. If not, the example fails.

validator = double("validator")
expect(validator).to receive(:validate) { "02134" }
zipcode = Zipcode.new("02134", validator)
zipcode.valid?

Test Spies

Verifies the given object received the expected message during the course of
the test. For a message to be verified, the given object must be setup to spy

Page � of �40 101

on it, either by having it explicitly stubbed or by being a null object double
(e.g. double(...).as_null_object). Convenience methods are provided to easily
create null object doubles for this purpose:

spy("invitation") # => same as `double("invitation").as_null_object`
i n s t a n c e _ s p y (" I n v i t a t i o n ") # = > s a m e a s
`instance_double("Invitation").as_null_object`
c l a s s _ s p y (" I n v i t a t i o n ") # = > s a m e a s
`class_double("Invitation").as_null_object`
o b j e c t _ s p y (" I n v i t a t i o n ") # = > s a m e a s
`object_double("Invitation").as_null_object`
Verifying messages received in this way implements the Test Spy pattern.

invitation = spy('invitation')

user.accept_invitation(invitation)

expect(invitation).to have_received(:accept)

You can also use other common message expectations. For example:
expect(invitation).to have_received(:accept).with(mailer)
expect(invitation).to have_received(:accept).twice
expect(invitation).to_not have_received(:accept).with(mailer)

One can specify a return value on the spy the same way one would a
double.
invitation = spy('invitation', :accept => true)
expect(invitation).to have_received(:accept).with(mailer)
expect(invitation.accept).to eq(true)
Note that have_received(...).with(...) is unable to work properly when passed
arguments are mutated after the spy records the received message. For
example, this does not work properly:

greeter = spy("greeter")

message = "Hello"
greeter.greet_with(message)
message << ", World"

Page � of �41 101

expect(greeter).to have_received(:greet_with).with("Hello")

Nomenclature

Mock Objects and Test Stubs

The names Mock Object and Test Stub suggest specialized Test Doubles. i.e.
a Test Stub is a Test Double that only supports method stubs, and a Mock
Object is a Test Double that supports message expectations and method
stubs.

There is a lot of overlapping nomenclature here, and there are many
variations of these patterns (fakes, spies, etc). Keep in mind that most of the
time we're talking about method-level concepts that are variations of method
stubs and message expectations, and we're applying to them to one generic
kind of object: a Test Double.

Test-Specific Extension

a.k.a. Partial Double, a Test-Specific Extension is an extension of a real
object in a system that is instrumented with test-double like behaviour in the
context of a test. This technique is very common in Ruby because we often
see class objects acting as global namespaces for methods. For example, in
Rails:

person = double("person")
allow(Person).to receive(:find) { person }
In this case we're instrumenting Person to return the person object we've
defined whenever it receives the find message. We can also set a message
expectation so that the example fails if find is not called:

person = double("person")
expect(Person).to receive(:find) { person }
RSpec replaces the method we're stubbing or mocking with its own test-
double-like method. At the end of the example, RSpec verifies any message
expectations, and then restores the original methods.

Expecting Arguments
Page � of �42 101

expect(double).to receive(:msg).with(*args)
expect(double).to_not receive(:msg).with(*args)
You can set multiple expectations for the same message if you need to:

expect(double).to receive(:msg).with("A", 1, 3)
expect(double).to receive(:msg).with("B", 2, 4)

Argument Matchers

Arguments that are passed to with are compared with actual arguments
received using ===. In cases in which you want to specify things about the
arguments rather than the arguments themselves, you can use any of the
matchers that ship with rspec-expectations. They don't all make syntactic
sense (they were primarily designed for use with RSpec::Expectations), but
you are free to create your own custom RSpec::Matchers.

rspec-mocks also adds some keyword Symbols that you can use to specify
certain kinds of arguments:

expect(double).to receive(:msg).with(no_args)
expect(double).to receive(:msg).with(any_args)
expect(double).to receive(:msg).with(1, any_args) # any args acts like an arg
splat and can go anywhere
expect(double).to receive(:msg).with(1, kind_of(Numeric), "b") #2nd argument
can be any kind of Numeric
expect(double).to receive(:msg).with(1, boolean(), "b") #2nd argument can be
true or false
expect(double).to receive(:msg).with(1, /abc/, "b") #2nd argument can be any
String matching the submitted Regexp
expect(double).to receive(:msg).with(1, anything(), "b") #2nd argument can
be anything at all
expect(double).to receive(:msg).with(1, duck_type(:abs, :div), "b") #2nd
argument can be object that responds to #abs and #div
expect(double).to receive(:msg).with(hash_including(:a => 5)) # first arg is a
hash with a: 5 as one of the key-values
expect(double).to receive(:msg).with(array_including(5)) # first arg is an array
with 5 as one of the key-values
expect(double).to receive(:msg).with(hash_excluding(:a => 5)) # first arg is a
hash without a: 5 as one of the key-values

Page � of �43 101

Receive Counts

expect(double).to receive(:msg).once
expect(double).to receive(:msg).twice
expect(double).to receive(:msg).exactly(n).times
expect(double).to receive(:msg).at_least(:once)
expect(double).to receive(:msg).at_least(:twice)
expect(double).to receive(:msg).at_least(n).times
expect(double).to receive(:msg).at_most(:once)
expect(double).to receive(:msg).at_most(:twice)
expect(double).to receive(:msg).at_most(n).times

Ordering

expect(double).to receive(:msg).ordered
expect(double).to receive(:other_msg).ordered
 # This will fail if the messages are received out of order
This can include the same message with different arguments:

expect(double).to receive(:msg).with("A", 1, 3).ordered
expect(double).to receive(:msg).with("B", 2, 4).ordered

Setting Responses

Whether you are setting a message expectation or a method stub, you can
tell the object precisely how to respond. The most generic way is to pass a
block to receive:

expect(double).to receive(:msg) { value }
When the double receives the msg message, it evaluates the block and
returns the result.

expect(double).to receive(:msg).and_return(value)
expect(double).to receive(:msg).exactly(3).times.and_return(value1, value2,
value3)
 # returns value1 the first time, value2 the second, etc
expect(double).to receive(:msg).and_raise(error)
 # error can be an instantiated object or a class

Page � of �44 101

 # if it is a class, it must be instantiable with no args
expect(double).to receive(:msg).and_throw(:msg)
expect(double).to receive(:msg).and_yield(values, to, yield)
expect(double).to receive(:msg).and_yield(values, to, yield).and_yield(some,
other, values, this, time)
 # for methods that yield to a block multiple times
Any of these responses can be applied to a stub as well

allow(double).to receive(:msg).and_return(value)
allow(double).to receive(:msg).and_return(value1, value2, value3)
allow(double).to receive(:msg).and_raise(error)
allow(double).to receive(:msg).and_throw(:msg)
allow(double).to receive(:msg).and_yield(values, to, yield)
allow(double).to receive(:msg).and_yield(values, to, yield).and_yield(some,
other, values, this, time)

Arbitrary Handling

Once in a while you'll find that the available expectations don't solve the
particular problem you are trying to solve. Imagine that you expect the
message to come with an Array argument that has a specific length, but you
don't care what is in it. You could do this:

expect(double).to receive(:msg) do |arg|
 expect(arg.size).to eq 7
end
If the method being stubbed itself takes a block, and you need to yield to it in
some special way, you can use this:

expect(double).to receive(:msg) do |&arg|
 begin
 arg.call
 ensure
 # cleanup
 end
end

Delegating to the Original Implementation

Page � of �45 101

When working with a partial mock object, you may occasionally want to set a
message expectation without interfering with how the object responds to the
message. You can use and_call_original to achieve this:

expect(Person).to receive(:find).and_call_original
Person.find # => executes the original find method and returns the result

Combining Expectation Details

Combining the message name with specific arguments, receive counts and
responses you can get quite a bit of detail in your expectations:

e x p e c t (d o u b l e) . t o r e c e i v e (: < <) . w i t h (" i l l e g a l
value").once.and_raise(ArgumentError)
While this is a good thing when you really need it, you probably don't really
need it! Take care to specify only the things that matter to the behavior of your
code.

Stubbing and Hiding Constants

See the mutating constants README for info on this feature.

Use before(:example), not before(:context)

Stubs in before(:context) are not supported. The reason is that all stubs and
mocks get cleared out after each example, so any stub that is set
in before(:context) would work in the first example that happens to run in that
group, but not for any others.

Instead of before(:context), use before(:example).

Settings mocks or stubs on any instance of a class

r s p e c - m o c k s p r o v i d e s t w o
methods, allow_any_instance_of and expect_any_instance_of, that will allow
you to stub or mock any instance of a class. They are used in place
of allow or expect:

Page � of �46 101

https://github.com/rspec/rspec-mocks/blob/master/features/mutating_constants/README.md

allow_any_instance_of(Widget).to receive(:name).and_return("Wibble")
expect_any_instance_of(Widget).to receive(:name).and_return("Wobble")
These methods add the appropriate stub or expectation to all instances
of Widget.

This feature is sometimes useful when working with legacy code, though in
general we discourage its use for a number of reasons:

• The rspec-mocks API is designed for individual object instances, but
this feature operates on entire classes of objects. As a result there are
some semant ica l ly confus ing edge cases. For example
in expect_any_instance_of(Widget).to receive(:name).twice it isn't clear
whether each specific instance is expected to receive name twice, or if
two receives total are expected. (It's the former.)

• Using this feature is often a design smell. It may be that your test is
trying to do too much or that the object under test is too complex.

• It is the most complicated feature of rspec-mocks, and has historically
received the most bug reports. (None of the core team actively use it,
which doesn't help.)

Action Mailer

Action Mailer is the Rails component that enables applications to send and
receive emails. In this chapter, we will see how to send an email using Rails.
Let’s start creating an emails project using the following command.

tp> rails new mailtest

This will create the required framework to proceed. Now, we will start with
configuring the ActionMailer.

Action Mailer - Configuration

Following are the steps you have to follow to complete your configuration
before proceeding with the actual work −

Go to the config folder of your emails project and open environment.rb file
and add the following line at the bottom of this file.

Page � of �47 101

config.action_mailer.delivery_method = :smtp

It tells ActionMailer that you want to use the SMTP server. You can also set it
to be :sendmail if you are using a Unix-based operating system such as Mac
OS X or Linux.
Add the following lines of code at the bottom of your environment.rb as well.
config.action_mailer.smtp_settings = {
 address: 'smtp.gmail.com',
 port: 587,
 domain: 'example.com',
 user_name: '<username>',
 password: '<password>',
 authentication: 'plain',
 enable_starttls_auto: true
}

Replace each hash value with proper settings for your Simple Mail Transfer
Protocol

SMTP server. You can take this information from your Internet Service
Provider if you already don't know. You don't need to change port number 25
and authentication type if you are using a standard SMTP server.

You may also change the default email message format. If you prefer to send
email in HTML instead of plain text format, add the following line to config/
environment.rb as well −

ActionMailer::Base.default_content_type = “text/html"

ActionMailer::Base.default_content_type could be set to "text/plain", "text/
html", and "text/enriched". The default value is "text/plain".
The next step will be to create a mailer

Generate a Mailer
Use the following command to generate a mailer as follows −
tp> cd emails
emails> rails generate mailer Usermailer
This will create a file user_mailer.rb in the app\mailer directory. Check the
content of this file as follows −

class Emailer < ActionMailer::Base

end

Page � of �48 101

Let's create one method as follows −

class UserMailer < ApplicationMailer
 default from: 'notifications@example.com'

 def welcome_email(user)
 @user = user
 @url = 'http://www.gmail.com'
 mail(to: @user.email, subject: 'Welcome to My Awesome Site')
 end

end
• default Hash − This is a hash of default values for any email you send

from this mailer. In this case we are setting the :from header to a value
for all messages in this class. This can be overridden on a per-email
basis

• mail − The actual email message, we are passing the :to and :subject
headers in.

Create a file called welcome_email.html.erb in app/views/user_mailer/. This
will be the template used for the email, formatted in HTML −
<html>

 <head>
 <meta content = 'text/html; charset = UTF-8' http-equiv = 'Content-Type' /
>
 </head>

 <body>
 <h1>Welcome to example.com, <%= @user.name %></h1>

 <p>
 You have successfully signed up to example.com,your username is:
 <%= @user.login %>.

 </p>

 <p>
 To login to the site, just follow this link:
 <%= @url %>.
 </p>

Page � of �49 101

 <p>Thanks for joining and have a great day!</p>

 </body>
</html>
Next we will create a text part for this application as follow −
Welcome to example.com, <%= @user.name %>
===

You have successfully signed up to example.com,
your username is: <%= @user.login %>.

To login to the site, just follow this link: <%= @url %>.

Thanks for joining and have a great day!
Calling the Mailer
First, let's create a simple User scaffold
$ bin/rails generate scaffold user name email login
$ bin/rake db:migrate
Action Mailer is nicely integrated with Active Job so you can send emails
outside of the request-response cycle, so the user doesn't have to wait on it −
class UsersController < ApplicationController
 # POST /users
 # POST /users.json
 def create
 @user = User.new(params[:user])

 respond_to do |format|
 if @user.save
 # Tell the UserMailer to send a welcome email after save
 UserMailer.welcome_email(@user).deliver_later

 format.html { redirect_to(@user, notice: 'User was successfully
created.') }
 format.json { render json: @user, status: :created, location: @user }
 else
 format.html { render action: 'new' }
 format.json { render json: @user.errors,
status: :unprocessable_entity }
 end

 end

 end
end

Page � of �50 101

Now, test your application by using http://127.0.0.1:3000/users/new. It
displays the following screen and by using this screen, you will be able to
send your message to anybody.

This will send your message and will display the text message "Message sent
successfully" and output as follow −

sent mail to surendra.panpaliya@gmail.com (2023.Sms)
[ActiveJob] [ActionMailler::DeliveryJob] [2cfde3c-260e-4a33-1a6ada13a9b]
Date: Thu, 09 Jul 2015 11:44:05 +0530
From: notification@example.com
To: surendra@gmail.com
Message-Id: <559e112d63c57_f1031e7f23467@kiranPro.mail>
Subject: Welcome to My Awesome Site
Mime-Version: 1.0
Content-Type: multipart/alternative;
boundary="--mimepart_559e112d601c8_f1031e7f20233f5";
charset=UTF-8
Content-Transfer-Encoding:7bit

Page � of �51 101

1 Introduction

Action Mailer allows you to send emails from your application using mailer
classes and views. Mailers work very similarly to controllers. They inherit
from ActionMailer::Base and live in app/mailers, and they have associated
views that appear in app/views.

2 Sending Emails

This section will provide a step-by-step guide to creating a mailer and its
views.

2.1 Walkthrough to Generating a Mailer

2.1.1 Create the Mailer

As you can see, you can generate mailers just like you use other generators
with Rails. Mailers are conceptually similar to controllers, and so we get a
mailer, a directory for views, and a test.

$ bin/rails generate mailer UserMailer
create app/mailers/user_mailer.rb
create app/mailers/application_mailer.rb
invoke erb
create app/views/user_mailer
create app/views/layouts/mailer.text.erb
create app/views/layouts/mailer.html.erb
invoke test_unit
create test/mailers/user_mailer_test.rb
create test/mailers/previews/user_mailer_preview.rb

app/mailers/application_mailer.rb
class ApplicationMailer < ActionMailer::Base
 default from: "from@example.com"
 layout 'mailer'
end

app/mailers/user_mailer.rb
class UserMailer < ApplicationMailer
end

Page � of �52 101

https://guides.rubyonrails.org/action_mailer_basics.html#introduction
https://guides.rubyonrails.org/action_mailer_basics.html#sending-emails
https://guides.rubyonrails.org/action_mailer_basics.html#walkthrough-to-generating-a-mailer
https://guides.rubyonrails.org/action_mailer_basics.html#create-the-mailer

If you didn't want to use a generator, you could create your own file inside
of app/mailers, just make sure that it inherits from ActionMailer::Base:

2.1.2 Edit the Mailer

Mailers are very similar to Rails controllers. They also have methods called
"actions" and use views to structure the content. Where a controller
generates content like HTML to send back to the client, a Mailer creates a
message to be delivered via email.

app/mailers/user_mailer.rb contains an empty mailer:

Let's add a method called welcome_email, that will send an email to the
user's registered email address:

Here is a quick explanation of the items presented in the preceding method.
For a full list of all available options, please have a look further down at the
Complete List of Action Mailer user-settable attributes section.

• default Hash - This is a hash of default values for any email you send
from this mailer. In this case we are setting the :from header to a value
for all messages in this class. This can be overridden on a per-email
basis.

class MyMailer < ActionMailer::Base
end

class UserMailer < ApplicationMailer
end

class UserMailer < ApplicationMailer
 default from: 'notifications@example.com'

 def welcome_email
 @user = params[:user]
 @url = 'http://example.com/login'
 mail(to: @user.email, subject: 'Welcome to My
Awesome Site')
 end
end

Page � of �53 101

https://guides.rubyonrails.org/action_mailer_basics.html#edit-the-mailer

• m a i l - T h e a c t u a l e m a i l m e s s a g e , w e a r e p a s s i n g
the :to and :subject headers in.

Just like controllers, any instance variables we define in the method become
available for use in the views.

2.1.3 Create a Mailer View

Create a file called welcome_email.html.erb in app/views/user_mailer/. This
will be the template used for the email, formatted in HTML:

Let's also make a text part for this email. Not all clients prefer HTML emails,
and so sending both is best practice. To do this, create a file
called welcome_email.text.erb in app/views/user_mailer/:

<!DOCTYPE html>
<html>
 <head>
 <meta content='text/html; charset=UTF-8' http-
equiv='Content-Type' />
 </head>
 <body>
 <h1>Welcome to example.com, <%= @user.name %></h1>
 <p>
 You have successfully signed up to example.com,
 your username is: <%= @user.login %>.

 </p>
 <p>
 To login to the site, just follow this link: <%=
@url %>.
 </p>
 <p>Thanks for joining and have a great day!</p>
 </body>
</html>

Page � of �54 101

https://guides.rubyonrails.org/action_mailer_basics.html#create-a-mailer-view

When you call the mail method now, Action Mailer will detect the two
templates (text and HTML) and automatically generate a multipart/
alternative email.

2.1.4 Calling the Mailer

Mailers are really just another way to render a view. Instead of rendering a
view and sending it over the HTTP protocol, they are just sending it out
through the email protocols instead. Due to this, it makes sense to just have
your controller tell the Mailer to send an email when a user is successfully
created.

Setting this up is painfully simple.

First, let's create a simple User scaffold:

Now that we have a user model to play with, we will just edit the app/
controllers/users_controller.rb make it instruct the UserMailer to deliver an
email to the newly created user by editing the create action and inserting a
call to UserMailer.with(user: @user).welcome_email right after the user is
successfully saved.

Action Mailer is nicely integrated with Active Job so you can send emails
outside of the request-response cycle, so the user doesn't have to wait on it:

Welcome to example.com, <%= @user.name %>
===

You have successfully signed up to example.com,
your username is: <%= @user.login %>.

To login to the site, just follow this link: <%= @url
%>.

Thanks for joining and have a great day!

$ bin/rails generate scaffold user name email login
$ bin/rails db:migrate

Page � of �55 101

https://guides.rubyonrails.org/action_mailer_basics.html#calling-the-mailer

Active Job's default behavior is to execute jobs via the :async adapter. So,
you can use deliver_later now to send emails asynchronously. Active Job's
default adapter runs jobs with an in-process thread pool. It's well-suited for
the development/test environments, since it doesn't require any external
infrastructure, but it's a poor fit for production since it drops pending jobs on
restart. If you need a persistent backend, you will need to use an Active Job
adapter that has a persistent backend (Sidekiq, Resque, etc).

If you want to send emails right away (from a cronjob for example) just
call deliver_now:

class UsersController < ApplicationController
 # POST /users
 # POST /users.json
 def create
 @user = User.new(params[:user])

 respond_to do |format|
 if @user.save
 # Tell the UserMailer to send a welcome email
after save
 UserMailer.with(user:
@user).welcome_email.deliver_later

 format.html { redirect_to(@user, notice: 'User
was successfully created.') }
 format.json { render json: @user,
status: :created, location: @user }
 else
 format.html { render action: 'new' }
 format.json { render json: @user.errors, status:
:unprocessable_entity }
 end
 end
 end
end

Page � of �56 101

Any key value pair passed to with just becomes the params for the mailer
a c t i o n . S o w i t h (u s e r : @ u s e r , a c c o u n t :
@user.account) makes params[:user] and params[:account]available in the
mailer action. Just like controllers have params.

The method welcome_email returns an ActionMailer::MessageDelivery object
which can then just be told deliver_now or deliver_later to send itself out.
The ActionMailer::MessageDelivery object is just a wrapper around
a Mail::Message. If you want to inspect, alter or do anything else with
the Mail::Message object you can access it with the message method on
the ActionMailer::MessageDelivery object.

2.2 Auto encoding header values

Action Mailer handles the auto encoding of multibyte characters inside of
headers and bodies.

For more complex examples such as defining alternate character sets or self-
encoding text first, please refer to the Mail library.

2.3 Complete List of Action Mailer Methods

There are just three methods that you need to send pretty much any email
message:

• headers - Specifies any header on the email you want. You can pass a
hash of header field names and value pairs, or you can
call headers[:field_name] =

• 'value'.
• attachments - Allows you to add attachments to your email. For

example, attachments['file-name.jpg'] = File.read('file-name.jpg').

class SendWeeklySummary
 def run
 User.find_each do |user|
 UserMailer.with(user:
user).weekly_summary.deliver_now
 end
 end
end

Page � of �57 101

https://guides.rubyonrails.org/action_mailer_basics.html#auto-encoding-header-values
https://github.com/mikel/mail
https://guides.rubyonrails.org/action_mailer_basics.html#complete-list-of-action-mailer-methods

• mail - Sends the actual email itself. You can pass in headers as a hash
to the mail method as a parameter, mail will then create an email, either
plain text, or multipart, depending on what email templates you have
defined.

2.3.1 Adding Attachments

Action Mailer makes it very easy to add attachments.

• Pass the file name and content and Action Mailer and the Mail gem will
automatically guess the mime_type, set the encoding and create the
attachment.

When the mail method will be triggered, it will send a multipart email with an
attachment, properly nested with the top level being multipart/mixed and the
first part being a multipart/alternative containing the plain text and HTML
email messages.

Mail will automatically Base64 encode an attachment. If you want something
different, encode your content and pass in the encoded content and encoding
in a Hash to the attachments method.

• Pass the file name and specify headers and content and Action Mailer
and Mail will use the settings you pass in.

• attachments['filename.jpg'] = File.read('/path/to/
filename.jpg')  
 

• •

• encoded_content = SpecialEncode(File.read('/path/to/
filename.jpg'))  
attachments['filename.jpg'] = {  
 mime_type: 'application/gzip',  
 encoding: 'SpecialEncoding',  
 content: encoded_content  
}  
 

• •

Page � of �58 101

https://guides.rubyonrails.org/action_mailer_basics.html#adding-attachments
https://github.com/mikel/mail

If you specify an encoding, Mail will assume that your content is already
encoded and not try to Base64 encode it.

2.3.2 Making Inline Attachments

Action Mailer 3.0 makes inline attachments, which involved a lot of hacking in
pre 3.0 versions, much simpler and trivial as they should be.

• First, to tell Mail to turn an attachment into an inline attachment, you just
call #inline on the attachments method within your Mailer:

• Then in your view, you can just reference attachments as a hash and
specify which attachment you want to show, calling url on it and then
passing the result into the image_tag method:

• As this is a standard call to image_tag you can pass in an options hash
after the attachment URL as you could for any other image:

2.3.3 Sending Email To Multiple Recipients

• def welcome  
 attachments.inline['image.jpg'] = File.read('/path/
to/image.jpg')  
end  
 

• •

• <p>Hello there, this is our image</p>  
  
<%= image_tag attachments['image.jpg'].url %>  
 

• •

• <p>Hello there, this is our image</p>  
  
<%= image_tag attachments['image.jpg'].url, alt: 'My
Photo', class: 'photos' %>  
 

• •

Page � of �59 101

https://guides.rubyonrails.org/action_mailer_basics.html#making-inline-attachments
https://guides.rubyonrails.org/action_mailer_basics.html#sending-email-to-multiple-recipients

It is possible to send email to one or more recipients in one email (e.g.,
informing all admins of a new signup) by setting the list of emails to
the :to key. The list of emails can be an array of email addresses or a single
string with the addresses separated by commas.

The same format can be used to set carbon copy (Cc:) and blind carbon copy
(Bcc:) recipients, by using the :cc and :bcc keys respectively.

2.3.4 Sending Email With Name

Sometimes you wish to show the name of the person instead of just their
email address when they receive the email. The trick to doing that is to format
the email address in the format "Full Name" <email>.

2.4 Mailer Views

Mailer views are located in the app/views/name_of_mailer_class directory.
The specific mailer view is known to the class because its name is the same
as the mailer method. In our example from above, our mailer view for
the welcome_email method wi l l be in app/views/user_mai ler/
w e l c o m e _ e m a i l . h t m l . e r b f o r t h e H T M L v e r s i o n
and welcome_email.text.erb for the plain text version.

To change the default mailer view for your action you do something like:

class AdminMailer < ApplicationMailer
 default to: -> { Admin.pluck(:email) },
 from: 'notification@example.com'

 def new_registration(user)
 @user = user
 mail(subject: "New User Signup: #{@user.email}")
 end
end

def welcome_email
 @user = params[:user]
 email_with_name = %("#{@user.name}" <#{@user.email}>)
 mail(to: email_with_name, subject: 'Welcome to My
Awesome Site')
end

Page � of �60 101

https://guides.rubyonrails.org/action_mailer_basics.html#sending-email-with-name
https://guides.rubyonrails.org/action_mailer_basics.html#mailer-views

In this case it will look for templates at app/views/notifications with
name another. You can also specify an array of paths for template_path, and
they will be searched in order.

If you want more flexibility you can also pass a block and render specific
templates or even render inline or text without using a template file:

This will render the template 'another_template.html.erb' for the HTML part
and use the rendered text for the text part. The render command is the same
one used inside of Action Controller, so you can use all the same options,
such as :text, :inline etc.

2.4.1 Caching mailer view

class UserMailer < ApplicationMailer
 default from: 'notifications@example.com'

 def welcome_email
 @user = params[:user]
 @url = 'http://example.com/login'
 mail(to: @user.email,
 subject: 'Welcome to My Awesome Site',
 template_path: 'notifications',
 template_name: 'another')
 end
end

class UserMailer < ApplicationMailer
 default from: 'notifications@example.com'

 def welcome_email
 @user = params[:user]
 @url = 'http://example.com/login'
 mail(to: @user.email,
 subject: 'Welcome to My Awesome Site') do |
format|
 format.html { render 'another_template' }
 format.text { render plain: 'Render text' }
 end
 end
end

Page � of �61 101

https://guides.rubyonrails.org/action_mailer_basics.html#caching-mailer-view

You can perform fragment caching in mailer views like in application views
using the cache method.

And in order to use this feature, you need to configure your application with
this:

Fragment caching is also supported in multipart emails. Read more about
caching in the Rails caching guide.

2.5 Action Mailer Layouts

Just like controller views, you can also have mailer layouts. The layout name
n e e d s t o b e t h e s a m e a s y o u r m a i l e r , s u c h
as user_mailer.html.erb and user_mailer.text.erb to be automatically
recognized by your mailer as a layout.

In order to use a different file, call layout in your mailer:

Just like with controller views, use yield to render the view inside the layout.

You can also pass in a layout: 'layout_name' option to the render call inside
the format block to specify different layouts for different formats:

<% cache do %>
 <%= @company.name %>
<% end %>

config.action_mailer.perform_caching = true

class UserMailer < ApplicationMailer
 layout 'awesome' # use awesome.(html|text).erb as the
layout
end

Page � of �62 101

https://guides.rubyonrails.org/caching_with_rails.html
https://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-layouts

Will render the HTML part using the my_layout.html.erb file and the text part
with the usual user_mailer.text.erb file if it exists.

2.6 Previewing Emails

Action Mailer previews provide a way to see how emails look by visiting a
special URL that renders them. In the above example, the preview class
for UserMailer should be named UserMailerPreview and located in test/
mai lers/previews/user_mai ler_preview.rb. To see the preview
of welcome_email, implement a method that has the same name and
call UserMailer.welcome_email:

Then the preview will be available in http://localhost:3000/rails/mailers/
user_mailer/welcome_email.

If you change something in app/views/user_mailer/welcome_email.html.erb or
the mailer itself, it'll automatically reload and render it so you can visually see
the new style instantly. A list of previews are also available in http://localhost:
3000/rails/mailers.

By default, these preview classes live in test/mailers/previews. This can be
configured using the preview_path option. For example, if you want to change
it to lib/mailer_previews, you can configure it in config/application.rb:

class UserMailer < ApplicationMailer
 def welcome_email
 mail(to: params[:user].email) do |format|
 format.html { render layout: 'my_layout' }
 format.text
 end
 end
end

class UserMailerPreview < ActionMailer::Preview
 def welcome_email
 UserMailer.with(user: User.first).welcome_email
 end
end

config.action_mailer.preview_path = "#{Rails.root}/lib/
mailer_previews"

Page � of �63 101

https://guides.rubyonrails.org/action_mailer_basics.html#previewing-emails
http://localhost:3000/rails/mailers/user_mailer/welcome_email
http://localhost:3000/rails/mailers/user_mailer/welcome_email
http://localhost:3000/rails/mailers
http://localhost:3000/rails/mailers

2.7 Generating URLs in Action Mailer Views

Unlike controllers, the mailer instance doesn't have any context about the
incoming request so you'll need to provide the :host parameter yourself.

As the :host usually is consistent across the application you can configure it
globally in config/application.rb:

Because of this behavior you cannot use any of the *_path helpers inside of
an email. Instead you will need to use the associated *_url helper. For
example instead of using

You will need to use:

By using the full URL, your links will now work in your emails.

2.7.1 Generating URLs with url_for

url_for generates a full URL by default in templates.

If you did not configure the :host option globally make sure to pass it
to url_for.

2.7.2 Generating URLs with Named Routes

Email clients have no web context and so paths have no base URL to form
complete web addresses. Thus, you should always use the "_url" variant of
named route helpers.

If you did not configure the :host option globally make sure to pass it to the url
helper.

config.action_mailer.default_url_options = { host:
'example.com' }

<%= link_to 'welcome', welcome_path %>

<%= link_to 'welcome', welcome_url %>

<%= url_for(host: 'example.com',
 controller: 'welcome',
 action: 'greeting') %>

Page � of �64 101

https://guides.rubyonrails.org/action_mailer_basics.html#generating-urls-in-action-mailer-views
https://guides.rubyonrails.org/action_mailer_basics.html#generating-urls-with-url-for
https://guides.rubyonrails.org/action_mailer_basics.html#generating-urls-with-named-routes

non-GET links require rails-ujs or jQuery UJS, and won't work in mailer
templates. They will result in normal GET requests.

2.8 Adding images in Action Mailer Views

Unlike controllers, the mailer instance doesn't have any context about the
incoming request so you'll need to provide the :asset_host parameter
yourself.

As the :asset_host usually is consistent across the application you can
configure it globally in config/application.rb:

Now you can display an image inside your email.

2.9 Sending Multipart Emails

Action Mailer will automatically send multipart emails if you have different
templates for the same action. So, for our UserMailer example, if you
have welcome_email.text.erb and welcome_email.html.erb in app/views/
user_mailer, Action Mailer will automatically send a multipart email with the
HTML and text versions setup as different parts.

The o rde r o f t he pa r t s ge t t i ng i nse r ted i s de te rm ined by
the :parts_order inside of the ActionMailer::Base.default method.

2.10 Sending Emails with Dynamic Delivery Options

If you wish to override the default delivery options (e.g. SMTP credentials)
while delivering emails, you can do this using delivery_method_options in the
mailer action.

<%= user_url(@user, host: 'example.com') %>

config.action_mailer.asset_host = 'http://example.com'

<%= image_tag 'image.jpg' %>

Page � of �65 101

https://github.com/rails/rails/blob/master/actionview/app/assets/javascripts
https://github.com/rails/jquery-ujs
https://guides.rubyonrails.org/action_mailer_basics.html#adding-images-in-action-mailer-views
https://guides.rubyonrails.org/action_mailer_basics.html#sending-multipart-emails
https://guides.rubyonrails.org/action_mailer_basics.html#sending-emails-with-dynamic-delivery-options

2.11 Sending Emails without Template Rendering

There may be cases in which you want to skip the template rendering step
and supply the email body as a string. You can achieve this using
the :body option. In such cases don't forget to add the :content_type option.
Rails will default to text/plain otherwise.

3 Receiving Emails

Receiving and parsing emails with Action Mailer can be a rather complex
endeavor. Before your email reaches your Rails app, you would have had to
configure your system to somehow forward emails to your app, which needs
to be listening for that. So, to receive emails in your Rails app you'll need to:

• Implement a receive method in your mailer. 

• Configure your email server to forward emails from the address(es) you
would like your app to receive to /path/to/app/bin/rails runner

class UserMailer < ApplicationMailer

 def welcome_email
 @user = params[:user]

 @url = user_url(@user)
 delivery_options = { user_name: params[:company].smtp_user,

 password: params[:company].smtp_password,
 address: params[:company].smtp_host }

 mail(to: @user.email,
 subject: "Please see the Terms and Conditions attached",

 delivery_method_options: delivery_options)
 end

end

class UserMailer < ApplicationMailer
 def welcome_email
 mail(to: params[:user].email,
 body: params[:email_body],
 content_type: "text/html",
 subject: "Already rendered!")
 end
end

Page � of �66 101

https://guides.rubyonrails.org/action_mailer_basics.html#sending-emails-without-template-rendering
https://guides.rubyonrails.org/action_mailer_basics.html#receiving-emails

• 'UserMailer.receive(STDIN.read)'. 

Once a method called receive is defined in any mailer, Action Mailer will parse
the raw incoming email into an email object, decode it, instantiate a new
mailer, and pass the email object to the mailer receive instance method.
Here's an example:

4 Action Mailer Callbacks

A c t i o n M a i l e r a l l o w s f o r y o u t o s p e c i f y
a before_action, after_action and around_action.

• Filters can be specified with a block or a symbol to a method in the
mailer class similar to controllers. 

• You could use a before_action to populate the mail object with defaults,
delivery_method_options or insert default headers and attachments. 

class UserMailer < ApplicationMailer
 def receive(email)
 page = Page.find_by(address: email.to.first)
 page.emails.create(
 subject: email.subject,
 body: email.body
)

 if email.has_attachments?
 email.attachments.each do |attachment|
 page.attachments.create({
 file: attachment,
 description: email.subject
 })
 end
 end
 end
end

Page � of �67 101

https://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-callbacks

• You could use an after_action to do similar setup as a before_action but
using instance variables set in your mailer action.

class InvitationsMailer < ApplicationMailer
 before_action { @inviter, @invitee = params[:inviter],
params[:invitee] }
 before_action { @account = params[:inviter].account }

 default to: -> { @invitee.email_address },
 from: -> { common_address(@inviter) },
 reply_to: ->
{ @inviter.email_address_with_name }

 def account_invitation
 mail subject: "#{@inviter.name} invited you to their
Basecamp (#{@account.name})"
 end

 def project_invitation
 @project = params[:project]
 @summarizer =
ProjectInvitationSummarizer.new(@project.bucket)

 mail subject: "#{@inviter.name.familiar} added you
to a project in Basecamp (#{@account.name})"
 end
end

Page � of �68 101

• Mailer Filters abort further processing if body is set to a non-nil value.
5 Using Action Mailer Helpers

Action Mailer now just inherits from AbstractController, so you have access to
the same generic helpers as you do in Action Controller.

class UserMailer < ApplicationMailer
 before_action { @business, @user = params[:business],
params[:user] }

 after_action :set_delivery_options,
 :prevent_delivery_to_guests,
 :set_business_headers

 def feedback_message
 end

 def campaign_message
 end

 private

 def set_delivery_options
 # You have access to the mail instance,
 # @business and @user instance variables here
 if @business && @business.has_smtp_settings?
 mail.delivery_method.settings.merge!
(@business.smtp_settings)
 end
 end

 def prevent_delivery_to_guests
 if @user && @user.guest?
 mail.perform_deliveries = false
 end
 end

 def set_business_headers
 if @business
 headers["X-SMTPAPI-CATEGORY"] = @business.code
 end
 end
end

Page � of �69 101

https://guides.rubyonrails.org/action_mailer_basics.html#using-action-mailer-helpers

6 Action Mailer Configuration

The following configuration options are best made in one of the environment
files (environment.rb, production.rb, etc...)

Configuration Description

logger
Generates information on the mailing run if available.
Can be set to nil for no logging. Compatible with
both Ruby's own Loggerand Log4r loggers.

Page � of �70 101

https://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-configuration

smtp_settin
gs

Allows detailed configuration for :smtp delivery
method:
• :address - Allows you to use a remote mail

server. Just change it from its
default "localhost" setting.

• :port - On the off chance that your mail server
doesn't run on port 25, you can change it.

• :domain - If you need to specify a HELO
domain, you can do it here.

• :user_name - If your mail server requires
authentication, set the username in this setting.

• :password - If your mail server requires
authentication, set the password in this setting.

• :authentication - If your mail server
requires authentication, you need to specify the
authentication type here. This is a symbol and
one of :plain (will send the password in the
clear), :login (will send password Base64
encoded) or :cram_md5 (combines a
Challenge/Response mechanism to exchange
information and a cryptographic Message Digest
5 algorithm to hash important information)

• :enable_starttls_auto - Detects if
STARTTLS is enabled in your SMTP server and
starts to use it. Defaults to true.

• :openssl_verify_mode - When using TLS,
you can set how OpenSSL checks the
certificate. This is really useful if you need to
validate a self-signed and/or a wildcard
certificate. You can use the name of an
OpenSSL verify constant ('none' or 'peer') or
directly the constant
(OpenSSL::SSL::VERIFY_NONE or OpenSSL
::SSL::VERIFY_PEER).

Page � of �71 101

sendmail_se
ttings

Allows you to override options for
the :sendmail delivery method.
• :location - The location of the sendmail

executable. Defaults to /usr/sbin/sendmail.
• :arguments - The command line arguments to

be passed to sendmail. Defaults to -i.

raise_deliv
ery_errors

Whether or not errors should be raised if the email
fails to be delivered. This only works if the external
email server is configured for immediate delivery.

delivery_me
thod

Defines a delivery method. Possible values are:
• :smtp (default), can be configured by

using config.action_mailer.smtp_setti
ngs.

• :sendmail, can be configured by
using config.action_mailer.sendmail_s
ettings.

• :file: save emails to files; can be configured
by
using config.action_mailer.file_setti
ngs.

• :test: save emails
to ActionMailer::Base.deliveries array.

See API docs for more info.

perform_del
iveries

Determines whether deliveries are actually carried out
when the deliver method is invoked on the Mail
message. By default they are, but this can be turned
off to help functional testing.

deliveries
Keeps an array of all the emails sent out through the
Action Mailer with delivery_method :test. Most useful
for unit and functional testing.

default_opt
ions

Allows you to set default values for the mail method
options (:from, :reply_to, etc.).

Page � of �72 101

http://api.rubyonrails.org/v5.2.2/classes/ActionMailer/Base.html

For a complete writeup of possible configurations see the Configuring Action
Mailer in our Configuring Rails Applications guide.

6.1 Example Action Mailer Configuration

An example would be adding the following to your appropriate config/
environments/$RAILS_ENV.rb file:

6.2 Action Mailer Configuration for Gmail

As Action Mailer now uses the Mail gem, this becomes as simple as adding to
your config/environments/$RAILS_ENV.rb file:

Note: As of July 15, 2014, Google increased its security measures and now
blocks attempts from apps it deems less secure. You can change your Gmail
settings here to allow the attempts. If your Gmail account has 2-factor
authentication enabled, then you will need to set an app password and use
that instead of your regular password. Alternatively, you can use another ESP
to send email by replacing 'smtp.gmail.com' above with the address of your
provider.

7 Mailer Testing

config.action_mailer.delivery_method = :sendmail
Defaults to:
config.action_mailer.sendmail_settings = {
location: '/usr/sbin/sendmail',
arguments: '-i'
}
config.action_mailer.perform_deliveries = true
config.action_mailer.raise_delivery_errors = true
config.action_mailer.default_options = {from: 'no-
reply@example.com'}

config.action_mailer.delivery_method = :smtp
config.action_mailer.smtp_settings = {
 address: 'smtp.gmail.com',
 port: 587,
 domain: 'example.com',
 user_name: '<username>',
 password: '<password>',
 authentication: 'plain',
 enable_starttls_auto: true }

Page � of �73 101

https://guides.rubyonrails.org/configuring.html#configuring-action-mailer
https://guides.rubyonrails.org/configuring.html#configuring-action-mailer
https://guides.rubyonrails.org/action_mailer_basics.html#example-action-mailer-configuration
https://guides.rubyonrails.org/action_mailer_basics.html#action-mailer-configuration-for-gmail
https://github.com/mikel/mail
https://support.google.com/accounts/answer/6010255
https://www.google.com/settings/security/lesssecureapps
https://myaccount.google.com/apppasswords
https://guides.rubyonrails.org/action_mailer_basics.html#mailer-testing

You can find detailed instructions on how to test your mailers in the testing
guide.

8 Intercepting Emails

There are situations where you need to edit an email before it's delivered.
Fortunately Action Mailer provides hooks to intercept every email. You can
register an interceptor to make modifications to mail messages right before
they are handed to the delivery agents.

Before the interceptor can do its job you need to register it with the Action
Mailer framework. You can do this in an initializer file config/initializers/
sandbox_email_interceptor.rb

The example above uses a custom environment called "staging" for a
production like server but for testing purposes. You can read Creating Rails
environments for more information about custom Rails environments.

class SandboxEmailInterceptor
 def self.delivering_email(message)
 message.to = ['sandbox@example.com']
 end
end

if Rails.env.staging?
 ActionMailer::Base.register_interceptor(SandboxEmailIn
terceptor)
end

Page � of �74 101

https://guides.rubyonrails.org/testing.html#testing-your-mailers
https://guides.rubyonrails.org/testing.html#testing-your-mailers
https://guides.rubyonrails.org/action_mailer_basics.html#intercepting-emails
https://guides.rubyonrails.org/configuring.html#creating-rails-environments
https://guides.rubyonrails.org/configuring.html#creating-rails-environments

Sending Emails in Rails Applications

Introduction

In this article we will walk through a simple app to demonstrate how to send
emails through a Rails application with ActionMailer, ActionMailer Preview,
and through a third party email service provider such as Gmail or Mailgun.
We will also demostrate how to use Active Job to send the email with a
background processor.

You can find the code for this tutorial here

Sending Emails Using ActionMailer and Gmail

Now we will build a rails application which will send an email to the user when
a new user is created. Let’s create a new rails application.

We now have a basic application, let’s make use of ActionMailer. The mailer
generator is similar to any other generator in rails.

1
2
3

$ rails new new_app_name
$ rails g scaffold user name:string
email:string
$ rake db:migrate

Page � of �75 101

https://github.com/gotealeaf/sending_emails_with_rails

Our application is currently using Rails 4.2.0.beta4 so the rails generator has
created preview files for our application by default as test/mailers/previews/
example_mailer_preview.rb which we will be using later.

app/mailers/example_mailer.rb

Now let’s write methods and customized email. First you should change the
default email address from from@example.com to the email address you
want use as the sender’s address.

1
2
3
4
5
6
7

$ rails g mailer example_mailer
create app/mailers/example_mailer.rb
invoke erb
create app/views/example_mailer
invoke test_unit
create test/mailers/example_mailer_test.rb
create test/mailers/previews/
example_mailer_preview.rb

1
2
3

class ExampleMailer < ActionMailer::Base
 default from: "from@example.com"
end

Page � of �76 101

sample_email takes user parameters and sends email using method mail to
email address of user. In case you want to know about more features like
attachment and multiple receivers, you can check out rails guide in the
reference section. Now let’s write the mail we want to send to our users, and
t h i s c a n b e d o n e i n a p p / v i e w s / e x a m p l e _ m a i l e r. C r e a t e a
file sample_email.html.erb which is an email formatted in HTML.

app/views/example_mailer/sample_email.html.erb

1
2
3
4
5
6
7
8

class ExampleMailer < ActionMailer::Base
 default from: "from@example.com"

 def sample_email(user)
 @user = user
 mail(to: @user.email, subject: 'Sample
Email')
 end
end

Page � of �77 101

We also need to create the text part for this email as not all clients prefer
HTML emails. Create sample_email.text.erb in the app/views/
example_mailer directory.

app/views/example_mailer/sample_email.text.erb

In the development environment we can use ActionMailer Preview to test our
appl icat ion. We are going to use the test /mai lers/prev iews/
example_mailer_preview.rb file created while generating mailers. We will just
call any user (first user in this case) to preview the email.

test/mailers/previews/example_mailer_preview.rb

1
2
3
4
5
6
7
8
9

10
11
12

<!DOCTYPE html>
<html>
 <head>
 <meta content='text/html; charset=UTF-8'
http-equiv='Content-Type' />
 </head>
 <body>
 <h1>Hi <%= @user.name %></h1>
 <p>
 Sample mail sent using smtp.
 </p>
 </body>
</html>

1
2
Hi <%= @user.name %>
Sample mail sent using smtp.

Page � of �78 101

When you visit http://localhost:3000/rails/mailers/example_mailer/
sample_mail_preview you will see preview of the email. By default email
previews are placed in test/mailers/previews. You can change this by setting
up different a path in /config/environments/development.rb. Just
set config.action_mailer.preview_path to the desired path and add preview file
to the corresponding location.

Sending emails using ActionMailer and Gmail

By default rails tries to send emails via SMTP. We will provide SMTP
configuration in environment settings /config/environments/production.rb.
Let’s first look at the configuration you need to send emails with Gmail.
Before we proceed we need to save sensitive information such as username
and password as environment variables. We will do so by using the
gem figaro. For detailed information on how to manage environment variables
in rails refer to Manage Environment Configuration Variables in Rails.

/config/application.yml

1
2
3
4
5
6

Preview all emails at http://localhost:3000/
rails/mailers/example_mailer
class ExampleMailerPreview <
ActionMailer::Preview
 def sample_mail_preview
 ExampleMailer.sample_email(User.first)
 end
end

Page � of �79 101

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://launchschool.com/blog/managing-environment-configuration-variables-in-rails

/config/environments/production.rb

Note here we are setting the app to send out emails with Gmail from the
production environment. This is typically what you want because you don’t
want to accidentally send out emails while working locally. If you run into
errors like Net::SMTPAuthenticationError while using gmail for sending out
emails, visit your gmail settings and enable less secure apps to get the
application working.

Now let’s edit the UsersController to trigger the event that will send an email
t o a u s e r . W e j u s t n e e d t o
add ExampleMailer.sample_email(@user).deliver to the create method
i n a p p / c o n t r o l l e r s / u s e r s _ c o n t r o l l e r. r b . T h e c r e a t e m e t h o d
in users_controller.rb should look something like:

1
2
gmail_username: 'username@gmail.com'
gmail_password: 'Gmail password'

1
2
3
4
5
6
7
8
9

10

config.action_mailer.delivery_method = :smtp
SMTP settings for gmail
config.action_mailer.smtp_settings = {
 :address => "smtp.gmail.com",
 :port => 587,
 :user_name =>
ENV['gmail_username'],
 :password =>
ENV['gmail_password'],
 :authentication => "plain",
:enable_starttls_auto => true
}

Page � of �80 101

https://www.google.com/settings/security/lesssecureapps

When a new user is created we are sending out an email via
the sample_email method in mailer ExampleMailer.

Sending emails using ActionMailer and Mailgun through SMTP

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

def create
 @user = User.new(user_params)

 respond_to do |format|
 if @user.save

 # Sends email to user when user is
created.

ExampleMailer.sample_email(@user).deliver

 format.html { redirect_to @user, notice:
'User was successfully created.' }
 format.json { render :show,
status: :created, location: @user }
 else
 format.html { render :new }
 format.json { render json: @user.errors,
status: :unprocessable_entity }
 end
 end
end

Page � of �81 101

Let’s see how to use mailgun to send out emails. First create a free account
on Mailgun. Once done you will be redirected to the dashboard. We will be
using mailgun subdomains. Click on the sandbox, you should see something
like this:

We are going to need information listed to get mailgun working for our
application. Let’s store the credentials in /config/application.yml.

/config/application.yml

Replace the corresponding credentials received from domain information of
sandbox server. We must also change SMTP settings as we are now using
Mailgun instead of Gmail.

1
2
3
4
5
6

api_key: 'API Key'
domain: 'Domain'
username: 'Default SMTP Login'
password: 'Default Password'
gmail_username: 'username@gmail.com'
gmail_password: 'gmail password'

Page � of �82 101

https://mailgun.com/signup
https://mailgun.com/signup

/config/environments/production.rb

Sending emails using ActionMailer and Mailgun through Mailgun’s APIs

The official ruby library of Mailgun mailgun-ruby empowers users and
developers to take advantage of the Mailgun APIs. To use it first add gem
'mailgun-ruby', '~>1.0.2', require: 'mailgun' to your Gemfile and run bundle
install. Finally make changes to app/mailers/example_mailer.rb.

1
2
3
4
5
6
7
8
9

10

config.action_mailer.delivery_method = :smtp
SMTP settings for mailgun
ActionMailer::Base.smtp_settings = {
 :port => 587,
 :address => "smtp.mailgun.org",
 :domain => ENV['domain'],
 :user_name => ENV['username'],
 :password => ENV['password'],
 :authentication => :plain,
}}

Page � of �83 101

https://github.com/mailgun/mailgun-ruby

Mailgun::Client.new initiates mailgun client using the API keys.
In message_params we are providing custom email information
and .send_message takes care of sending emails via Mailgun API. You
should change from@example.com to desired sender’s email address.

Sending Emails with a Background Processor through Active Job

While testing the application you might have noticed that it takes takes more
time than usual to create a new user. This happens because we have to hit
an external API to send out emails. This can be an issue if you are sending
multiple emails or sending emails to multiple users. This problem can be
easily resolved by moving the email sending part to background jobs. In our

1
2
3
4
5
6
7
8
9

10
11
12

class ExampleMailer < ActionMailer::Base

 def sample_email(user)
 @user = user
 mg_client = Mailgun::Client.new
ENV['api_key']
 message_params = {:from =>
ENV['gmail_username'],
 :to => @user.email,
 :subject => 'Sample Mail
using Mailgun API',
 :text => 'This mail
is sent using Mailgun API via mailgun-ruby'}
 mg_client.send_message ENV['domain'],
message_params
 end
end

Page � of �84 101

application we will make use of Active Jobs and Delayed Job to send emails
in the background.

Active Job is an adapter that provides a universal interface for background
processors like Resque, Delayed Job, Sidekiq, etc. Note that for using Active
Job you will need Rails 4.2 or above.

Now let’s the write the job to be performed by workers. Active Job is
integrated with ActionMailer so you can easily send emails asynchronously.
For sending emails through Active Job we use deliver_later method.

/app/jobs/send_email_job.rb

1
2
3
4
5

$ rails g job send_email
 invoke test_unit
 create test/jobs/send_email_job_test.rb
 create app/jobs/send_email_job.rb
$

Page � of �85 101

http://api.rubyonrails.org/
http://www.mailgun.com/pricing

Now let’s make changes to our user creation process. Instead of sending
email while creating the user we enqueue the email sending job to be
performed later.

app/controllers/users_controller.rb

Now we need to configure the backend for our background process. We have
selected delayed_jobs as our backend but you can choose your own backend
depedning on your needs. Active Job has built-in adapters for multiple
queueing backends.

1
2
3
4
5
6
7
8

class SendEmailJob < ActiveJob::Base
 queue_as :default

 def perform(user)
 @user = user

ExampleMailer.sample_email(@user).deliver_late
r
 end
end

1
2
3
4
5

def create
 ...
 SendEmailJob.set(wait:
20.seconds).perform_later(@user)

 end

Page � of �86 101

Gemfile

Set up queueing backend for the production environment.

/config/environments/production.rb

Everything is configured now, for testing the application just start the rails
server and create a new user. A new job will be added to the queue and you
will notice the time required for creating a new user is drastically decreased.
You can start running the jobs in queue by:

Conclusion

1 gem 'delayed_job_active_record'

1
2
3

$ bundle
$ rails generate delayed_job:active_record
$ rake db:migrate

1 config.active_job.queue_adapter = :delayed_job

1 $ bundle exec rake jobs:work

Page � of �87 101

In the article we went over basic configuration and tools used for sending
emails through a rails application. We covered the basics of ActionMailer,
Gmail & Mailgun (as email sending services), ActionMailer Previews(for
previewing emails) and mailgun-ruby gem for the Mailgun APIs. In the end,
we showed how to send out emails with a background processor through
Active Job

Capybara using Sinatra App tes

Step 1: Building the App

We’re going to create an incredibly simple Sinatra app to test. For starters,

let’s create a project folder and throw this in a Gemfile:

Now, run bundle install in that directory.

So, open a file called myapp.rb; here’s our super simple app; it just simulates

a site that might let you sign up for a newsletter.

1
2
3
4
5
6
7

source :rubygems

gem "sinatra"
gem "shotgun"
gem "cucumber"
gem "capybara"
gem "rspec"

Page � of �88 101

If you’re not familiar with Sinatra, check out Dan Harper’s excellent

sessions Singing with Sinatra; that’ll get you up and running with the basics in

no time.

If you are familiar with Sinatra, you’ll see that we’re creating three paths here;

on the home page (’/’), we just render the index.erb template (more on the

templates in a minute). If we get a post request to the path /thankyou, we take

the values of the name and email parameters and assign them to instance

variables. Instance variables will be available inside whatever template we

render, which happens to be thankyou.erb. Finally, at /form, we render

the form.erb template.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

require "sinatra/base"

class MyApp < Sinatra::Base
 get "/" do
 erb :index
 end

 post "/thankyou" do
 @name = params["name"]
 @email = params["email"]
 erb :thankyou
 end

 get "/form" do
 erb :form
 end
end

Page � of �89 101

http://net.tutsplus.com/sessions/singing-with-sinatra/

Now, let’s build these templates. Sinatra will look inside a ‘views’ folder for the

templates, so let’s put them there. As you saw in myapp.rb, we’re using ERB

to render the templates, so they’ll, of course, be ERB templates. If we have

a layout.erb template, it will wrap all our other templates. So, let’s do this:

layout.erb

That call to yield will be where the other templates are inserted. And those

other templates are pretty simple:

index.erb

form.erb

01
02
03
04
05
06
07
08
09
10
11
12
13
14

<!DOCTYPE html>
<html>
<head>
 <meta charset='UTF=8' />
 <title>THE APP</title>
</head>
<body>

 <h1>THE APP</h1>

 <%= yield %>

</body>
</html>

1
2
<p>This is the home page</p>
<p>Sign up for our
newsletter!</p>

Page � of �90 101

thankyou.erb

So, there’s our app. To test it manually, you can put this in a config.ru file:

And then run shotgun in the terminal. This will start up a websever, probably

on port 9393. You can now poke around and test our web app. But we want to

automate this testing, right? Let’s do it!

Step 2: Setting our our Test Environment

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

<form method="post" action="/thankyou">
 <p>
 Fill out this form to receive our newsletter.
 </p>
 <p>
 <label for="name">Name:</label>
 <input type="text" name="name" id="name" />
 </p>
 <p>
 <label for="email">Email:</label>
 <input type="text" name="email" id="email" />
 </p>
 <p>
 <button type="submit">Sign Up!</button>
 </p>
</form>

1 <p>Hi there, <%= @name %>. You'll now receive our
email at <%= @email %></p>

1
2
require "./myapp"
run MyApp

Page � of �91 101

http://localhost:9393/

Cucumber bills itself as “behaviour driven development with elegance and

joy.” While joy seems a bit far-fetched to me, I think we’ll both agree that

elegance, well, Cucumber’s got it.

Because behaviour driven development is partly about understanding what

the client wants before you begin coding, Cucumber aims to make its tests

readable by clients (AKA, non-programmers). So, you’ll see here that all your

tests are written in what appears to be plain text (it’s actually Gherkin).

Remember how, with Rspec, we has separate spec files to describe different

functionalities? In Cucumber-speak, those are features, and they all belong in

a “features” folder. Inside that folder create two more folders called “support”

and “step_definitions.”

Inside the “support” folder, open an env.rb. This code will set up our testing

environment. Here’s what we need:

Page � of �92 101

http://cukes.info/
https://github.com/cucumber/cucumber/wiki/Gherkin

This requires the different libraries that we need, and uses include to load

their methods into our environment. What’s this Capybara that we’re using?

Basically, it’s the functionality that allows us to use our web app, so that we

can test it. It’s important to set Capybara.app to our app. I should mention

that, were we doing this with a Rails app, most of this setup would be done

automatically for us.

(Note: in the screencast, I include RSpec::Expectations unneccessarily; leave

it out.)

Okay, so, let’s write some tests!

Step 3 Writing the Tests

Let’s start with our home page. Open the file home_pages.feature (in the

“features” folder) and start with this:

01
02
03
04
05
06
07
08
09
10
11
12
13

require_relative "../../myapp"

require "Capybara"
require "Capybara/cucumber"
require "rspec"

World do
 Capybara.app = MyApp

 include Capybara::DSL
 include RSpec::Matchers
end

Page � of �93 101

This is a common way to start a feature file starts; Doesn’t really look like

code, does it? Well, it’s Gherkin, a domain-specific languages (DSL) that “lets

you describe software’s behaviour without detailing how that behaviour is

implemented.” What we’re written so far doesn’t run in any way, but it

explains the purpose of the feature. Here’s the general structure:

You don’t have to follow that template: you can put whatever you want; the

purpose is to describe the feature. However, this seems to be a common

pattern.

Next comes a list of scenarios that describe the feature. Here’s the first:

Each scenario can have up to three parts: Givens, Whens, and Thens:

• Given - Given lines describe what pre-condition should exist.

1
2
3
4

Feature: Viewer visits the Home Page
 In order to read the page
 As a viewer
 I want to see the home page of my app

1
2
3

In order to [goal]
As a [role]
I want [feature]

1
2
3

Scenario: View home page
 Given I am on the home page
 Then I should see "This is the home page."

Page � of �94 101

https://github.com/cucumber/cucumber/wiki/Gherkin

• When - When lines describe the actions you take.

• Then - Then lines describe the result.

There are also And lines, which do whatever the line above them does. For

example:

In this case, the first And line acts as a Given line, and the second one acts

as a Then line.

We’ll see a few When lines shortly. But right now, let’s run that test. To do

that, run cucumber in the terminal. You’ll probably see something like this:

1
2
3
4

Given I am on the home page
And I am signed in
Then I should see "Welcome Back!"
And I should see "Settings"

Page � of �95 101

Cucumber feature files are written to be readable to non-programmers, so we

have to “implement step definitions for undefined steps.” Thankfully,

Cucumber gives us some snippets to start with.

Looking at these snippets, you can see how this will work. Each step is

matched with a regular expression. Any quoted values will be captured and

passed as a block parameter. Inside the block, we do whatever we expect to

happen as a result of that step. This might be set-up code in Given steps,

some calculations or actions in When steps, and a comparison in Then steps.

Cucumber will load any files in the folder “features/step_definitions” for steps,

so let’s create “sinatra_steps.rb” file and add these two steps:

Page � of �96 101

In this little snippet here, we’re using Cucumber, Rspec, and Capybara.

Firstly, we’ve got the cucumber Given and Then method calls. Secondly,

we’re using the Capybara methods visit (to visit a URL) and has_content?.

But you don’t see the call to has_content? because we’ve loaded the RSpec

matchers, so we can make our tests read as they would with Rspec. If we

wanted to leave RSpec out, we would just write page.has_content? text.

Now, if you run cucumber again, you’ll see that our tests pass:

Let’s add two more Scenarios for our home page:

1
2
3
4
5
6
7

Given /^I am on the home page$/ do
 visit "/"
end

Then /^I should see "([^"]*)"$/ do |text|
 page.should have_content text
end

Page � of �97 101

These require two more Then steps, as you’ll find if you try to run this. Add

these to sinatra_steps.rb:

You should be able to tell what these are doing: the first looks for text within a

certain element on the page. The second looks for a link with the given text

(yes, you could have done Then I should see "Sign up ..." in the selector "a",

but I wanted to should you another Capybara/Rspec method)

Again, run cucumber; you’ll see all our tests passing:

1
2
3
4
5
6
7

Scenario: Find heading on home page
 Given I am on the home page
 Then I should see "MY APP" in the selector "h1"

Scenario: Find the link to the form
 Given I am on the home page
 Then I should see "Sign up for our newsletter." in a
link

1
2
3
4
5
6
7

Then /^I should see "([^"]*)" in the selector
"([^"]*)"$/ do |text, selector|
 page.should have_selector selector, content: text
end

Then /^I should see "([^"]*)" in a link$/ do |text|
 page.should have_link text
end

Page � of �98 101

Let’s now open “features/form_page.feature”; throw this in there:

Feature: Viewer signs up for the newsletter
 In order to recieve the newsetter
 As a user of the website
 I want to be able to sign up for the newsletter

 Scenario: View form page
 Given I am on "/form"
 Then I should see "Fill out this form to receive our newsletter."

 Scenario: Fill out form
 Given I am on "/form"
 When I fill in "name" with "John Doe"
 And I fill in "email" with "john@doe.com"

Page � of �99 101

 And I click "Sign Up!"
 Then I should see "Hi there, John Doe. You'll new receive our email
newsletter at john@doe.com"

The first scenario here is pretty simple, although we need to write

the Givenstep for is. You can probably figure out how to do that by now:

The second one is a little more in depth. For the first time, we’re

using Whensteps (remember, the And steps that follow the When step are

also Whensteps). It’s pretty obvious what those When steps should do, but

how do we do that in the Ruby code? Thankfully, Capybara has a few handy

methods to help up:

We’re using the fill_in method, which takes the name or id attribute of an

element on the page. We’re also using click_on, which will click on the

element with the given text, id, or value. There are also the more

1
2
3

Given /^I am on "([^"]*)"$/ do |path|
 visit path
end

1
2
3
4
5
6
7

When /^I fill in "([^"]*)" with "([^"]*)"$/ do |
element, text|
 fill_in element, with: text
end

When /^I click "([^"]*)"$/ do |element|
 click_on element
end

Page � of �100 101

specific click_link and click_button. To see more, check out the Capybara

Readme. Browse around the “DSL” section to see more of the methods that

Capybara offers.

When you run cucumber now, you should get all our tests, passing:

Page � of �101 101

https://github.com/jnicklas/capybara
https://github.com/jnicklas/capybara

