
More at rubyonrails.org: More Ruby on RailsMore Ruby on Rails

Debugging Rails
Applications
This guide introduces techniques for
debugging Ruby on Rails applications.

After reading this guide, you will know:

The purpose of debugging.

How to track down problems and
issues in your application that your
tests aren't identifying.

The different ways of debugging.

How to analyze the stack trace.

Chapters
1. View Helpers for Debugging

debug

to_yaml

inspect

2. The Logger

What is the Logger?

Log Levels

Sending Messages

Tagged Logging

Impact of Logs on Performance

3. Debugging with the byebug gem

Setup

The Shell

The Context

Threads

Inspecting Variables

https://guides.rubyonrails.org/index.html
http://rubyonrails.org/

1 View Helpers for Debugging
One common task is to inspect the contents of a variable. Rails provides three different ways to do this:

debug

to_yaml

inspect

1.1 debug
The debug helper will return a <pre> tag that renders the object using the YAML format. This will generate
human-readable data from any object. For example, if you have this code in a view:

You'll see something like this:

Step by Step

Breakpoints

Catching Exceptions

Resuming Execution

Editing

Quitting

Settings

4. Debugging with the web-console gem

Console

Inspecting Variables

Settings

5. Debugging Memory Leaks

Valgrind

6. Plugins for Debugging

7. References

<%= debug @article %>
<p>
 Title:
 <%= @article.title %>
</p>
<%= debug @article %>
<p>
 Title:
 <%= @article.title %>
</p>

--- !ruby/object Article
attributes:
 updated_at: 2008-09-05 22:55:47

1.2 to_yaml
Alternatively, calling to_yaml on any object converts it to YAML. You can pass this converted object into the
simple_format helper method to format the output. This is how debug does its magic.

The above code will render something like this:

 body: It's a very helpful guide for debugging your Rails app.
 title: Rails debugging guide
 published: t
 id: "1"
 created_at: 2008-09-05 22:55:47
attributes_cache: {}

Title: Rails debugging guide
--- !ruby/object Article
attributes:
 updated_at: 2008-09-05 22:55:47
 body: It's a very helpful guide for debugging your Rails app.
 title: Rails debugging guide
 published: t
 id: "1"
 created_at: 2008-09-05 22:55:47
attributes_cache: {}

Title: Rails debugging guide

<%= simple_format @article.to_yaml %>
<p>
 Title:
 <%= @article.title %>
</p>
<%= simple_format @article.to_yaml %>
<p>
 Title:
 <%= @article.title %>
</p>

--- !ruby/object Article
attributes:
updated_at: 2008-09-05 22:55:47
body: It's a very helpful guide for debugging your Rails app.
title: Rails debugging guide
published: t
id: "1"
created_at: 2008-09-05 22:55:47
attributes_cache: {}

Title: Rails debugging guide
--- !ruby/object Article
attributes:

1.3 inspect
Another useful method for displaying object values is inspect, especially when working with arrays or
hashes. This will print the object value as a string. For example:

Will render:

2 The Logger
It can also be useful to save information to log files at runtime. Rails maintains a separate log file for each
runtime environment.

2.1 What is the Logger?
Rails makes use of the ActiveSupport::Logger class to write log information. Other loggers, such as
Log4r, may also be substituted.

You can specify an alternative logger in config/application.rb or any other environment file, for
example:

updated_at: 2008-09-05 22:55:47
body: It's a very helpful guide for debugging your Rails app.
title: Rails debugging guide
published: t
id: "1"
created_at: 2008-09-05 22:55:47
attributes_cache: {}

Title: Rails debugging guide

<%= [1, 2, 3, 4, 5].inspect %>
<p>
 Title:
 <%= @article.title %>
</p>
<%= [1, 2, 3, 4, 5].inspect %>
<p>
 Title:
 <%= @article.title %>
</p>

[1, 2, 3, 4, 5]

Title: Rails debugging guide
[1, 2, 3, 4, 5]

Title: Rails debugging guide

Or in the Initializer section, add any of the following

By default, each log is created under Rails.root/log/ and the log file is named after the environment in
which the application is running.

2.2 Log Levels
When something is logged, it's printed into the corresponding log if the log level of the message is equal to
or higher than the configured log level. If you want to know the current log level, you can call the
Rails.logger.level method.

The available log levels are: :debug, :info, :warn, :error, :fatal, and :unknown, corresponding to the
log level numbers from 0 up to 5, respectively. To change the default log level, use

This is useful when you want to log under development or staging without flooding your production log with
unnecessary information.

The default Rails log level is debug in all environments.

2.3 Sending Messages
To write in the current log use the logger.(debug|info|warn|error|fatal) method from within a
controller, model or mailer:

config.logger = Logger.new(STDOUT)
config.logger = Log4r::Logger.new("Application Log")
config.logger = Logger.new(STDOUT)
config.logger = Log4r::Logger.new("Application Log")

Rails.logger = Logger.new(STDOUT)
Rails.logger = Log4r::Logger.new("Application Log")
Rails.logger = Logger.new(STDOUT)
Rails.logger = Log4r::Logger.new("Application Log")

config.log_level = :warn # In any environment initializer, or
Rails.logger.level = 0 # at any time
config.log_level = :warn # In any environment initializer, or
Rails.logger.level = 0 # at any time

logger.debug "Person attributes hash: #{@person.attributes.inspect}"
logger.info "Processing the request..."
logger.fatal "Terminating application, raised unrecoverable error!!!"
logger.debug "Person attributes hash: #{@person.attributes.inspect}"
logger.info "Processing the request..."
logger.fatal "Terminating application, raised unrecoverable error!!!"

Here's an example of a method instrumented with extra logging:

Here's an example of the log generated when this controller action is executed:

class ArticlesController < ApplicationController
 # ...

 def create
 @article = Article.new(article_params)
 logger.debug "New article: #{@article.attributes.inspect}"
 logger.debug "Article should be valid: #{@article.valid?}"

 if @article.save
 logger.debug "The article was saved and now the user is going to
be redirected..."
 redirect_to @article, notice: 'Article was successfully created.'
 else
 render :new
 end
 end

 # ...

 private
 def article_params
 params.require(:article).permit(:title, :body, :published)
 end
end
class ArticlesController < ApplicationController
 # ...

 def create
 @article = Article.new(article_params)
 logger.debug "New article: #{@article.attributes.inspect}"
 logger.debug "Article should be valid: #{@article.valid?}"

 if @article.save
 logger.debug "The article was saved and now the user is going to
be redirected..."
 redirect_to @article, notice: 'Article was successfully created.'
 else
 render :new
 end
 end

 # ...

 private
 def article_params
 params.require(:article).permit(:title, :body, :published)
 end
end

Started POST "/articles" for 127.0.0.1 at 2017-08-20 20:53:10 +0900
Processing by ArticlesController#create as HTML

Adding extra logging like this makes it easy to search for unexpected or unusual behavior in your logs. If you
add extra logging, be sure to make sensible use of log levels to avoid filling your production logs with
useless trivia.

2.4 Tagged Logging
When running multi-user, multi-account applications, it's often useful to be able to filter the logs using some
custom rules. TaggedLogging in Active Support helps you do exactly that by stamping log lines with
subdomains, request ids, and anything else to aid debugging such applications.

 Parameters: {"utf8"=>"✓",
"authenticity_token"=>"xhuIbSBFytHCE1agHgvrlKnSVIOGD6jltW2tO+P6a/ACjQ3igjpV4OdbsZjIhC98QizWH9YdKokrqxBCJrtoqQ==",
"article"=>{"title"=>"Debugging Rails", "body"=>"I'm learning how to print in logs!!!", "published"=>"0"},
"commit"=>"Create Article"}
New article: {"id"=>nil, "title"=>"Debugging Rails", "body"=>"I'm learning how to print in logs!!!",
"published"=>false, "created_at"=>nil, "updated_at"=>nil}
Article should be valid: true
 (0.1ms) BEGIN
 SQL (0.4ms) INSERT INTO "articles" ("title", "body", "published", "created_at", "updated_at") VALUES ($1, $2,
$3, $4, $5) RETURNING "id" [["title", "Debugging Rails"], ["body", "I'm learning how to print in logs!!!"],
["published", "f"], ["created_at", "2017-08-20 11:53:10.010435"], ["updated_at", "2017-08-20 11:53:10.010435"]]
 (0.3ms) COMMIT
The article was saved and now the user is going to be redirected...
Redirected to http://localhost:3000/articles/1
Completed 302 Found in 4ms (ActiveRecord: 0.8ms)
Started POST "/articles" for 127.0.0.1 at 2017-08-20 20:53:10 +0900
Processing by ArticlesController#create as HTML
 Parameters: {"utf8"=>"✓",
"authenticity_token"=>"xhuIbSBFytHCE1agHgvrlKnSVIOGD6jltW2tO+P6a/ACjQ3igjpV4OdbsZjIhC98QizWH9YdKokrqxBCJrtoqQ==",
"article"=>{"title"=>"Debugging Rails", "body"=>"I'm learning how to print in logs!!!", "published"=>"0"},
"commit"=>"Create Article"}
New article: {"id"=>nil, "title"=>"Debugging Rails", "body"=>"I'm learning how to print in logs!!!",
"published"=>false, "created_at"=>nil, "updated_at"=>nil}
Article should be valid: true
 (0.1ms) BEGIN
 SQL (0.4ms) INSERT INTO "articles" ("title", "body", "published", "created_at", "updated_at") VALUES ($1, $2,
$3, $4, $5) RETURNING "id" [["title", "Debugging Rails"], ["body", "I'm learning how to print in logs!!!"],
["published", "f"], ["created_at", "2017-08-20 11:53:10.010435"], ["updated_at", "2017-08-20 11:53:10.010435"]]
 (0.3ms) COMMIT
The article was saved and now the user is going to be redirected...
Redirected to http://localhost:3000/articles/1
Completed 302 Found in 4ms (ActiveRecord: 0.8ms)

logger = ActiveSupport::TaggedLogging.new(Logger.new(STDOUT))
logger.tagged("BCX") { logger.info "Stuff" }
Logs "[BCX] Stuff"
logger.tagged("BCX", "Jason") { logger.info "Stuff" }
Logs "[BCX] [Jason] Stuff"
logger.tagged("BCX") { logger.tagged("Jason") { logger.info "Stuff" } }
Logs "[BCX] [Jason] Stuff"
logger = ActiveSupport::TaggedLogging.new(Logger.new(STDOUT))
logger.tagged("BCX") { logger.info "Stuff" }
Logs "[BCX] Stuff"
logger.tagged("BCX", "Jason") { logger.info "Stuff" }
Logs "[BCX] [Jason] Stuff"

2.5 Impact of Logs on Performance
Logging will always have a small impact on the performance of your Rails app, particularly when logging to
disk. Additionally, there are a few subtleties:

Using the :debug level will have a greater performance penalty than :fatal, as a far greater number of
strings are being evaluated and written to the log output (e.g. disk).

Another potential pitfall is too many calls to Logger in your code:

In the above example, there will be a performance impact even if the allowed output level doesn't include
debug. The reason is that Ruby has to evaluate these strings, which includes instantiating the somewhat
heavy String object and interpolating the variables. Therefore, it's recommended to pass blocks to the
logger methods, as these are only evaluated if the output level is the same as — or included in — the
allowed level (i.e. lazy loading). The same code rewritten would be:

The contents of the block, and therefore the string interpolation, are only evaluated if debug is enabled. This
performance savings are only really noticeable with large amounts of logging, but it's a good practice to
employ.

3 Debugging with the byebug gem
When your code is behaving in unexpected ways, you can try printing to logs or the console to diagnose the
problem. Unfortunately, there are times when this sort of error tracking is not effective in finding the root
cause of a problem. When you actually need to journey into your running source code, the debugger is your
best companion.

The debugger can also help you if you want to learn about the Rails source code but don't know where to
start. Just debug any request to your application and use this guide to learn how to move from the code you
have written into the underlying Rails code.

3.1 Setup
You can use the byebug gem to set breakpoints and step through live code in Rails. To install it, just run:

logger.tagged("BCX") { logger.tagged("Jason") { logger.info "Stuff" } }
Logs "[BCX] [Jason] Stuff"

logger.debug "Person attributes hash: #{@person.attributes.inspect}"
logger.debug "Person attributes hash: #{@person.attributes.inspect}"

logger.debug {"Person attributes hash: #{@person.attributes.inspect}"}
logger.debug {"Person attributes hash: #{@person.attributes.inspect}"}

$ gem install byebug
$ gem install byebug

Inside any Rails application you can then invoke the debugger by calling the byebug method.

Here's an example:

3.2 The Shell
As soon as your application calls the byebug method, the debugger will be started in a debugger shell inside
the terminal window where you launched your application server, and you will be placed at the debugger's
prompt (byebug). Before the prompt, the code around the line that is about to be run will be displayed and
the current line will be marked by '=>', like this:

class PeopleController < ApplicationController
 def new
 byebug
 @person = Person.new
 end
end
class PeopleController < ApplicationController
 def new
 byebug
 @person = Person.new
 end
end

[1, 10] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }

(byebug)
[1, 10] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }

(byebug)

If you got there by a browser request, the browser tab containing the request will be hung until the debugger
has finished and the trace has finished processing the entire request.

For example:

=> Booting Puma
=> Rails 5.1.0 application starting in development on
http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
Puma starting in single mode...
* Version 3.4.0 (ruby 2.3.1-p112), codename: Owl Bowl Brawl
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop
Started GET "/" for 127.0.0.1 at 2014-04-11 13:11:48 +0200
 ActiveRecord::SchemaMigration Load (0.2ms) SELECT
"schema_migrations".* FROM "schema_migrations"
Processing by ArticlesController#index as HTML

[3, 12] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }
(byebug)
=> Booting Puma
=> Rails 5.1.0 application starting in development on
http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
Puma starting in single mode...
* Version 3.4.0 (ruby 2.3.1-p112), codename: Owl Bowl Brawl
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop
Started GET "/" for 127.0.0.1 at 2014-04-11 13:11:48 +0200
 ActiveRecord::SchemaMigration Load (0.2ms) SELECT
"schema_migrations".* FROM "schema_migrations"
Processing by ArticlesController#index as HTML

[3, 12] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb

Now it's time to explore your application. A good place to start is by asking the debugger for help. Type:
help

 12: format.json { render json: @articles }
(byebug)

(byebug) help

 break -- Sets breakpoints in the source code
 catch -- Handles exception catchpoints
 condition -- Sets conditions on breakpoints
 continue -- Runs until program ends, hits a breakpoint or reaches a
line
 debug -- Spawns a subdebugger
 delete -- Deletes breakpoints
 disable -- Disables breakpoints or displays
 display -- Evaluates expressions every time the debugger stops
 down -- Moves to a lower frame in the stack trace
 edit -- Edits source files
 enable -- Enables breakpoints or displays
 finish -- Runs the program until frame returns
 frame -- Moves to a frame in the call stack
 help -- Helps you using byebug
 history -- Shows byebug's history of commands
 info -- Shows several informations about the program being
debugged
 interrupt -- Interrupts the program
 irb -- Starts an IRB session
 kill -- Sends a signal to the current process
 list -- Lists lines of source code
 method -- Shows methods of an object, class or module
 next -- Runs one or more lines of code
 pry -- Starts a Pry session
 quit -- Exits byebug
 restart -- Restarts the debugged program
 save -- Saves current byebug session to a file
 set -- Modifies byebug settings
 show -- Shows byebug settings
 source -- Restores a previously saved byebug session
 step -- Steps into blocks or methods one or more times
 thread -- Commands to manipulate threads
 tracevar -- Enables tracing of a global variable
 undisplay -- Stops displaying all or some expressions when program
stops
 untracevar -- Stops tracing a global variable
 up -- Moves to a higher frame in the stack trace
 var -- Shows variables and its values
 where -- Displays the backtrace

(byebug)
(byebug) help

 break -- Sets breakpoints in the source code
 catch -- Handles exception catchpoints
 condition -- Sets conditions on breakpoints
 continue -- Runs until program ends, hits a breakpoint or reaches a

To see the previous ten lines you should type list- (or l-).

line
 debug -- Spawns a subdebugger
 delete -- Deletes breakpoints
 disable -- Disables breakpoints or displays
 display -- Evaluates expressions every time the debugger stops
 down -- Moves to a lower frame in the stack trace
 edit -- Edits source files
 enable -- Enables breakpoints or displays
 finish -- Runs the program until frame returns
 frame -- Moves to a frame in the call stack
 help -- Helps you using byebug
 history -- Shows byebug's history of commands
 info -- Shows several informations about the program being
debugged
 interrupt -- Interrupts the program
 irb -- Starts an IRB session
 kill -- Sends a signal to the current process
 list -- Lists lines of source code
 method -- Shows methods of an object, class or module
 next -- Runs one or more lines of code
 pry -- Starts a Pry session
 quit -- Exits byebug
 restart -- Restarts the debugged program
 save -- Saves current byebug session to a file
 set -- Modifies byebug settings
 show -- Shows byebug settings
 source -- Restores a previously saved byebug session
 step -- Steps into blocks or methods one or more times
 thread -- Commands to manipulate threads
 tracevar -- Enables tracing of a global variable
 undisplay -- Stops displaying all or some expressions when program
stops
 untracevar -- Stops tracing a global variable
 up -- Moves to a higher frame in the stack trace
 var -- Shows variables and its values
 where -- Displays the backtrace

(byebug)

(byebug) l-

[1, 10] in /PathTo/project/app/controllers/articles_controller.rb
 1 class ArticlesController < ApplicationController
 2 before_action :set_article, only: [:show, :edit, :update,
:destroy]
 3
 4 # GET /articles
 5 # GET /articles.json
 6 def index
 7 byebug
 8 @articles = Article.find_recent
 9
 10 respond_to do |format|
(byebug) l-

This way you can move inside the file and see the code above the line where you added the byebug call.
Finally, to see where you are in the code again you can type list=

3.3 The Context
When you start debugging your application, you will be placed in different contexts as you go through the
different parts of the stack.

The debugger creates a context when a stopping point or an event is reached. The context has information
about the suspended program which enables the debugger to inspect the frame stack, evaluate variables

[1, 10] in /PathTo/project/app/controllers/articles_controller.rb
 1 class ArticlesController < ApplicationController
 2 before_action :set_article, only: [:show, :edit, :update,
:destroy]
 3
 4 # GET /articles
 5 # GET /articles.json
 6 def index
 7 byebug
 8 @articles = Article.find_recent
 9
 10 respond_to do |format|

(byebug) list=

[3, 12] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }
(byebug)
(byebug) list=

[3, 12] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }
(byebug)

from the perspective of the debugged program, and know the place where the debugged program is
stopped.

At any time you can call the backtrace command (or its alias where) to print the backtrace of the
application. This can be very helpful to know how you got where you are. If you ever wondered about how
you got somewhere in your code, then backtrace will supply the answer.

The current frame is marked with -->. You can move anywhere you want in this trace (thus changing the
context) by using the frame n command, where n is the specified frame number. If you do that, byebug will
display your new context.

(byebug) where
--> #0 ArticlesController.index
 at /PathToProject/app/controllers/articles_controller.rb:8
 #1
ActionController::BasicImplicitRender.send_action(method#String,
*args#Array)
 at /PathToGems/actionpack-
5.1.0/lib/action_controller/metal/basic_implicit_render.rb:4
 #2 AbstractController::Base.process_action(action#NilClass,
*args#Array)
 at /PathToGems/actionpack-
5.1.0/lib/abstract_controller/base.rb:181
 #3 ActionController::Rendering.process_action(action, *args)
 at /PathToGems/actionpack-
5.1.0/lib/action_controller/metal/rendering.rb:30
...
(byebug) where
--> #0 ArticlesController.index
 at /PathToProject/app/controllers/articles_controller.rb:8
 #1
ActionController::BasicImplicitRender.send_action(method#String,
*args#Array)
 at /PathToGems/actionpack-
5.1.0/lib/action_controller/metal/basic_implicit_render.rb:4
 #2 AbstractController::Base.process_action(action#NilClass,
*args#Array)
 at /PathToGems/actionpack-
5.1.0/lib/abstract_controller/base.rb:181
 #3 ActionController::Rendering.process_action(action, *args)
 at /PathToGems/actionpack-
5.1.0/lib/action_controller/metal/rendering.rb:30
...

(byebug) frame 2

[176, 185] in /PathToGems/actionpack-
5.1.0/lib/abstract_controller/base.rb
 176: # is the intended way to override action dispatching.
 177: #
 178: # Notice that the first argument is the method to be
dispatched
 179: # which is *not* necessarily the same as the action name.
 180: def process_action(method_name, *args)

The available variables are the same as if you were running the code line by line. After all, that's what
debugging is.

You can also use up [n] and down [n] commands in order to change the context n frames up or down the
stack respectively. n defaults to one. Up in this case is towards higher-numbered stack frames, and down is
towards lower-numbered stack frames.

3.4 Threads
The debugger can list, stop, resume and switch between running threads by using the thread command (or
the abbreviated th). This command has a handful of options:

thread: shows the current thread.
thread list: is used to list all threads and their statuses. The current thread is marked with a plus
(+) sign.
thread stop n: stops thread n.
thread resume n: resumes thread n.
thread switch n: switches the current thread context to n.

This command is very helpful when you are debugging concurrent threads and need to verify that there are
no race conditions in your code.

3.5 Inspecting Variables
Any expression can be evaluated in the current context. To evaluate an expression, just type it!

=> 181: send_action(method_name, *args)
 182: end
 183:
 184: # Actually call the method associated with the action.
Override
 185: # this method if you wish to change how action methods
are called,
(byebug)
(byebug) frame 2

[176, 185] in /PathToGems/actionpack-
5.1.0/lib/abstract_controller/base.rb
 176: # is the intended way to override action dispatching.
 177: #
 178: # Notice that the first argument is the method to be
dispatched
 179: # which is *not* necessarily the same as the action name.
 180: def process_action(method_name, *args)
=> 181: send_action(method_name, *args)
 182: end
 183:
 184: # Actually call the method associated with the action.
Override
 185: # this method if you wish to change how action methods
are called,
(byebug)

This example shows how you can print the instance variables defined within the current context:

As you may have figured out, all of the variables that you can access from a controller are displayed. This list
is dynamically updated as you execute code. For example, run the next line using next (you'll learn more
about this command later in this guide).

[3, 12] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }

(byebug) instance_variables
[:@_action_has_layout, :@_routes, :@_request, :@_response,
:@_lookup_context,
 :@_action_name, :@_response_body,
:@marked_for_same_origin_verification,
 :@_config]
[3, 12] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }

(byebug) instance_variables
[:@_action_has_layout, :@_routes, :@_request, :@_response,
:@_lookup_context,
 :@_action_name, :@_response_body,
:@marked_for_same_origin_verification,
 :@_config]

(byebug) next

[5, 14] in /PathTo/project/app/controllers/articles_controller.rb
 5 # GET /articles.json
 6 def index
 7 byebug
 8 @articles = Article.find_recent
 9
=> 10 respond_to do |format|
 11 format.html # index.html.erb
 12 format.json { render json: @articles }

And then ask again for the instance_variables:

Now @articles is included in the instance variables, because the line defining it was executed.

You can also step into irb mode with the command irb (of course!). This will start an irb session within the
context you invoked it.

The var method is the most convenient way to show variables and their values. Let's have byebug help us
with it.

 13 end
 14 end
 15
(byebug)
(byebug) next

[5, 14] in /PathTo/project/app/controllers/articles_controller.rb
 5 # GET /articles.json
 6 def index
 7 byebug
 8 @articles = Article.find_recent
 9
=> 10 respond_to do |format|
 11 format.html # index.html.erb
 12 format.json { render json: @articles }
 13 end
 14 end
 15
(byebug)

(byebug) instance_variables
[:@_action_has_layout, :@_routes, :@_request, :@_response,
:@_lookup_context,
 :@_action_name, :@_response_body,
:@marked_for_same_origin_verification,
 :@_config, :@articles]
(byebug) instance_variables
[:@_action_has_layout, :@_routes, :@_request, :@_response,
:@_lookup_context,
 :@_action_name, :@_response_body,
:@marked_for_same_origin_verification,
 :@_config, :@articles]

(byebug) help var

 [v]ar <subcommand>

 Shows variables and its values

 var all -- Shows local, global and instance variables of self.
 var args -- Information about arguments of the current scope

This is a great way to inspect the values of the current context variables. For example, to check that we
have no local variables currently defined:

You can also inspect for an object method this way:

 var const -- Shows constants of an object.
 var global -- Shows global variables.
 var instance -- Shows instance variables of self or a specific
object.
 var local -- Shows local variables in current scope.
(byebug) help var

 [v]ar <subcommand>

 Shows variables and its values

 var all -- Shows local, global and instance variables of self.
 var args -- Information about arguments of the current scope
 var const -- Shows constants of an object.
 var global -- Shows global variables.
 var instance -- Shows instance variables of self or a specific
object.
 var local -- Shows local variables in current scope.

(byebug) var local
(byebug)
(byebug) var local
(byebug)

(byebug) var instance Article.new
@_start_transaction_state = {}
@aggregation_cache = {}
@association_cache = {}
@attributes = #<ActiveRecord::AttributeSet:0x007fd0682a9b18
@attributes={"id"=>#
<ActiveRecord::Attribute::FromDatabase:0x007fd0682a9a00 @name="id",
@value_be...
@destroyed = false
@destroyed_by_association = nil
@marked_for_destruction = false
@new_record = true
@readonly = false
@transaction_state = nil
(byebug) var instance Article.new
@_start_transaction_state = {}
@aggregation_cache = {}
@association_cache = {}
@attributes = #<ActiveRecord::AttributeSet:0x007fd0682a9b18
@attributes={"id"=>#
<ActiveRecord::Attribute::FromDatabase:0x007fd0682a9a00 @name="id",
@value_be...
@destroyed = false

You can also use display to start watching variables. This is a good way of tracking the values of a variable
while the execution goes on.

The variables inside the displayed list will be printed with their values after you move in the stack. To stop
displaying a variable use undisplay n where n is the variable number (1 in the last example).

3.6 Step by Step
Now you should know where you are in the running trace and be able to print the available variables. But
let's continue and move on with the application execution.

Use step (abbreviated s) to continue running your program until the next logical stopping point and return
control to the debugger. next is similar to step, but while step stops at the next line of code executed,
doing just a single step, next moves to the next line without descending inside methods.

For example, consider the following situation:

@destroyed_by_association = nil
@marked_for_destruction = false
@new_record = true
@readonly = false
@transaction_state = nil

(byebug) display @articles
1: @articles = nil
(byebug) display @articles
1: @articles = nil

Started GET "/" for 127.0.0.1 at 2014-04-11 13:39:23 +0200
Processing by ArticlesController#index as HTML

[1, 6] in /PathToProject/app/models/article.rb
 1: class Article < ApplicationRecord
 2: def self.find_recent(limit = 10)
 3: byebug
=> 4: where('created_at > ?', 1.week.ago).limit(limit)
 5: end
 6: end

(byebug)
Started GET "/" for 127.0.0.1 at 2014-04-11 13:39:23 +0200
Processing by ArticlesController#index as HTML

[1, 6] in /PathToProject/app/models/article.rb
 1: class Article < ApplicationRecord
 2: def self.find_recent(limit = 10)
 3: byebug
=> 4: where('created_at > ?', 1.week.ago).limit(limit)
 5: end
 6: end

If we use next, we won't go deep inside method calls. Instead, byebug will go to the next line within the
same context. In this case, it is the last line of the current method, so byebug will return to the next line of
the caller method.

If we use step in the same situation, byebug will literally go to the next Ruby instruction to be executed -- in
this case, Active Support's week method.

(byebug)

(byebug) next
[4, 13] in /PathToProject/app/controllers/articles_controller.rb
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: @articles = Article.find_recent
 8:
=> 9: respond_to do |format|
 10: format.html # index.html.erb
 11: format.json { render json: @articles }
 12: end
 13: end

(byebug)
(byebug) next
[4, 13] in /PathToProject/app/controllers/articles_controller.rb
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: @articles = Article.find_recent
 8:
=> 9: respond_to do |format|
 10: format.html # index.html.erb
 11: format.json { render json: @articles }
 12: end
 13: end

(byebug)

(byebug) step

[49, 58] in /PathToGems/activesupport-
5.1.0/lib/active_support/core_ext/numeric/time.rb
 49:
 50: # Returns a Duration instance matching the number of weeks
provided.
 51: #
 52: # 2.weeks # => 14 days
 53: def weeks
=> 54: ActiveSupport::Duration.weeks(self)
 55: end
 56: alias :week :weeks
 57:
 58: # Returns a Duration instance matching the number of

This is one of the best ways to find bugs in your code.

You can also use step n or next n to move forward n steps at once.

3.7 Breakpoints
A breakpoint makes your application stop whenever a certain point in the program is reached. The debugger
shell is invoked in that line.

You can add breakpoints dynamically with the command break (or just b). There are 3 possible ways of
adding breakpoints manually:

break n: set breakpoint in line number n in the current source file.
break file:n [if expression]: set breakpoint in line number n inside file named file. If an
expression is given it must evaluated to true to fire up the debugger.
break class(.|\#)method [if expression]: set breakpoint in method (. and # for class and
instance method respectively) defined in class. The expression works the same way as with file:n.

For example, in the previous situation

fortnights provided.
(byebug)
(byebug) step

[49, 58] in /PathToGems/activesupport-
5.1.0/lib/active_support/core_ext/numeric/time.rb
 49:
 50: # Returns a Duration instance matching the number of weeks
provided.
 51: #
 52: # 2.weeks # => 14 days
 53: def weeks
=> 54: ActiveSupport::Duration.weeks(self)
 55: end
 56: alias :week :weeks
 57:
 58: # Returns a Duration instance matching the number of
fortnights provided.
(byebug)

[4, 13] in /PathToProject/app/controllers/articles_controller.rb
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: @articles = Article.find_recent
 8:
=> 9: respond_to do |format|
 10: format.html # index.html.erb
 11: format.json { render json: @articles }
 12: end
 13: end

(byebug) break 11

Use info breakpoints to list breakpoints. If you supply a number, it lists that breakpoint. Otherwise it lists
all breakpoints.

To delete breakpoints: use the command delete n to remove the breakpoint number n. If no number is
specified, it deletes all breakpoints that are currently active.

You can also enable or disable breakpoints:

enable breakpoints [n [m [...]]]: allows a specific breakpoint list or all breakpoints to stop
your program. This is the default state when you create a breakpoint.
disable breakpoints [n [m [...]]]: make certain (or all) breakpoints have no effect on your
program.

3.8 Catching Exceptions
The command catch exception-name (or just cat exception-name) can be used to intercept an
exception of type exception-name when there would otherwise be no handler for it.

To list all active catchpoints use catch.

Successfully created breakpoint with id 1
[4, 13] in /PathToProject/app/controllers/articles_controller.rb
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: @articles = Article.find_recent
 8:
=> 9: respond_to do |format|
 10: format.html # index.html.erb
 11: format.json { render json: @articles }
 12: end
 13: end

(byebug) break 11
Successfully created breakpoint with id 1

(byebug) info breakpoints
Num Enb What
1 y at /PathToProject/app/controllers/articles_controller.rb:11
(byebug) info breakpoints
Num Enb What
1 y at /PathToProject/app/controllers/articles_controller.rb:11

(byebug) delete 1
(byebug) info breakpoints
No breakpoints.
(byebug) delete 1
(byebug) info breakpoints
No breakpoints.

3.9 Resuming Execution
There are two ways to resume execution of an application that is stopped in the debugger:

continue [n]: resumes program execution at the address where your script last stopped; any
breakpoints set at that address are bypassed. The optional argument n allows you to specify a line
number to set a one-time breakpoint which is deleted when that breakpoint is reached.
finish [n]: execute until the selected stack frame returns. If no frame number is given, the
application will run until the currently selected frame returns. The currently selected frame starts
out the most-recent frame or 0 if no frame positioning (e.g up, down or frame) has been performed.
If a frame number is given it will run until the specified frame returns.

3.10 Editing
Two commands allow you to open code from the debugger into an editor:

edit [file:n]: edit file named file using the editor specified by the EDITOR environment variable.
A specific line n can also be given.

3.11 Quitting
To exit the debugger, use the quit command (abbreviated to q). Or, type q! to bypass the Really quit?
(y/n) prompt and exit unconditionally.

A simple quit tries to terminate all threads in effect. Therefore your server will be stopped and you will have
to start it again.

3.12 Settings
byebug has a few available options to tweak its behavior:

(byebug) help set

 set <setting> <value>

 Modifies byebug settings

 Boolean values take "on", "off", "true", "false", "1" or "0". If you
 don't specify a value, the boolean setting will be enabled.
Conversely,
 you can use "set no<setting>" to disable them.

 You can see these environment settings with the "show" command.

 List of supported settings:

 autosave -- Automatically save command history record on exit
 autolist -- Invoke list command on every stop
 width -- Number of characters per line in byebug's output
 autoirb -- Invoke IRB on every stop
 basename -- <file>:<line> information after every stop uses
short paths
 linetrace -- Enable line execution tracing
 autopry -- Invoke Pry on every stop

You can save these settings in an .byebugrc file in your home directory. The debugger reads these global
settings when it starts. For example:

 stack_on_error -- Display stack trace when `eval` raises an exception
 fullpath -- Display full file names in backtraces
 histfile -- File where cmd history is saved to. Default:
./.byebug_history
 listsize -- Set number of source lines to list by default
 post_mortem -- Enable/disable post-mortem mode
 callstyle -- Set how you want method call parameters to be
displayed
 histsize -- Maximum number of commands that can be stored in
byebug history
 savefile -- File where settings are saved to. Default:
~/.byebug_save
(byebug) help set

 set <setting> <value>

 Modifies byebug settings

 Boolean values take "on", "off", "true", "false", "1" or "0". If you
 don't specify a value, the boolean setting will be enabled.
Conversely,
 you can use "set no<setting>" to disable them.

 You can see these environment settings with the "show" command.

 List of supported settings:

 autosave -- Automatically save command history record on exit
 autolist -- Invoke list command on every stop
 width -- Number of characters per line in byebug's output
 autoirb -- Invoke IRB on every stop
 basename -- <file>:<line> information after every stop uses
short paths
 linetrace -- Enable line execution tracing
 autopry -- Invoke Pry on every stop
 stack_on_error -- Display stack trace when `eval` raises an exception
 fullpath -- Display full file names in backtraces
 histfile -- File where cmd history is saved to. Default:
./.byebug_history
 listsize -- Set number of source lines to list by default
 post_mortem -- Enable/disable post-mortem mode
 callstyle -- Set how you want method call parameters to be
displayed
 histsize -- Maximum number of commands that can be stored in
byebug history
 savefile -- File where settings are saved to. Default:
~/.byebug_save

set callstyle short
set listsize 25
set callstyle short
set listsize 25

4 Debugging with the web-console gem
Web Console is a bit like byebug, but it runs in the browser. In any page you are developing, you can request
a console in the context of a view or a controller. The console would be rendered next to your HTML
content.

4.1 Console
Inside any controller action or view, you can invoke the console by calling the console method.

For example, in a controller:

Or in a view:

This will render a console inside your view. You don't need to care about the location of the console call; it
won't be rendered on the spot of its invocation but next to your HTML content.

The console executes pure Ruby code: You can define and instantiate custom classes, create new models
and inspect variables.

Only one console can be rendered per request. Otherwise web-console will raise an error on the second
console invocation.

4.2 Inspecting Variables
You can invoke instance_variables to list all the instance variables available in your context. If you want
to list all the local variables, you can do that with local_variables.

4.3 Settings

class PostsController < ApplicationController
 def new
 console
 @post = Post.new
 end
end
class PostsController < ApplicationController
 def new
 console
 @post = Post.new
 end
end

<% console %>

<h2>New Post</h2>
<% console %>

<h2>New Post</h2>

config.web_console.whitelisted_ips: Authorized list of IPv4 or IPv6 addresses and networks
(defaults: 127.0.0.1/8, ::1).
config.web_console.whiny_requests: Log a message when a console rendering is prevented
(defaults: true).

Since web-console evaluates plain Ruby code remotely on the server, don't try to use it in production.

5 Debugging Memory Leaks
A Ruby application (on Rails or not), can leak memory — either in the Ruby code or at the C code level.

In this section, you will learn how to find and fix such leaks by using tool such as Valgrind.

5.1 Valgrind
Valgrind is an application for detecting C-based memory leaks and race conditions.

There are Valgrind tools that can automatically detect many memory management and threading bugs, and
profile your programs in detail. For example, if a C extension in the interpreter calls malloc() but doesn't
properly call free(), this memory won't be available until the app terminates.

For further information on how to install Valgrind and use with Ruby, refer to Valgrind and Ruby by Evan
Weaver.

6 Plugins for Debugging
There are some Rails plugins to help you to find errors and debug your application. Here is a list of useful
plugins for debugging:

Footnotes Every Rails page has footnotes that give request information and link back to your
source via TextMate.
Query Trace Adds query origin tracing to your logs.
Query Reviewer This Rails plugin not only runs "EXPLAIN" before each of your select queries in
development, but provides a small DIV in the rendered output of each page with the summary of
warnings for each query that it analyzed.
Exception Notifier Provides a mailer object and a default set of templates for sending email
notifications when errors occur in a Rails application.
Better Errors Replaces the standard Rails error page with a new one containing more contextual
information, like source code and variable inspection.
RailsPanel Chrome extension for Rails development that will end your tailing of development.log.
Have all information about your Rails app requests in the browser — in the Developer Tools panel.
Provides insight to db/rendering/total times, parameter list, rendered views and more.
Pry An IRB alternative and runtime developer console.

7 References
byebug Homepage
web-console Homepage

Feedback

http://valgrind.org/
http://blog.evanweaver.com/articles/2008/02/05/valgrind-and-ruby/
https://github.com/josevalim/rails-footnotes
https://github.com/ruckus/active-record-query-trace/tree/master
https://github.com/nesquena/query_reviewer
https://github.com/smartinez87/exception_notification/tree/master
https://github.com/charliesome/better_errors
https://github.com/dejan/rails_panel
https://github.com/pry/pry
https://github.com/deivid-rodriguez/byebug
https://github.com/rails/web-console

You're encouraged to help improve the quality of this guide.

Please contribute if you see any typos or factual errors. To get started, you can read our documentation
contributions section.

You may also find incomplete content or stuff that is not up to date. Please do add any missing
documentation for master. Make sure to check Edge Guides first to verify if the issues are already fixed or
not on the master branch. Check the Ruby on Rails Guides Guidelines for style and conventions.

If for whatever reason you spot something to fix but cannot patch it yourself, please open an issue.

And last but not least, any kind of discussion regarding Ruby on Rails documentation is very welcome on
the rubyonrails-docs mailing list.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

"Rails", "Ruby on Rails", and the Rails logo are trademarks of David Heinemeier Hansson. All rights reserved.

http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#contributing-to-the-rails-documentation
http://edgeguides.rubyonrails.org/
https://guides.rubyonrails.org/ruby_on_rails_guides_guidelines.html
https://github.com/rails/rails/issues
https://groups.google.com/forum/#!forum/rubyonrails-docs
https://creativecommons.org/licenses/by-sa/4.0/

