
www.allitebooks.com

http://www.allitebooks.org

Learning Ruby

www.allitebooks.com

http://www.allitebooks.org

Other resources from O’Reilly

Related titles Ruby Cookbook™

Ruby in a Nutshell

Ruby on Rails: Up and
Running

Ajax on Rails

Rails Cookbook™

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

www.allitebooks.com

http://www.allitebooks.org

Learning Ruby

Michael Fitzgerald

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Learning Ruby
by Michael Fitzgerald

Copyright © 2007 Michael Fitzgerald. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Lydia Onofrei
Proofreader: Lydia Onofrei
Indexer: John Bickelhaupt

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

May 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning Ruby, the image of a giraffe, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52986-4

ISBN-13: 978-0-596-52986-4

[M]

www.allitebooks.com

http://www.allitebooks.org

Robert Wayne Darrah

1950–2006

Till we meet again

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Table of Contents

Preface . xi

1. Ruby Basics . 1
Hello, Matz 2
Interactive Ruby 12
Resources 13
Installing Ruby 15
Permission Denied 20
Associating File Types on Windows 21
Review Questions 22

2. A Quick Tour of Ruby . 23
Ruby Is Object-Oriented 23
Ruby’s Reserved Words 26
Comments 27
Variables 28
Strings 30
Numbers and Operators 33
Conditional Statements 34
Arrays and Hashes 34
Methods 35
Blocks 40
Symbols 43
Exception Handling 44
Ruby Documentation 45
Review Questions 45

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

3. Conditional Love . 47
The if Statement 47
The case Statement 51
The while Loop 52
The loop Method 55
The for loop 56
Execution Before or After a Program 59
Review Questions 59

4. Strings . 60
Creating Strings 60
Concatenating Strings 63
Accessing Strings 63
Comparing Strings 65
Manipulating Strings 66
Case Conversion 70
Managing Whitespace, etc. 71
Incrementing Strings 73
Converting Strings 74
Regular Expressions 74
1.9 and Beyond 78
Review Questions 78

5. Math . 79
Class Hierarchy and Included Modules 80
Converting Numbers 81
Basic Math Operations 81
Ranges 85
Inquiring About Numbers 86
More Math Methods 88
Math Functions 88
Rational Numbers 90
Prime Numbers 91
Review Questions 92

6. Arrays . 93
Creating Arrays 94
Accessing Elements 97
Concatenation 99

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | ix

Set Operations 99
Unique Elements 100
Blow Your Stack 100
Comparing Arrays 101
Changing Elements 101
Deleting Elements 103
Arrays and Blocks 103
Sorting Things and About Face 104
Multidimensional Arrays 104
1.9 and Beyond 105
Other Array Methods 105
Review Questions 105

7. Hashes . 107
Creating Hashes 107
Accessing Hashes 108
Iterating over Hashes 109
Changing Hashes 110
Converting Hashes to Other Classes 113
1.9 and Beyond 113
Other Hash Methods 114
Review Questions 114

8. Working with Files . 115
Directories 115
Creating a New File 117
Opening an Existing File 117
Deleting and Renaming Files 120
File Inquiries 120
Changing File Modes and Owner 121
The IO Class 123
Review Questions 124

9. Classes . 125
Defining the Class 126
Instance Variables 127
Accessors 129
Class Variables 130
Class Methods 131

www.allitebooks.com

http://www.allitebooks.org

x | Table of Contents

Inheritance 133
Modules 134
public, private, or protected 137
Review Questions 138

10. More Fun with Ruby . 139
Formatting Output with sprintf 139
Processing XML 142
Date and Time 147
Reflection 151
Using Tk 154
Metaprogramming 157
RubyGems 158
Exception Handling 162
Creating Documentation with RDoc 164
Embedded Ruby 171
Review Questions 174

11. A Short Guide to Ruby on Rails . 175
Where Did Rails Come From? 175
Why Rails? 176
What Have Other Folks Done with Rails? 180
Hosting Rails 182
Installing Rails 182
Learning Rails 185
A Brief Tutorial 186
Review Questions 193

A. Ruby Reference . 195

B. Answers to Review Questions . 214

Glossary . 219

Index . 227

xi

Preface1

Ruby has gotten a lot of attention since the appearance of Ruby on Rails, the web
application framework written in Ruby. The attention is way past due. Ruby has
been around as long as Java but enjoyed only limited attention outside of Japan until
around 2000. In the last few years, Ruby’s popularity has steadily grown, and with
good reason.

Who Should Read This Book?
Generally, I figure two kinds of readers will buy this book: experienced program-
mers who want to learn Ruby, and new programmers who want to learn to program.
I have the interesting job of catering to both while trying not to tick off either. It’s a
balancing act, and this is how I’ll handle it: I am going to address you as if you are
already a competent programmer, but I’ll also provide plenty of help for beginners,
mostly in the form of notes or sidebars. I’ll let you know when you can skip a sec-
tion if you are already a heavy hitter.

If you’re a fairly experienced programmer, you might just want to read the code
examples first, from the beginning of the book to the end, skimming the explana-
tions surrounding the examples as needed. You should be able to see what’s going
on fairly quickly just by keeping your eyes on the code. The code is laid out in a
more or less logical fashion (to me at least), so you should be able to figure out Ruby
in fairly short order. If you are new to programming, I have attempted to make your
job a little easier by explaining things as I go along.

How This Book Works
Do you have to know everything about a car before you start driving? Did you have
to know anything about fuel injection, combustion, or timing belts to drive? Of
course not.

xii | Preface

It’s the same with programming in a new language. I am going to show you lots of
Ruby programs, many of them just one-liners, and then tell you how and why they
work—just enough to get you rolling down the road. I take this approach because I
believe we do most of our learning by observing, imitating, and playing. I plan to do
a lot of that in this book.

You should know up front that this is a just-get-in-and-drive book. In other words,
you can drive a car even if you don’t know whether its got six or eight cylinders.

David Heinemeier Hansson, inventor of Ruby on Rails, said something I like: “Peo-
ple learn by changing a little thing, reloading, and seeing the change.” He’s right on.
That’s my experience: over the years I have learned more by hacking code than by
reading about it.

I also move as quickly as possible, not getting bogged down in the quicksand of
details. The details will come in time, as they are needed; the main thing I want to
give you now is forward movement and momentum.

If you just follow along with what I’m doing, running the programs and altering
them to your taste, you’ll learn quickly. The more you run these programs, the more
fluency you’ll develop, and before long, you’ll start thinking and even dreaming in
Ruby. Then you’ll just take off on your own.

The latest stable version at the time I am writing this is 1.8.6. That’s the version I’ll
be using. You can probably get along using an older version, but unless you have 1.8.6
or later installed, I can’t guarantee that all the programs in this book will work as
advertised, though they most likely will.

About the Examples
I think we learn best by observing what others do, then imitating what we observe.
That’s how we learn as children, anyway. And that’s why you’ll find code exam-
ples—to observe and imitate—on nearly every page of this book.

Many of the examples are available for download from http://www.oreilly.com/
catalog/9780596529864. The idea is that you will have enough examples in your
hands to start most of the basic programming tasks.

How This Book Is Organized
Learning Ruby is organized into 11 chapters. A brief synopsis of each follows:

Chapter 1, Ruby Basics
Introduces many Ruby basics, such as where to get Ruby, how to install it, and
how to run a large cross-section of programs to enable you to start using Ruby
immediately.

http://www.oreilly.com/catalog/learningruby/
http://www.oreilly.com/catalog/learningruby/

Preface | xiii

Chapter 2, A Quick Tour of Ruby
Gallops over the Ruby terrain at a brisk pace, covering briefly the most impor-
tant features of Ruby.

Chapter 3, Conditional Love
Explains and demonstrates how to use conditionals (like if and while) in Ruby,
including looping mechanisms.

Chapter 4, Strings
Introduces how to manipulate strings in Ruby (includes a section on regular
expressions).

Chapter 5, Math
Shows you how to use operators, basic math functions, functions from the Math
module, rational numbers, etc.

Chapter 6, Arrays
Talks you through Ruby arrays.

Chapter 7, Hashes
Demonstrates hashes in detail.

Chapter 8, Working with Files
Reveals how to process files with Ruby, including reading and writing files, and
so on.

Chapter 9, Classes
Discusses Ruby classes in detail, including a tiny introduction to object-oriented
programming (OOP), instance variables, instance methods, class variables, class
methods, modules, and mixins.

Chapter 10, More Fun with Ruby
Introduces a variety of topics of interest, including RubyGems, reflection,
metaprogramming, exception handling, and more.

Chapter 11, A Short Guide to Ruby on Rails
Gets you acquainted with some of the essentials of Rails and includes a short
tutorial. (You have to give credit to Ruby on Rails for improving the visibility of
Ruby.)

Appendix A, Ruby Reference
Presents all the reference material from the book in one location.

Appendix B, Answers to Review Questions
Provides answers to the review questions found at the end of the chapters (more
than 100 questions and answers).

Glossary
Provides a list of terms related to Ruby programming and their definitions.

xiv | Preface

Conventions Used in This Book
The following font conventions are used in this book:

Italic is used for:

• Pathnames and filenames (such as program names)

• Internet addresses, such as domain names and URLs

• New terms where they are defined, or for emphasis

Constant width is used for:

• Command lines and options that should be typed verbatim in a file or in irb

• Names and keywords in Ruby programs, including method names, variable
names, and class names

Constant width italic is used for:

• User-supplied values

Constant width bold is used to:

• Draw attention to parts of programs

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (Fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596529864

http://www.oreilly.com/catalog/9780596529684

Preface | xv

To comment or ask technical questions about this book send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
Once again, I want to thank my editor Simon St.Laurent for giving me the chance to
write this book. Simon’s encouragement has kept me afloat through four book
projects!

I also appreciate the comments from the technical reviewers Ryan Waldron and Joey
Franklin. They hauled me back on deck when I was floundering in heavy seas.
Thanks, guys.

Finally, and most importantly, I want to thank my wife, Cristi, and daughters,
Melissa, Amy, and Aubrey, for supporting me and believing in me. You make it all
worthwhile.

mailto:bookquestions@oreilly.com
http://www.oreilly.com

1

Chapter 1 CHAPTER 1

Ruby Basics1

Perhaps like you, I’ve learned to program in a number of languages over the years—
BASIC, FORTRAN, C, C++, C#, Java, and JavaScript among others—but so far
Ruby is my favorite. It has been the most fun to learn and use. Why? Because of its
syntax. If you have a background in a variety of other languages, Ruby is easy to fig-
ure out. And it’s flexible: Ruby lets you do things in a variety of ways, not just one
way, so you can decide how to do things your way.

Ruby is an interpreted rather than a compiled language. You can call it a scripting
language, an object-oriented language, a refreshing language. It’s not a perfect lan-
guage. It doesn’t have to be. It’s still my favorite. It has that certain je ne sais quoi. If
it didn’t, why would I spend hundreds of hours writing a book about it? Certainly
not for money and fame.

To me, one of the best aspects of Ruby is its composability. Composability is the degree
to which you can express logic by combining and recombining parts of a language (see
James Clark’s “The Design of RELAX NG” at http://www.thaiopensource.com/relaxng/
design.html#section:5). Ruby’s got that, big time.

Also, Ruby isn't under committee or corporate control. It’s open source. It was writ-
ten by Matz, with some help from his friends. (It was written in C, by the way, and
can take C extensions.)

“Matz” is short for Yukihiro Matsumoto (from Japan). He started working on Ruby
in 1993, and first released it to the world in 1995, the same year Java came out. It
took a while for Ruby to emerge in the West, but once it did, around the year 2000,
it started to take off. With the help of people like Dave Thomas, Andy Hunt, Hal
Fulton, and others, Ruby got a foothold. Now it has a fan base.

And Ruby has a killer app. It’s called Ruby on Rails (http://www.rubyonrails.org).
Heard of it? It’s a web application framework for producing web sites with data-
bases quickly and easily. A lot of people really like Rails. Not everyone, but a lot of
people. And those people are discovering that one of the main reasons they like Rails
is because it was written in Ruby.

http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.rubyonrails.org

2 | Chapter 1: Ruby Basics

Hello, Matz
I know many readers are expecting a “Hello, World” example right about now. In
spite of a moral and ethical obligation to provide a “Hello, World” example, I have
decided to change the first example to “Hello, Matz.” Given all that Matz has done
for the programming world, don’t you think he deserves some acknowledgment?

Before you go any further, find out if you already have Ruby installed on your com-
puter. If you are on Mac OS X or a Linux distribution of some sort, it might already
be there, though it’s probably an older version; Tiger (Mac OS X 10.4 or later) ships
with version 1.8.2, for example.

To discover if Ruby is lurking inside your box, just go to a shell prompt on a Unix/
Linux system (this won’t work on a standard Windows system) and type:

$ which ruby

See if you get a reply like this one (good news if you do):

/usr/local/bin/ruby

Or just type a command to check the version of Ruby (this works on Unix/Linux and
Windows):

$ ruby -v

or:

$ ruby --version

If Ruby is installed, you should get an answer that looks like this:

ruby 1.8.6 (2007-03-13 patchlevel 0) [powerpc-darwin8.9.0]

If Ruby is not installed on your box, and you’re a little nervous about
figuring out how to install it on your own, go to the section “Installing
Ruby,” later in this chapter. Follow the instructions there to install
Ruby on your platform. Then come right back!

A Very Short Ruby Program
Now that you have Ruby up and running, type the following line in a plain-text editor
such as TextPad or vim:

puts "Hello, Matz!"

This line of code is a programming statement, an instruction that you want the pro-
gram to carry out. The instruction will print the string Hello, Matz! on your screen,
followed by a newline character.

You can end a statement with a semicolon (;) if you want, just like in C or Java, but
you sure don’t have to: a newline will do fine. (Most Ruby programmers don’t use ;
except when writing multiple statements on one line.)

Hello, Matz | 3

Save the little program in a file as plain text and name it matz.rb. (The .rb file exten-
sion is the conventional extension for Ruby programs.)

It’s a good idea to save the file in a directory or folder where you plan
to do your Ruby work so that all your Ruby files will be readily acces-
sible in one location.

You run the program by running the Ruby interpreter. To do this, type the following
at a shell or command prompt:

$ ruby matz.rb

The output from the program is displayed by default on the screen:

Hello, Matz!

Placing a # at the beginning of a line tells the interpreter to ignore that line:

a nice greeting for Matz
puts "Hello, Matz!"

Add the # and some text following it to your program matz.rb. This is called a com-
ment. Whatever follows the # is hidden from the Ruby interpreter. You’ll learn more
about comments in Chapter 2.

Shebang!
If you run a Ruby program on Windows, you generally have to use the ruby com-
mand before the Ruby filename (unless you associate the file extension .rb with a file
type; to learn how to do this, see “Associating File Types on Windows,” later in this
chapter). You can avoid typing ruby each time on Unix/Linux systems by adding
something called a shebang line (#!) at the top of your Ruby file. Add a shebang line
to the top of matz.rb:

#!/usr/local/bin/ruby
a nice greeting for Matz
puts "Hello, Matz!"

The shebang lets the system know where to find the Ruby interpreter, that is, in /usr/
local/bin, which is a conventional place to install Ruby executables (see “Installing
Ruby on Mac OS X Tiger,” later in this chapter). A more general alternative is #!/usr/
bin/env ruby. Choose what works for you. I use the latter.

As mentioned earlier, Tiger comes installed with an older version of
Ruby, version 1.8.2, which is stored in /usr/bin. We won’t bother
using that version.

Go to a prompt on your Mac or Unix/Linux system and enter the filename by itself:

$ matz.rb

www.allitebooks.com

http://www.allitebooks.org

4 | Chapter 1: Ruby Basics

You’ll get the same answer as before:

Hello, Matz!

If you get a permission denied message when running matz.rb, and you
aren’t sure what to do about it, I’d like to offer you a hand. Go to the
section “Permission Denied” near the end of this chapter to find out
what to do.

I’ll now show you more ways you can output the text Hello, Matz!, which will give
you a glimpse of the power of Ruby. At this point, I won’t get very deep into detail
about what’s going on. Just follow along, typing in and testing as much code as you
want. To test the code, follow these steps.

1. Delete the previous code in matz.rb.

2. Enter the new code.

3. Run the program with the Ruby interpreter from the prompt to see the output.

You’ll be deleting the old code in matz.rb and inserting new code, unless another
Ruby file with a different name is presented in the text. You can either recreate these
other files with the given names, or you can download all the files that come with
this book from http://www.oreilly.com/catalog/9780596529864. After downloading
the ZIP archive, extract the files into the directory or folder of your choice. That’s
where you’ll do your work. Navigate to the directory in a shell or command window
using the cd command.

Issue a System Command
You can run an operating system command with system:

system "echo 'Hello, Matz!'"

Try this with and without single quotes ('), where shown.

You can also submit each part of a command separately, as an argument to system:

system "echo", "Hello,", "Matz!"

The exec command is similar to system, but it replaces the current process and, after
the command is finished, exits—not always what you want to do.

Appending a String
Append one string to another with the + method:

puts "Hello, " + "Matz!"

You can also append a string with the << method:

puts "Hello, " << "Matz!"

Hello, Matz | 5

Multiply
What if you want to print out a line of text three times? How about:

puts "Hello, Matz! " * 3

This would give you:

Hello, Matz! Hello, Matz! Hello, Matz!

Or you could use the times method:

5.times { print "Hello, Matz! " }

It will show your enthusiasm:

Hello, Matz! Hello, Matz! Hello, Matz! Hello, Matz! Hello, Matz!

You could just print one word three times, then add or append more text with +:

puts "Hello, " * 3 + "Matz!"

Then you’d get:

Hello, Hello, Hello, Matz!

Inserting a Shell Command
Let’s insert some output from a shell command:

puts "Hey Matz, I’m running " + `ruby --version`

When you run this, the output from the shell command inside the grave accents or
backticks (`ruby --version`) is inserted into the output:

Hey Matz, I’m running ruby 1.8.6 (2006-08-25) [powerpc-darwin8.8.0]

Using a Variable
You can give a value a name by assigning it to a variable:

hi = "Hello, Matz!"
puts hi # => Hello, Matz!

hi is an example of a local variable. You can tell because its name starts with a lower-
case letter. You’ll learn more about local and other kinds of variables in Chapter 2 in
the section “Variables.”

In code examples, => will always follow a comment character (#).
Whatever follows => is the output you can expect from the line or
block of code, or from the whole program.

Put two or more variables together with the + method:

hi = "Hello, "
person = "Matz!"
puts hi + person # => Hello, Matz!

6 | Chapter 1: Ruby Basics

Expression Substitution
Another way of inserting the value of a variable in a string is with expression substitu-
tion—a very handy feature of Ruby:

person = "Matz!"
puts "Hello, #{person}" # => Hello, Matz!

The #{...} is replaced with the result of the expression inside it. For example, #{2+2}
would yield the result 4.

Using expression substitution, you can grab an argument off the command line and
add it to the output.

#!/usr/bin/env ruby

puts "Hello, #{ARGV[0]}!"

Ruby stores command-line arguments in a predefined Ruby variable called ARGV.
ARGV[0] refers to the first item on the command line, the 0th element in ARGV. Run
the matz.rb program you just edited with an argument to see the results:

$ matz.rb Matz
Hello, Matz!

Formatting a String
You can change the output on the fly with the %s format flag and %:

hi = "Hello, %s"

puts hi % "Matz!" # => "Hello, Matz!"

puts hi % "people!" # => "Hello, people!"

puts hi % "universe!" # => "Hello, universe!"

You can also use % like this:

"%s, %s!" % ["Hello", "Matz"]

% is a method from the String class that formats a string. It is like using sprintf:

sprintf("Hello, %s", "Matz!") # => "Hello, Matz!"

Use printf to print the output to your display (the default standard output device).

printf("Hello, %s", "Matz!") # => Hello, Matz!

You will learn about formatting strings with sprintf in Chapter 10 in the section
“Formatting Output with sprintf.”

Hello, Matz | 7

The eval Method and -e Option
The eval method evaluates a string enclosed in quotes as a Ruby statement or
expression and returns the result. It’s handy for testing.

eval "puts 'Hello, Matz!'" # => Hello, Matz!

Similarly, there is a way you can print Hello, Matz! without using a separate file at
all—with the -e (execute/evaluate) option:

ruby -e "puts 'Hello, Matz!'"

Notice that you use single quotes inside of double quotes when using the -e option.
You can also use multiple -e options:

ruby -e "print 'Hello, '" -e "puts 'Matz!'"

Using both of these will give you the same output as before (or what looks like the
same output):

Hello, Matz!

I used print in the first -e option because it doesn’t add an end-of-line or newline
character at the end of the line like puts does. If I used puts with both -e options, the
result would be:

Hello,
Matz!

You can use multiple statements, separated by semicolons, inside a single -e if you
want:

ruby -e "three = 3; puts 'Matz! ' * three"

This will give you:

Matz! Matz! Matz!

Getting Input from the Keyboard
You can use the gets method to read from standard input (text from your keyboard,
by default).

#!/usr/bin/env ruby

print "Who do you want to say hello to? "
hello = gets
puts "Hello, " + hello

8 | Chapter 1: Ruby Basics

The program prints the message Who do you want to say hello to? The gets method
reads what you type and assigns it to the hello variable. puts prints Hello, plus what-
ever is held in hello, to the standard output (your computer display, by default). Run
the program, then type your answer to the question.

$ matz.rb
Who do you want to say hello to? Matz!
Hello, Matz!

Methods
You’ve had a chance to use a few methods like system and eval; now you’ll define
your own method with def/end:

def hello
 puts "Hello, Matz!"
end

hello # => Hello, Matz!

The method called hello contains a single statement that prints Hello, Matz!. To see
it in action, call the method by invoking its name, hello.

The block
Redefine hello so that it contains only a yield statement, then call the new version of
hello with a block (the code in braces).

def hello
yield

end

hello { puts "Hello, Matz!" } # => Hello, Matz!

The yield statement executes the block of code in braces (that is, { puts "Hello,
Matz!" }) associated with the method call to hello. You’ll learn more about blocks in
the section “Blocks” in Chapter 2.

The each Method
Let’s go a step further. Let’s print all the elements in an array using the each method
followed by a block:

["Hello, ", "Matz!"].each { |e| print e }

An array is an ordered list of elements. The method each uses a block—again, the
code enclosed in braces—to iterate over, or repeatedly process, all the elements in
the array. The |e| represents the elements fed from the array; the print e statement
prints each element in the array. You’ll learn much more about arrays in Chapter 6.

Hello, Matz | 9

The proc
You can convert a block into an object. This object is called a proc (procedure). The
nice thing about procs is that they preserve their execution environment and pack it
along with them. The lambda method is one way to create a proc object. I’ll use it
here to create a now familiar greeting.

prc = lambda { |name| puts "Hello, " + name }

The proc is stored in prc as the result of a call to lambda, which stores the block as an
object. You can now call the proc with an argument; call executes the proc with an
argument, yielding a string.

prc.call "Matz!" # => Hello, Matz!

You’ll learn more about procs in the section “Procs” in Chapter 2.

XML
For XML processing, REXML is built into Ruby. Use it to greet the revered founder
of our feast, as shown in Examples 1-1 and 1-2.

When you run it, the program grabs the XML file matz.xml and displays it.

The Class
Use the class Hello to greet Matz, as shown in Example 1-3.

Example 1-1. matz.xml

<hello>Matz!</hello>

Example 1-2. matz_xml.rb

#!/usr/bin/env ruby

require "rexml/document"

file = File.new("matz.xml")
doc = REXML::Document.new file
puts doc.to_s

Example 1-3. hello.rb

class Hello

 def initialize(name)
 @name = name
 end

 def hello_matz

10 | Chapter 1: Ruby Basics

You’ll learn a bit about classes in Chapter 2. Chapter 9 is dedicated to bringing you
fully up to speed on Ruby classes.

The Tk Toolkit
Create a graphical version of “Hello, Matz!” with the Tk toolkit (see http://www.tcl.tk),
as shown in Example 1-4.

The require method loads the Tk library. The next line creates a new TkRoot object
called hello. TkLabel.new adds a label to that object with the text Hello, Matz!.
Tk.mainloop makes the graphical event happen, displaying the graphic shown in
Figure 1-1. You can run the program by typing the following at a shell prompt:

matz_tk.rb &

The & puts the process in the background on a Unix/Linux system. You’ll learn more
about the Tk library and other graphical user interfaces in the section “Using Tk” in
Chapter 10.

 puts "Hello, " + @name + "!"
 end

end

hi = Hello.new("Matz")
hi.hello_matz # => Hello, Matz!

Example 1-4. matz_tk.rb

#!/usr/bin/env ruby

require 'tk'
hello = TkRoot.new
TkLabel.new(hello) do
 text "\n Hello, Matz! \n"
 pack
end
Tk.mainloop

Figure 1-1. Tk version of Hello, Matz! on Mac OS X

Example 1-3. hello.rb (continued)

http://www.tcl.tk/

Hello, Matz | 11

Editing and Running Ruby in TextMate
If you own a Mac, you will get more joy out of life if you get yourself a copy of Text-
Mate. (Download a free trial or pay for a copy at http://www.macromates.com.)

TextMate has language bundles that make editing in a given language—such as
HTML, C, Java, Python, Ruby, and Rails—a snap. Other IDEs have similar features,
for sure, and I don’t spend any energy knocking them, in public or private. The dif-
ference to me is that TextMate is elegant; it doesn’t overwhelm you with complex
features. It’s there to help without getting in your way.

Figure 1-2 shows a version of matz.rb open for editing in TextMate. To run this pro-
gram in TextMate, I simply type Command-R, and the results appear in a separate
window (RubyMate), shown in Figure 1-3.

Figure 1-2. Editing a Ruby program in TextMate

Figure 1-3. Results of running a Ruby program in TextMate

http://www.macromates.com

12 | Chapter 1: Ruby Basics

Here are a few of the Ruby shortcuts in TextMate:

• Insert Ruby templates to make file creation quicker.

• Insert Ruby keywords, such as begin or if, followed by a tab, and TextMate
completes the typing for you.

• Execute a single line as Ruby with Control-Shift-E. This inserts the result right
into the file. You can do this in other files, too (HTML files, for example).

• Validate syntax, without running the program, with Control-Shift-V.

• Place the cursor on a Ruby keyword or method name, then enter Control-H to
get documentation on that term.

Interactive Ruby
Interactive Ruby, or irb, is an interactive command-line environment for Ruby,
allowing you to see results (or errors) after you enter each statement. When you
install Ruby, you get irb along with it.

Start out by typing this at a prompt:

 $ irb -v

In return, you should get irb’s version number:

irb 0.9.5(05/04/13)

If irb is present, you are ready to go; if it isn’t, go to the section “Installing Ruby,”
later in this chapter, and follow the instructions.

When you enter irb at a shell prompt, you will get the irb prompt. Type a Ruby state-
ment at the prompt, and then press the Return or Enter key:

irb(main):001:0> puts "Hello, Matz! "
Hello, Matz!
=> nil

nil, set off by => in the output of irb, is a value returned by the method
puts. nil has a special meaning in Ruby. It denotes empty and always
means false.

puts prints out the string Hello, Matz!, followed by a newline character.

The newline character varies, depending on your platform. On Mac
OS X and Unix/Linux systems, it is an LF (linefeed) character; on
Microsoft Windows, it’s CR+LF (a carriage return character followed by
a linefeed).

Resources | 13

As mentioned earlier, you can assign a string, or just about any other value, to a
name (variable), and then reuse it. In the following command, Hello, Matz! is
assigned to the name hi and printed by puts:

irb(main):002:0> hi = "Hello, Matz!"
=> "Hello, Matz! "
irb(main):003:0> puts hi
Hello, Matz!
=> nil

Print out hi three times:

irb(main):004:0> puts hi * 3
Hello, Matz! Hello, Matz! Hello, Matz!
=> nil

You can do some simple math:

irb(main):006:0> 10 + 10
=> 20
irb(main):007:0> 4 * 5
=> 20
irb(main):008:0> 100 / 5
=> 20
irb(main):009:0> 50 - 30
=> 20
irb(main):010:0> 80 % 60
=> 20

We could go on and on. irb is a great environment for playing around with Ruby and
learning how it works because you always get immediate feedback with every step
you take.

You’ll have opportunities to fire up irb later in the book. In fact, you can use irb to
run any Ruby program that you find here.

Resources
You can find a lot about Ruby at the official Ruby site, http://www.ruby-lang.org.
There you can find news, downloads, tutorials, as well as documentation, mailing
lists, and other good stuff. Ruby Central, Inc. (http://www.rubycentral.org) runs the
annual International Ruby Conference (http://www.rubycentral.org/conference). It
usually gets sold out way early, so plan accordingly.

Aside from the documentation page on ruby-lang.org (http://www.ruby-lang.org/en/
documentation), http://www.ruby-doc.org is a great place to hunt down information
on all things Ruby. RDoc is a tool that generates documentation from Ruby source
code. You can find the Ruby core documentation produced by RDoc at http://
www.ruby-doc.org/core. On the Mac (Tiger or later), a good tool for looking things

www.allitebooks.com

http://www.ruby-lang.org
http://www.rubycentral.org/
http://www.rubycentral.org/conference/
ruby-lang.org
http://www.ruby-lang.org/en/documentation/
http://www.ruby-lang.org/en/documentation/
http://www.ruby-doc.org
http://www.ruby-doc.org/core/
http://www.ruby-doc.org/core/
http://www.allitebooks.org

14 | Chapter 1: Ruby Basics

up quickly is the RDoc widget for Dashboard (see Figure 1-4), thanks to Precision
Information Services (http://www.precisionis.com.au). You can download the widget
from http://www.apple.com/downloads/dashboard/developer/rubyrdocwidget.html.

Ruby-Talk is the most popular general Ruby mail list. To sign up (easily), go to http://
www.ruby-lang.org/en/community/mailing-lists. You’ll also see several other lists at
this site. For a more complete list of mail groups, including lists in languages besides
English, see http://www.ruby-forum.com.

RubyForge (http://rubyforge.org) is the host of a growing number of open source
Ruby projects. Some of the more popular projects include Mongrel, a fast HTTP
server (http://rubyforge.org/projects/mongrel), RubyGems (http://rubyforge.org/
projects/rubygems), a dead-simple tool for installing Ruby packages, and Instant Rails
(http://rubyforge.org/projects/instantrails), a single-step Windows installer that
includes Ruby, Rails, Apache, and MySQL. The Ruby Application Archive (RAA) at
http://raa.ruby-lang.org predates RubyForge and is still a popular site for hosting
Ruby projects—more than 1,500 and counting.

For future reading, check out Dave Thomas’s Programming Ruby, Second Edition, pub-
lished by Pragmatic (see http://www.pragmaticprogrammer.com/titles/ruby/index.html or
http://www.oreilly.com/catalog/0974514055/index.html). This book, often referred to
as the pickaxe book (for the pickaxe on its cover), is well-written and as complete
it could possibly be. You won’t be disappointed. You can also find a free, online
version of the first edition at http://www.rubycentral.com/book.

Hal Fulton’s The Ruby Way (Addison-Wesley) is also now in its second edition
(http://www.samspublishing.com/bookstore/product.asp?isbn=0672328844&rl=1). It has
also been well-received and is a worthwhile investment. Other books exist, and many

Figure 1-4. RDoc widget on Dashboard

http://www.precisionis.com.au/
http://www.apple.com/downloads/dashboard/developer/rubyrdocwidget.html
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-forum.com/
http://rubyforge.org/
http://rubyforge.org/projects/mongrel/
http://rubyforge.org/projects/rubygems/
http://rubyforge.org/projects/rubygems/
http://rubyforge.org/projects/instantrails/
http://raa.ruby-lang.org/
http://www.pragmaticprogrammer.com/titles/ruby/index.html
http://www.oreilly.com/catalog/0974514055/index.html
http://www.rubycentral.com/book/
http://www.samspublishing.com/bookstore/product.asp?isbn=0672328844&rl=1

Installing Ruby | 15

more are on the way—too many to list (see http://www.ruby-lang.org/en/documentation/
book-list)—but I note Dave and Hal’s books because they were in the game early, and
are still in it.

Oh, and before I forget, you can’t be a complete Ruby programmer until you’ve read
why’s (poignant) guide to Ruby, by why the lucky stiff. That’s his moniker. (I don’t
know his real name. Frankly, I don’t want to know his “real” name. It would spoil
the fun.) why’s guide is the funniest technical book I’ve ever read, and I highly rec-
ommend it. You’ll find it at http://poignantguide.net/ruby.

Installing Ruby
Ruby is available on the major platforms. The following sections show you how to
install Ruby on Mac OS X, Windows, and Linux. Ruby’s general download page is at
http://www.ruby-lang.org/en/downloads. Most of you could likely figure out how to
install Ruby just by following the links there, but the material here provides a little
extra guidance.

Installation procedures are a moving target, and print media can’t keep up with elec-
tronic media. That means that some of this material may get out of sync with what’s
happening out there on the Web, so I’ll be as generally specific as I can.

Installing Ruby on Mac OS X Tiger
As shipped, Tiger comes with an older version of Ruby. Which version depends on
what release of Tiger you’re dealing with. The release of Tiger on my system at the
moment is 10.4.8, which comes with version 1.8.2. You’ll want an updated version,
as I did.

The simple way to install Ruby (and a boatload of other software) is with Locomotive
(http://locomotive.raaum.org). For information on what comes with the Locomotive
download (a dmg file), which includes Ruby on Rails, see http://locomotive.raaum.org/
bundles.html. It might be more than you want to deal with. You can find a mirror at
http://prdownloads.sourceforge.net/locomotive/Locomotive_2.0.8.dmg?download. Select a
mirror and then follow the steps just like you would when installing any other dmg.

The purest form of installation, at least in my mind, is to download and compile the
source files. In other words, you download the file distribution for a given release,
pull the files out of the release archive, compile the files (those that need compila-
tion), and then copy those files to their proper directories. Those are the basic steps,
but there are a few tools to make this job easier, like configure and make. We’ll take
advantage of them here as we install a new version of Ruby on Tiger (these steps
could apply to a Linux installation as well).

These steps may appear daunting at first, but they really are not. Just follow along
and things will come together in the end.

http://www.ruby-lang.org/en/documentation/book-list/
http://www.ruby-lang.org/en/documentation/book-list/
http://poignantguide.net/ruby/
http://www.ruby-lang.org/en/downloads/
http://locomotive.raaum.org/
http://locomotive.raaum.org/bundles.html
http://locomotive.raaum.org/bundles.html
http://prdownloads.sourceforge.net/locomotive/Locomotive_2.0.8.dmg?download

16 | Chapter 1: Ruby Basics

You can find excellent instructions on installing Ruby on Tiger in Dan Benjamin’s
“Building Ruby, Rails, LightTPD, and MySQL on Tiger” (http://hivelogic.com/
articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger). He covers installing more soft-
ware than you need to install now; I’ll only use his steps for installing Ruby, and I’ll
update those steps to include the latest versions of software.

You need to have XCode installed on your Mac for this install procedure to work.
XCode is a set of programming tools from Apple. You can learn about it at http://
www.apple.com/macosx/features/xcode, and download it from http://developer.apple.
com/tools/download. The download instructions are easy to follow.

As shipped, Tiger has some issues with Ruby (see http://wiki.rubyonrails.com/rails/pages/
HowtoInstallOnOSXTiger). One way to resolve some of the problems is by download-
ing and installing readline (http://tiswww.tis.case.edu/~chet/readline/readline.html),
which lets you do command-line editing (irb uses readline). Here are the steps for
downloading and installing readline:

1. Go to ftp://ftp.gnu.org/gnu/readline to find the latest version (5.2 at this writing)
and download it. (I put source archives in the directory /usr/local/src on my Mac
so I can keep track of them.) You can avoid using the browser or FTP. Just use
curl (http://curl.haxx.se). The -O option takes the last part of the URL to create a
desination filename.

$ curl -O ftp://ftp.gnu.org/gnu/readline/readline-5.2.tar.gz

2. Extract the archive with tar (x means extract, z means gunzip, v means verbose,
f means use file archive):

$ tar xzvf readline-5.2.tar.gz

3. Change directories:
$ cd readline-5.2

4. Run configure (generated from Autoconf, a tool that produces shell scripts for
configuring software packages), replacing {$prefix} with /usr/local:

$./configure --prefix=/usr/local

5. Run make, a tool for building applications. This compiles the source files, and
gets things ready to install. You can test the results, too:

$ make
$ make test

6. Finally, install:
$ make install

If you have not logged in as root, you can assume superuser powers by prefixing
this command with the sudo utility (http://www.sudo.ws), which will require a
password:

$ sudo make install

http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://www.apple.com/macosx/features/xcode/
http://www.apple.com/macosx/features/xcode/
http://developer.apple.com/tools/download/
http://developer.apple.com/tools/download/
http://wiki.rubyonrails.com/rails/pages/HowtoInstallOnOSXTiger
http://wiki.rubyonrails.com/rails/pages/HowtoInstallOnOSXTiger
http://tiswww.tis.case.edu/~chet/readline/readline.html
ftp://ftp.gnu.org/gnu/readline/
http://curl.haxx.se/
http://www.sudo.ws/

Installing Ruby | 17

The steps to install Ruby are very similar:

1. While in /usr/local/src, grab the archive for the latest version of Ruby (1.8.6 at
this writing):

$ curl -O ftp://ftp.ruby-lang.org/pub/ruby/ruby-1.8.6.tar.gz

2. Extract the archive:
$ tar xzvf ruby-1.8.6.tar.gz

3. Change directories:
$ cd ruby-1.8.6

4. Run configure (enabling POSIX threads, with readline):
$./configure --prefix=/usr/local --enable-pthread --with-readline-dir=/usr/local

5. Run make and then test it:
$ make
$ make test

6. Install the software:
$ make install

You may need the sudo utility (http://www.sudo.ws), which will require a password):
$ sudo make install

7. Then install the documentation:
$ make install-doc

or:
$ sudo make install-doc

8. Place /usr/local/bin in the path if it is not already. If you don’t know how to do
this, see the sidebar “Setting Up the Path Environment,” later in this chapter.

9. Now test to make sure Ruby is in place:
$ ruby -v

10. You should get this happy reply:
$ ruby 1.8.6 (2007-03-13 patchlevel 0) [powerpc-darwin8.9.0]

Alrighty then. You are ready to roll with Ruby on Mac OS X.

Installing Ruby on Windows with the One-Click Installer
It’s easy to install Ruby on Windows with the One-Click Installer, available on Ruby-
Forge at http://rubyforge.org/projects/rubyinstaller. Here are the steps:

1. Go to the Ruby download site and click on the link labeled “1.8.6 One-Click
Installer (or later),” or go to the One-Click Installer site and click the Download
link. Click on the latest executable, which is ruby186-25.exe at this writing.

http://www.sudo.ws/
http://rubyforge.org/projects/rubyinstaller/

18 | Chapter 1: Ruby Basics

2. Open the executable. An install wizard will appear (see Figure 1-5). You’ll have a
chance to include other goodies in the download, such as the SciTE editor (http://
www.scintilla.org/SciTE.html). Also, be sure to enable RubyGems when asked, as
it is installed by default, and you’ll no doubt want use it later.

3. Select a destination folder (such as C:\Ruby or C:\“Program Files”\Ruby). If you
try to install over an older version of Ruby, you’ll be asked to uninstall the old
version first.

4. Add the new Ruby bin directory to your path; for example, if your Ruby direc-
tory is C:\Ruby, add C:\Ruby\bin to your path (see the sidebar “Setting Up the
Path Environment,” later in this chapter, if you don’t know how to do this; it’s
OK to set up the path after the installation).

5. After you install Ruby, open a DOS window and type this line:
$ ruby -v

You should get something like the following response:
$ ruby 1.8.6 (2007-03-13 patchlevel 0) [i386-mswin32]

6. Check your system path variable and make sure it contains the path to the Ruby
binaries in the bin directory. The One-click installer should take care of all this
for you, however.

Figure 1-5. Windows One-Click Installer

http://www.scintilla.org/SciTE.html
http://www.scintilla.org/SciTE.html

Installing Ruby | 19

Installing Ruby on Windows with Binaries
Installing Ruby using binaries (precompiled executables) is just as easy as using the
One-Click Installer. I think it is, anyway. Here are the steps I suggest:

1. Decide where you want to install the Ruby files—for example, C:\Ruby or C:\
“Program Files”\Ruby.

2. Download the stable binary ZIP archive for the latest release of Ruby (1.8.6 at
this writing). Go to the Ruby download page at http://www.ruby-lang.org/en/
downloads, and find the “Ruby on Windows” section, then click the link Ruby
1.8.6 Binary. Or you can just point to ftp://ftp.ruby-lang.org/pub/ruby/binaries/
mswin32/ruby-1.8.6-i386-mswin32.zip (or latest version) in a browser. This will
download the file archive.

3. Open the archive (ruby-1.8.6-i386-mswin32.zip or later) with Windows Explorer,
and then extract it to the directory you set up in step 1 (see Figure 1-6).

4. Place the new Ruby bin directory in your path; for example, if your Ruby direc-
tory is C:\Ruby, add C:\Ruby\bin to your path (see the sidebar “Setting Up the
Path Environment,” later in this chapter, if you don’t know how to do this).

5. After you install Ruby, open a DOS window and type:
$ ruby -v

6. If you don’t get something like the following answer, check your system path
variable and make sure it contains the path to the Ruby binaries in the bin
directory:

$ ruby 1.8.6 (2006-08-25) [i386-mswin32]

Figure 1-6. C:\Ruby\bin in Windows Explorer

http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/ruby-1.8.5-i386-mswin32.zip
ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/ruby-1.8.5-i386-mswin32.zip

20 | Chapter 1: Ruby Basics

Installing Ruby on Linux
The installation steps I discussed for installing Ruby on Mac OS X from source will
also work for Linux, but I will just mention a few other options here. If you know
Linux, you’ll know what I am talking about.

• If you’re running Red Hat (http://www.redhat.com), you can find the latest version
of Ruby at RPM Find (http://rpmfind.net/linux/rpm2html/search.php?query=Ruby)
and then use rpm to install it.

• On Debian (http://www.debian.org), you can use apt-get (http://www.debian.org/
doc/manuals/apt-howto).

• On Gentoo (http://www.gentoo.org), use emerge (http://www.gentoo.org/doc/en/
handbook/handbook-x86.xml?part=2&chap=1).

Permission Denied
If you are new to using the shell on Mac OS X or Linux, what do you do when you
get a message like this?

-bash: ./matz.rb: Permission denied

This reply most likely means that the file is not set up as an executable. To fix this,
change the access control on the file using the chmod command by typing:

chmod 755 matz.rb

Setting Up the Path Environment
If you are on a Mac OS X Darwin or Linux system (bash), enter this line in your .bash_
login file:

export PATH="/usr/local/bin:...:$PATH"

This places the Ruby bin directory /usr/local/bin at the beginning of the path. The
ellipses (...) represents other directories you want to add to your path, whatever they
are. $PATH is the current path variable. This line will add your additions to the path
while preserving the current path. Paths are separated by colons (:).

If you are on Windows and you used the One-Click Windows Installer, the path envi-
ronment should be set up for you automatically. (I note this just in case things don’t
seem to be working right.)

To set up the path on Windows, click Control Panel ➝ System, click the Advanced tab,
then click the Environment Variables button. Under System Variables, select the Path
variable and click the Edit button. Add the full name of the path of the bin directory to
the variable—something like C:\Ruby\bin—followed by a semicolon. Click OK on the
Edit System Variable dialog, then click OK on the Environment Variables dialog. You
will have to reopen a DOS window for the system to recognize the new path.

http://www.redhat.com/
http://rpmfind.net/linux/rpm2html/search.php?query=Ruby
http://www.debian.org/
http://www.debian.org/doc/manuals/apt-howto/
http://www.debian.org/doc/manuals/apt-howto/
http://www.gentoo.org/
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1

Associating File Types on Windows | 21

755 makes the control list read rwxr-xr-x (where r means read, w write, and x exe-
cute). This means that the file is readable and executable by everyone (owner, group,
and others, in that order), but writable only by the owner. To find out more about
chmod, type man chmod at a shell prompt.

Associating File Types on Windows
This section is for those who use Windows and have never associated a file type
before. If this is a familiar topic to you or you are on a different platform, you can
skip it.

On its own, Windows doesn’t know or care about shebang (#!), which allows the
program to execute by merely invoking its name in a shell on Unix/Linux systems.
However, you can achieve a similar effect to shebang by creating a file type associa-
tion with the assoc and ftype commands on Windows.

If you used the One-Click Ruby Installer for installing Ruby on Win-
dows, the following was performed automatically for you, behind the
scenes.

First, find out if an association exists for .rb with the assoc command:

C:\Ruby Code>assoc .rb
File association not found for extension .rb

It’s not found, so associate the .rb extension with a file type:

C:\Ruby Code>assoc .rb=rbFile

Test to see if the association exists now:

C:\Ruby Code>assoc .rb
.rb=rbFile

Test to see if the file type exists:

C:\Ruby Code>ftype rbfile
File type 'rbfile' not found or no open command associated with it.

It’s not found, so create it:

C:\Ruby Code>ftype rbfile="C:\Program Files\Ruby\bin\ruby.exe" "%1" %*

Be sure to put the correct path to the executable for the Ruby interpreter, followed
by the substitution variables. %1 is a substitution variable for the file you want to run,
and %* accepts all other parameters that may appear on the command line. Test it:

C:\Ruby Code>ftype rbfile
rbfile="C:\Program Files\Ruby\bin\ruby.exe" "%1" %*

Finally, add .rb to the PATHEXT environment variable. Is it there already?

C:\Ruby Code>set PATHEXT
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.tcl

22 | Chapter 1: Ruby Basics

No. What we want isn’t there, so let’s add it:

C:\Ruby Code>set PATHEXT=.rb;%PATHEXT%

And then test it:

C:\Ruby Code>set PATHEXT
PATHEXT=.rb;.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.tcl

Very good. Now run a Ruby program by entering the program’s filename at the com-
mand prompt, without the file extension:

C:\Ruby Code> matz
Hello, Matz!

To preserve these settings, you can add these commands to your autoexec.bat file or
set the environment variables by selecting Start ➝ Control Panel ➝ System, clicking
on the Advanced tab, and then clicking the Environment Variables button.

Review Questions
1. What is the nickname of the inventor of Ruby?

2. Ruby came out in 1995. What other programming language was released to the
public that year?

3. Is everyone who writes a programming book morally or otherwise obligated to
write a “Hello, World!” program?

4. What does the abbreviation irb stand for?

5. What is Ruby’s killer app?

6. What is the name of the funny book on Ruby?

7. Who wrote the pickaxe book?

8. What’s one of the author’s favorite programming environments on the Mac?

23

Chapter 2 CHAPTER 2

A Quick Tour of Ruby2

Without going into all the details, this chapter introduces you to the fundamentals of
Ruby: classes and modules, including the Object class and the Kernel module,
reserved words (keywords), comments, variables, methods, and so forth. Most top-
ics will be dealt with elsewhere in the book in more detail. Some topics merit entire
chapters, others only sections (found in Chapter 10). I’ll always tell you where else to
look for more information on a topic. This book’s most detailed discussions on
methods and blocks are found in this chapter.

Ruby Is Object-Oriented
Matz, the creator of Ruby, had wanted to create his own programming language
since he was in high school. He wanted to create a scripting language, but he also
wanted it to be object-oriented.

Ruby goes beyond mere scripting, though its programs may look like shell scripts. It
is not just a procedural language, but it can be used like one.

Ruby has classes. Classes hold data—in the form of variables and constants—and
methods, which are compact collections of code that help you perform operations on
data. Classes can inherit information from each other, but only one at a time. This
allows you to reuse code—which means you’ll spend less time fixing or debugging
code—and intermix the code through inheritance.

A class is like a blueprint; with a new method, this blueprint can be assigned to a vari-
able or become instantiated, and thereby become an object. In Ruby, almost every-
thing is an object; in fact, everything that Ruby can bind to a variable name is an
object.

There’s lots more to learn about classes, and you’ll find a lot more information on
classes in Chapter 9. For right now, you can get by with the basics. Example 2-1
shows a Ruby program, friendly.rb, that has two classes, Hello and Goodbye. You’ll
find this program in the archive of Ruby programs that comes with this book (down-
load it from http://www.oreilly.com/catalog/learningruby). Run this program at a shell

www.allitebooks.com

http://www.allitebooks.org

24 | Chapter 2: A Quick Tour of Ruby

or command prompt, in the directory where the archive was installed. If a code
example is not in a file, you can type that code in irb to see for yourself what it does.
I encourage you to run as much code as you dare.

If you run the program in Example 2-1, you’ll get these messages back:

$ friendly.rb
Hello, Matz!
Goodbye, Matz.

Experienced programmers can likely tell what’s happening in Example 2-1 without any
tutoring. If you’re not one of these, read on; otherwise, you can skip ahead to the next
heading (or jump to Chapter 9 if you are eager to get the whole story on Ruby classes).

The Hello class defines the howdy method. This method prints the contents of the
string associated with the greeting variable, Hello, Matz!. The Goodbye class likewise
contains the definition of a method, solong, which prints a string assigned to the
farewell variable, Goodbye, Matz!. The Goodbye class also inherits what’s in the Hello
class; that’s what the < symbol is for. This means that the Goodbye class didn’t have to
redefine the howdy method. It just inherited it.

friendly is an object, an instance of the Goodbye class. The new method called on
Goodbye comes from the Object class and creates the new instance friendly (more on
the Object class in the next section). You can use the friendly object to call both the
howdy and solong methods, because it inherently knows about them. It knows about
the solong method because it is defined inside the Goodbye class, and it knows about
the howdy method because Goodbye inherited it from Hello.

That’s about as much as I am going to tell you for now. There will be information on
classes spread throughout the chapters that follow. Chapter 9 spells out classes in
more detail.

Example 2-1. friendly.rb

class Hello
 def howdy
 greeting = "Hello, Matz!"
 puts greeting
 end
end

class Goodbye < Hello
 def solong
 farewell = "Goodbye, Matz."
 puts farewell
 end
end

friendly = Goodbye.new
friendly.howdy
friendly.solong

Ruby Is Object-Oriented | 25

The Object Class and the Kernel Module
The Object class is the Ruby base class, the parent of all other classes in Ruby, and
it is always magically present whenever you run a Ruby program. You don’t have
to do anything fancy to get access to its functionality in other classes. It’s just there
for you.

With Object comes a lot of functionality in the form of methods and constants. This
functionality is inherited by all other Ruby programs automatically. In this section,
I’ll introduce you to some of this functionality.

Object gives you methods like == and eql?, class, inspect, object_id, and to_s. You
will learn more about these methods in upcoming chapters. You can read about all of
Object’s methods at http://www.ruby-doc.org/core/classes/Object.html.

Kernel is a Ruby module. A module is like a class, but you can’t instantiate it as an
object as you can with a class. However, when you include or mix in a module in a
class, you get access to all its methods within that class. You can use methods from
an included module without having to implement those methods.

Object includes the Kernel module. This means that because you always get access
to Object in a Ruby program, you also get all the Kernel methods, too. You have
already seen some of these methods in action, such as print and puts. A sampling
of commonly used Kernel methods includes eval, exit, gets, loop, require, sleep,
and sprintf. You will get to use most of these methods in later chapters of this
book.

You don’t have to prefix the Kernel methods with an object or receiver name. Just
call the methods anywhere in any program, and they work. Read about Kernel at
http://www.ruby-doc.org/core/classes/Kernel.html.

The Bucket Analogy
If you don’t know what an object-oriented programming language (OOP) is, try this
simple analogy. Think of a class, the centerpiece of OOP, as a bucket. Imagine that it
holds water, and that it has a ladle or two sticking up out of it. The water is like the
properties (data or information) that a class holds, and the ladles are like the tools
(methods) that can manipulate the water (data). The main tool you use with a class is
a method, a collection of code that can be given a name and reused. The method is like
a ladle that you dip into the bucket and use to pull things out or pour things in. You
can reuse the bucket, pour out the old water, put fresh water in, and even put the
bucket inside another bucket. Those are the basics of OOP, without the jargon. You’ll
get a full dose of jargon in Chapter 9.

http://www.ruby-doc.org/core/classes/Object.html
http://www.ruby-doc.org/core/classes/Kernel.html

26 | Chapter 2: A Quick Tour of Ruby

Ruby’s Reserved Words
Every programming language has its own list of reserved words (aka keywords),
which are reserved for its own purposes so that it can do its job. They are the words
that make statements in programs, and without statements, or instructions, how
could a program tell a computer what to do?

Table 2-1 lists Ruby’s reserved words and briefly describes the purpose of each.

Table 2-1. Ruby’s reserved words

Reserved word Description

BEGIN Code, enclosed in { and }, to run before the program runs.

END Code, enclosed in { and }, to run when the program ends.

alias Creates an alias for an existing method, operator, or global variable.

and Logical operator; same as && except and has lower precedence. (Compare with or.)

begin Begins a code block or group of statements; closes with end.

break Terminates a while or until loop or a method inside a block.

\case Compares an expression with a matching when clause; closes with end. (See when.)

class Defines a class; closes with end.

def Defines a method; closes with end.

defined? A special operator that determines if a variable, method, super method, or block exists.

do Begins a block and executes code in that block; closes with end.

else Executes following code if previous conditional, in if, elsif, unless, or when, is not true.

elsif Executes following code if previous conditional, in if or elsif, is not true.

end Ends a code block (group of statements) starting with begin, def, do, if, etc.

ensure Always executes at block termination; use after last rescue.

false Logical or Boolean false, instance of FalseClass. (See true.)

for Begins a for loop; used with in.

if Executes code block if conditional statement is true. Closes with end. (Compare with unless, until.)

in Used with for loop. (See for.)

module Defines a module; closes with end.

next Jumps before a loop’s conditional. (Compare with redo.)

nil Empty, uninitialized variable, or invalid, but not the same as zero; object of NilClass.

not Logical operator; same as !.

or Logical operator; same as || except or has lower precedence. (Compare with and.)

redo Jumps after a loop’s conditional. (Compare with next.)

rescue Evaluates an expression after an exception is raised; used before ensure.

retry Repeats a method call outside of rescue; jumps to top of block (begin) if inside rescue.

return Returns a value from a method or block. May be omitted.

Comments | 27

Comments
A comment hides lines from the Ruby interpreter so that the lines are discarded or
ignored. This allows a programmer (that’s you) to insert all kinds of information in a
program so that other people can figure out what’s going on. There are two basic
comment styles in Ruby. The hash character (#) can be at the beginning of a line:

I am a comment. Just ignore me.

Or on the same line after a statement or expression:

name = "Floydene Wallup" # ain't that a name to beat all

You can make a comment run over several lines, like this:

This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.

Here is another form. This block comment conceals several lines from the inter-
preter with =begin/=end:

=begin
This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.
=end

A block can comment out one line or as many lines as you want.

self Current object (invoked by a method).

super Calls method of the same name in the superclass. The superclass is the parent of this class.

then A continuation for if, unless, and when. May be omitted.

true Logical or Boolean true, instance of TrueClass. (See false.)

undef Makes a method in current class undefined.

unless Executes code block if conditional statement is false. (Compare with if, until.)

until Executes code block while conditional statement is false. (Compare with if, unless.)

when Starts a clause (one or more) under case.

while Executes code while the conditional statement is true.

yield Executes the block passed to the method.

__FILE__ Name of current source file.

__LINE__ Number of current line in the current source file.

Table 2-1. Ruby’s reserved words (continued)

Reserved word Description

28 | Chapter 2: A Quick Tour of Ruby

Variables
A variable is an identifier or name that can be assigned a value, and a value has, or
will have, a type at runtime (when the program runs). An example is found in the fol-
lowing statement, where the variable x is assigned the value 100 by the equals sign.

x = 100

Now the local variable x holds the value 100. But, hey, what type is it? Looks like an
integer to me—how about you? And what does Ruby think?

Many modern programming languages, like C++ and Java, are statically typed. This
basically means that a variable is assigned a type at the time it is declared, and,
because these languages are also strongly typed, the variable remains that type unless
it is cast into a different type, if it is possible to do so.

For example, in Java, you would declare variables with the types (int) on the left:

int months = 12;
int year = 2007;

Ruby doesn’t have type declarations. It just assigns values to variables, like this:

months = 12
year = 2007

You could use a semicolon at the end of the line if you wanted, but a newline charac-
ter is all you really need.

The values in x, months, and year are clearly integers, but you didn’t have to give
them a type because Ruby does that for you, automatically. It’s called dynamic or
duck typing.

This is how duck typing works: if you observe an aquatically competent bird, and it
walks like a duck, quacks like a duck, flies like a duck, and swims like a duck, well,
by George, it’s probably a duck. Ruby likewise looks at a value assigned to a vari-
able, and if it walks, quacks, flies, and swims like an integer, then Ruby assumes it
can act as an integer.

Let’s ask Ruby what it thinks of x—that is, whether it is an integer—with the kind_of?
method (this method is from the Object class).

x.kind_of? Integer # => true

Why yes, the value of x behaves like an integer! As a matter of fact, it is an instance
of the Fixnum class, which inherits the Integer class.

x.class # => Fixnum

Change the value of x from an integer to a floating point with the to_f method from
the Fixnum class (it is inherited by other classes, too).

x.to_f # => 100.0

Variables | 29

As I noted in Chapter 1, whenever you see => in a code example here,
it will always follow a comment character (#). Whatever follows => is
the output you can expect from the line or block of code, or from the
whole program.

Local Variables
Earlier I referred to x as a local variable. What does that mean? It means that the vari-
able has a local scope (context). For example, when a local variable is defined inside
of a method or a loop, its scope is within the method or loop where it was defined. It
doesn’t have a useful life beyond that.

Local variables must start with a lowercase letter or with an underscore character (_),
such as alpha or _beta. Another way you can identify a local variable in Ruby is that
its name is not prefixed by a special character or symbol, other than _. There are
other kinds of variables, each of which is easily recognized by its prefix character.
These other kinds include global variables, instance variables, and class variables.

Instance Variables
An instance variable is a variable that is referenced via an instance of a class and
therefore belongs to a given object. An instance variable is prefixed by a single at sign
(@), like this:

@hello = hello

You can access instance variables from outside of their class only by accessor meth-
ods. You will learn about accessor methods in Chapter 9.

Class Variables
A class variable is shared among all instances of a class. Only one copy of a class vari-
able exists for a given class. In Ruby, it is prefixed by two at signs (@@). You have to
initialize (declare a value for) a class variable before you use it.

@@times = 0

You’ll see class variables in action in Chapter 9.

Global Variables
Global variables are available globally to a program, inside any structure. Their scope
is the whole program. They are prefixed by a dollar sign ($).

$amount = "0.00"

30 | Chapter 2: A Quick Tour of Ruby

It’s hard to keep track of global variables. You are better off designing your code to
use class variables or constants. Matz’s opinion on global variables is, and I quote,
“They are ugly, so don’t use them.” I would take his advice. (Use a singleton instead;
see Chapter 9.)

Constants
A constant holds a constant value for the life of a Ruby program. Constants are vari-
ables whose names are capitalized or all uppercase. Here is the definition of a con-
stant named Matz:

Matz = "Yukihiro Matsumoto"
puts Matz # => Yukihiro Matsumoto

If a constant is defined within a class or module, you can access the constant from
within that class or module; if it is defined outside either a class or module, the con-
stant is available globally. Unlike other languages, a Ruby constant is mutable—that
is, you can change its value.

Parallel Assignment
I like Ruby’s ability to do parallel assignment (like Perl, Python, and JavaScript 1.7).
What’s that? It’s a way to assign a group or series of variables in one statement, on
one line. Often, we assign variables one per line:

x = 100
y = 200
z = 500

With parallel assignment, you do the same thing by separating the variables, then the
values, with commas:

x, y, z = 100, 200, 500

You can even assign values of different kinds, such as a string, float, and integer:

a, b, c = "cash", 1.99, 100

Parallel assignment is convenient. It’s just got Ruby written all over it.

Strings
A string is a sequence of letters, numbers, and other characters. There are several
ways to create a string in Ruby, but probably the simplest way is just to write it out,
surrounded in quotes (double or single quotes will do). Here we have a quote from
Thoreau’s Walden:

thoreau = "If a man does not keep pace with his companions, perhaps it is because he
hears a different drummer."

Strings | 31

With String methods, you can access and manipulate the string thoreau. For exam-
ple, you can retrieve part of a string with the [] method, using a range. Let’s grab
characters 37 through 46:

thoreau[37..46] # => "companions"

Or, starting at the end of the string using negative numbers, get the second to last
character through the eighth to last:

thoreau[-8..-2] # => "drummer"

You can iterate over all the characters in the string using a block that munches on
every byte (8-bit sequence) in an ASCII string and generates a character (with the chr
method), separating each character with a slash:

thoreau.each_byte do |c|
 print c.chr, "/"
end
=> I/f/ /a/ /m/a/n/ /d/o/e/s/ /n/o/t/ /k/e/e/p/ /p/a/c/e/ /w/i/t/h/ /h/i/s/ /c/o/m/
p/a/n/i/o/n/s/,/ /p/e/r/h/a/p/s/ /i/t/ /i/s/ /b/e/c/a/u/s/e/ /h/e/ /h/e/a/r/s/ /a/ /
d/i/f/f/e/r/e/n/t/ /d/r/u/m/m/e/r/./

If you want to use something beyond ASCII characters in your pro-
grams, you should read this note; otherwise, it may be more information
than you need. I must admit, implying that a character is synonymous
with a byte is rather old-fashioned. In the broader, Unicode-based
world, characters can be represented by more than one byte. For
example, the character encoding UTF-8 represents characters with one
to four bytes. By default, Ruby uses ASCII character encoding, but you
can change the encoding by setting (early in the program) the $KCODE
variable to 'u' (for UTF-8), 'e' (for EUC), 's' (for SJIS), or 'a' or 'n'
(for ASCII or NONE).

Incidentally, the chr method converts a character code (which each_byte produces) into
an actual character. You should also know about the opposite method—the ? operator,
which returns a character code from a character. I’ll demonstrate that with irb:

irb(main):001:0> ?I
=> 73
irb(main):002:0> ?f
=> 102
irb(main):003:0> ?\ # you can't see it, but this is a space
=> 32
irb(main):004:0> ?m
=> 109
irb(main):005:0> ?a
=> 97
irb(main):006:0> ?n
=> 110

I won’t go into more detail about strings here, but you’ll learn quite a bit about them
in Chapter 4.

32 | Chapter 2: A Quick Tour of Ruby

Regular Expressions
A regular expression is a special sequence of characters that matches strings or a set
of strings. Regular expressions, or regexps, are often used to find string matches so
you can do something else to that string or perform some other operation. Regexps
are also used to retrieve a string or substring (part of a string) for use elsewhere.

Regexps use elements (one or more characters) to instruct the regular expression
engine on how to find a given string. A combination of the special characters,
enclosed by a pair of slashes (//), makes up a regular expression pattern. Some
examples of these elements are:

^
Matches the beginning of a line

$
Matches the end of a line

\w
Matches a word character

[...]
Matches any character in the brackets

[^...]
Matches any characters not in the brackets

*
Matches zero or more occurrences of the previous regexp

+
Matches one or more occurrences of the previous regexp

?
Matches zero or one occurrences of the previous regexp

Here is an example of a regular expression used to match a string with the String
method scan.

hamlet = "The slings and arrows of outrageous fortune"
hamlet.scan(/\w+/) # => ["The", "slings", "and", "arrows", "of", "outrageous",
"fortune"]

This regexp matches one or more (+) word characters (\w), and places all the matches
in an array.

I go into more detail on regexps in Chapter 4. There you’ll find a table of all the
regexp patterns recognized by Ruby. If you are serious about learning more about
regexps in general, pick up a copy of Jeffrey E. F. Friedl’s Mastering Regular Expres-
sions (O’Reilly).

Numbers and Operators | 33

Numbers and Operators
In most any object-oriented programming language, numbers are considered to be
fundamental atoms called primitives. They are not directly associated with a class;
they just are. Not so with Ruby: even numbers are instances of classes.

For example, the number 1001, a positive integer, is an instance of the Fixnum class,
which is a child class of Integer, which is a child class of Numeric. The number 1001.0,
a floating point value, is an instance of the Float class, which is also a child class of
Numeric. (Figure 5-1 shows the relationships between these classes.)

Along with numbers come operations on those numbers. For example, you can add,
subtract, divide, multiply, raise a number to a power (exponentiation), and return
the remainder of division (modulo), to name a few.

A great place to get acquainted with math operations in Ruby is with irb. Try these
in irb:

irb(main):001:0> 3 + 4 # add
=> 7
irb(main):002:0> 7 - 3 # subtract
=> 4
irb(main):003:0> 3 * 4 # multiply
=> 12
irb(main):004:0> 12 / 4 # divide
=> 3
irb(main):005:0> 12**2 # raise to a power (exponent)
=> 144
irb(main):006:0> 12 % 7 # modulo (remainder)
=> 5

Here are a few of Ruby’s assignment operators in action:

irb(main):007:0> x = 12 # assignment
=> 12
irb(main):008:0> x += 1 # abbreviated assignment add
=> 13
irb(main):009:0> x -= 1 # abbreviated assignment subtract
=> 12
irb(main):010:0> x *= 2 # abbreviated assignment multiply
=> 24
irb(main):011:0> x /= 2 # abbreviated assignment divide
=> 12

Ruby also has a Math module that provides all kinds of math functions (in the form of
class methods), like square root, cosine, tangent, and so forth. Here is an example
call to the class method sqrt from the Math module:

irb(main):012:0> Math.sqrt(16)
=> 4.0

www.allitebooks.com

http://www.allitebooks.org

34 | Chapter 2: A Quick Tour of Ruby

Ruby also delivers some special math classes, such as Rational for doing fractions.
You’ll learn much more about numbers and operators in Chapter 5. Table 5-1 shows
all of Ruby’s math operators, including operator precedence.

Conditional Statements
Like any programming language, Ruby has conditional statements that test whether a
given statement is true or false. It then runs code in a block, based on the answer.
Here is a quick example of an if statement that tests whether a variable has a value
of zero:

value = 0

if value.zero? then
 puts "value is zero. Did you guess that one?"
end

The zero? method returns true if the value of value is zero, which it is, so the state-
ment following is executed (and any other statements in the code block if/end). By
Ruby convention, any method in Ruby that ends with a question mark returns a
Boolean, either true or false. This convention is not enforced, however.

Other conditionals include familiar ones like case and while, and less familiar ones
like until and unless. Chapter 3 covers all of the conditional statements you’ll find
in Ruby.

Arrays and Hashes
An array is an ordered sequence of indexed values, with an index starting at zero. It
is one of the most common data structures in computer science. Here is what an
array looks like in Ruby:

pacific = ["Washington", "Oregon", "California"]

The array is named pacific. It holds three strings—the names of the three states that
make up the west coast of the United States. These strings are the elements of the
array. The elements of an array can be of any Ruby kind, not just strings, of course.
This is only one way to define an array. There are a number of other ways you could
do this, as you’ll see in Chapter 6.

If you wanted to access one of these elements, you could do it by specifying an index
with a method. For example, to access the first element, whose index is zero, you
could use the [] method.

pacific[0] # => "Washington"

Calling this method retrieves the value of element 0, Washington. You can learn all
about Ruby arrays in Chapter 6.

Methods | 35

A hash is a map of keys to values. It is also a very common data structure. Unlike an
array, which indexes elements with positive integers, hashes let you choose how you
will index the values with a key of your choice. Here is how you do it:

pacific = { "WA" => "Washington", "OR" => "Oregon", "CA" => "California" }

The hash definition is enclosed in curly braces, whereas an array is defined in square
brackets. Also, each value is associated (=>) with a key. One of the ways you can
access the values in a hash is by their keys. To access the value Oregon from the hash,
you could use Hash’s [] method.

pacific["OR"] # => "Oregon"

Using the key OR returns the value Oregon. The keys and values can be of any kind,
not just strings. You can learn more about hashes in Chapter 7.

Methods
Methods provide a way to gather code (statements and expressions) into one place
so that you can use it conveniently and, if necessary, repeatedly. You can define
methods to do all kinds of things. In fact, most of the math operators in Ruby are
actually methods.

This is the most concentrated discussion on methods that you’ll find
in this book, so you may find yourself coming back to this section
after you have read further.

Here is a simple definition for a method named hello, created with the keywords def
and end:

def hello
 puts "Hello, Matz!"
end

hello # => Hello, Matz!

The hello method simply outputs a string with puts. On the flip side, you can unde-
fine a method with undef.

undef hello # undefines the method named hello

hello # try calling this method now
NameError: undefined local variable or method 'hello' for main:Object
 from (irb):11
 from :0

You can also define methods that have arguments, as shown here in the repeat
method:

def repeat(word, times)
 puts word * times
end

36 | Chapter 2: A Quick Tour of Ruby

repeat("Hello! ", 3) # => Hello! Hello! Hello!
repeat "Good-bye! ", 4 # => Good-bye! Good-bye! Good-bye! Good-bye!

The repeat method has two arguments, word and times. You can call a method that
has arguments with or without parentheses around the arguments. You can even
define method arguments without parentheses, but I don’t usually do it that way.

Because you don’t have to use parentheses, it is possible to have normal-looking
math equations when you use operator methods, such as +. Each line that follows is
actually a valid call to the Fixnum + method:

10 + 2 # => 12
10.+ 2 # => 12
(10).+(2) # => 12

Return Values
Methods have return values. In other languages, you can explicitly deliver a return
value with a return statement. In Ruby, the last value in a method is returned, with
or without an explicit return statement. This is a Ruby idiom. Here’s how to do it in
irb:

1. First, define a method matz that just contains a string:
rb(main):001:0> def matz
irb(main):002:1> "Hello, Matz!"
irb(main):003:1> end
=> nil

2. Call the matz method, and you will see its output. This is available in irb but
would not be seen if you were running this in a regular program from a shell
prompt. Use puts with the method to actually see the output as you normally
would:

irb(main):004:0> matz
=> "Hello, Matz!"
irb(main):005:0> puts matz
Hello, Matz!
=> nil

3. Now assign method matz to the variables output and puts output:
irb(main):006:0> output = matz
=> "Hello, Matz!"
irb(main):007:0> puts output
Hello, Matz!
=> nil

4. You can use a return statement explicitly if you want. Recreate matz, this time
adding a return statement, and you get the same results:

irb(main):008:0> def matz
irb(main):009:1> return "Hello, Matz!"
irb(main):010:1> end
=> nil
irb(main):011:0> matz
=> "Hello, Matz!"

Methods | 37

irb(main):012:0> puts matz
Hello, Matz!
=> nil
irb(main):013:0> output = matz
=> "Hello, Matz!"
irb(main):014:0> puts output
Hello, Matz!
=> nil

Method Name Conventions
Ruby has conventions about the last character in method names—conventions that
are broadly used but are not enforced by the language.

If a method name ends with a question mark (?), as in eql?, then the method returns
a Boolean—true or false. For example:

x = 1.0
y = 1.0
x.eql? y # => true

If a method name ends in an exclamation point (!), as in delete!, it indicates that the
method is “destructive”—that is, it makes changes in place to an object rather than
to a copy. It changes the object itself. Note the difference in result between the
String methods delete and delete!:

der_mensch = "Matz!" # => "Matz!"
der_mensch.delete("!") # => "Matz"
puts der_mensch # => Matz!
der_mensch.delete!("!") # => "Matz"
puts der_mensch # => Matz

If a method name ends in an equals sign (=), as in family_name=, then the method is a
“setter,” i.e., one that performs an assignment or sets a variable such as an instance
variable in a class:

class Name
 def family_name=(family)
 @family_name = family
 end
 def given_name=(given)
 @given_name = given
 end
end

n = Name.new
n.family_name= "Matsumoto" # => "Matsumoto"
n.given_name= "Yukihiro" # => "Yukihiro"
p n # => <Name:0x1d441c @family_name="Matsumoto", @given_name="Yukihiro">

There is a more convenient way to create setter/getter or accessor methods in Ruby.
See Chapter 9 to learn how.

38 | Chapter 2: A Quick Tour of Ruby

Default Arguments
The repeat method, shown earlier, has two arguments. You can give those argu-
ments default values by using an equals sign followed by a value. When you call the
method without arguments, the defaults are used automatically.

Redefine repeat with default values: Hello for word, and 3 for times. Then call it first
without arguments, then with them.

def repeat(word="Hello! ", times=3)
 puts word * times
end

repeat # => Hello! Hello! Hello!

repeat("Goodbye! ", 5) # => Goodbye! Goodbye! Goodbye! Goodbye! Goodbye!

When you call the new call to repeat without arguments, the default values for the
arguments are used; but if you call repeat with arguments, the defaults are discarded
and replaced by the values of the arguments.

Variable Arguments
Sometimes you don’t know how many arguments a method will have. You can be
flexible about that, because Ruby lets you pass a variable number of arguments to a
method just by prefixing an argument with a splat (*). Example 2-2 shows a simple
program that does this.

This program uses the ternary operator (?:) to determine if the noun argument should be
singular or plural. (You’ll learn more about the ternary operator in the next chapter.)

When you use this syntax for a variable number of arguments, the arguments are
stored in an array, as shown by the inspect method. The three calls to num_args are
preceded by puts so you can see the return value of the method on standard output.

0 arguments ([])
1 argument ([1])
3 arguments ([100, 2.5, "three"])

Example 2-2. num_args.rb

def num_args(*args)
 length = args.size
 label = length == 1 ? " argument" : " arguments"
 num = length.to_s + label + " (" + args.inspect + ")"
 num
end

puts num_args

puts num_args(1)

puts num_args(100, 2.5, "three")

Methods | 39

You can have set arguments along with variable arguments. The trick is that the vari-
able list of arguments (the one that starts with *) always comes at the end of the
argument list. Example 2-3 is an example of a method that has two regular argu-
ments, plus room for more.

Here is the output (it only shows how many variable arguments you get; it ignores
the regular ones):

0 variable arguments ([])
1 variable argument ([14.3])
3 variable arguments (["three", 70, 14.3])

Try calling two_plus without any arguments and see what response you get from the
interpreter.

Aliasing Methods
Ruby has a keyword alias that creates method aliases. Aliasing means that you in effect
create a copy of the method with a new method name, though both method invoca-
tions will point to the same object. Using alias (or Module’s method alias_method) gives
you a way to have access to methods that have been overridden.

The following example in irb illustrates how to create an alias for the method greet:

irb(main):001:0> def greet
irb(main):002:1> puts "Hello, baby!"
irb(main):003:1> end
=> nil
irb(main):004:0> alias baby greet # alias greet as baby
=> nil
irb(main):005:0> greet # call it
Hello, baby!
=> nil
irb(main):006:0> baby # call the aliased version
Hello, baby!
=> nil
irb(main):007:0> greet.object_id # what's the object id?
Hello, baby!
=> 4

Example 2-3. two_plus.rb

def two_plus(one, two, *args)
 length = args.size
 label = length == 1 ? " variable argument" : " variable arguments"
 num = length.to_s + label + " (" + args.inspect + ")"
 num
end
puts two_plus(1, 2)

puts two_plus(1000, 3.5, 14.3)

puts two_plus(100, 2.5, "three", 70, 14.3)

40 | Chapter 2: A Quick Tour of Ruby

irb(main):008:0> baby.object_id # points at the same object
Hello, baby!
=> 4

Blocks
A block in Ruby is more than just a code block or group of statements. In a certain
context, a block has a special meaning. This kind of block is always invoked in con-
junction with a method, as you will see. In fact, it is referred to as a nameless function.

A block in Ruby is often (but not always) an idiom for getting all the values out of a
data structure by iterating over the structure. It sort of means, “give me everything
you’ve got in there, one at a time.” I’ll show you a common use of the block.

Remember the array pacific? Here it is again:

pacific = ["Washington", "Oregon", "California"]

You can call a block on pacific to retrieve all of its elements, one at a time, with the
each method. Here is one way to do it:

pacific.each do |element|
 puts element
end

The name between the pipe characters (|element|) can be any name you want. The
block uses it as a local variable to keep track of every element in the array, and later
uses it to do something with the element. This block uses puts to print each element
in the array:

Washington
Oregon
California

You can replace do/end with a pair of braces, as is commonly done, to make things a
bit tighter (by the way, braces actually have a higher precedence than do/end):

pacific.each { |e| puts e }

Many dozens of classes have each methods in them, such as Array, Hash, and String.
But don’t get the wrong idea. Iterating over data structures isn’t the only way to use
blocks. Let me give you a simple example using yield, a Ruby keyword.

The yield Statement
First, define a tiny little method gimme that contains nothing more than a yield
statement:

def gimme
yield

end

Blocks | 41

To find out what yield does, call gimme alone and see what happens:

gimme
LocalJumpError: no block given
 from (irb):11:in `gimme'
 from (irb):13
 from :0

You get an error here because the job of yield is to execute the code block that is asso-
ciated with the method. That was missing in the call to gimme. We can avoid this error
by using the block_given? method from Kernel. Redefine gimme with an if statement:

def gimme
 if block_given?
 yield
 else
 puts "I'm blockless!"
 end
end

The if statement is a conditional statement. If there is a block given with the method
call, block_given? will return true, and yield will execute the block; otherwise, if
there is no block given, it will execute the code in else.

Let’s try again with and without a block.

gimme { print "Say hi to the people." } # => Say hi to the people.

gimme # => I'm blockless!

When you supply it a block, gimme yields the code in the block, printing the string
Say hi to the people; when you don’t, gimme gives you back the string I’m blockless.
Just for fun, redefine gimme to contain two yields, then call it with a block. It exe-
cutes the block twice.

def gimme
 if block_given?
 yield
 yield
 else
 puts "I'm blockless!"
 end
end

gimme { print "Say hi again. " } # => Say hi again. Say hi again.

Another thing you ought to know is that after yield executes, control comes back to
the next statement immediately following yield. To illustrate this, let’s define gimme
one more time.

def gimme
 if block_given?
 yield
 else

42 | Chapter 2: A Quick Tour of Ruby

 puts "Oops. No block."
 end
 puts "You're welcome." # executes right after yield
end

gimme { print "Thank you. " } # => Thank you. You're welcome.

I’m sure you can recognize, with this little bit of coding, how versatile blocks are. In
my mind, I can see a little mushroom cloud over your head as it explodes with ideas
on how to use blocks.

To fully understand what blocks are capable of, though, you need to learn some-
thing about procs.

Procs
Ruby lets you store procedures—or procs, as they’re called—as objects, complete
with their context. You can do this several ways. One way is to invoke new on the
Proc class; another way is to call either the lambda or proc method from Kernel. (By
the way, calling lambda or proc is preferred over Proc.new because lambda and proc do
parameter checking.)

Example 2-4 demonstrates how to create a proc both ways.

Blocks Are Closures
Do you know what a closure is? If you do, I’m impressed—you probably learned it as
a computer science major. If you don’t know what one is, but are curious now, read
on. A closure is a nameless function or method. It is like a method within a method,
that refers to or shares variables with the enclosing or outer method. In Ruby, the clo-
sure or block is wrapped by curly braces ({}) or do/end, and depends on the associated
method (such as each) in order to work.

Example 2-4. proc.rb

#!/usr/bin/env ruby

count = Proc.new { [1,2,3,4,5].each do |i| print i end; puts }
your_proc = lambda { puts "Lurch: 'You rang?'" }
my_proc = proc { puts "Morticia: 'Who was at the door, Lurch?'" }

What kind of objects did you just create?
puts count.class, your_proc.class, my_proc.class

Calling all procs
count.call
your_proc.call
my_proc.call

Symbols | 43

After letting you know that each of the objects you created are Proc objects, the pro-
gram gives you this output as it calls each of the procs with the call method:

12345
Lurch: 'You rang?'
Morticia: 'Who was at the door, Lurch?'

A method may be called with a block, and it will return the result of the block, even
though the method has no arguments. Remember, a block must always be associ-
ated with a method call.

You can also coax a method to convert an associated block to a proc on the fly. To
do this, you need to create an argument to the method that is proceeded by an
ampersand (&). I’ll walk you through how to do it in Example 2-5.

Here is the output:

Got block!
Got block, convert to proc!

The method return_block has no arguments. All it has is a yield statement in its
body. The yield statement’s purpose, once again, is to execute a block when the
block is passed to a method. This can make a plain old method wildly versatile.

The next method, return_proc, has one argument, &proc. When a method has an
argument preceded by an ampersand, it will accept the block—when one is submit-
ted—and convert it to a Proc object. With yield in the body, the method executes
the block cum proc, without having to bother with the Proc call method.

Symbols
Ruby has a special object called a symbol. All you really need to remember about
symbols at this point is that they are like placeholders for identifiers and strings. You
can recognize symbols because they are always prefixed by a colon (:).

Example 2-5. return_block_proc.rb

#!/usr/local/bin/ruby

def return_block
yield

end

def return_proc(&proc)
yield

end

return_block { puts "Got block!" }
return_proc { puts "Got block, convert to proc!" }

www.allitebooks.com

http://www.allitebooks.org

44 | Chapter 2: A Quick Tour of Ruby

You don’t directly create a symbol by assigning a value to it. You create a symbol by
calling the to_sym or intern methods on a string or by assigning a symbol to a sym-
bol. To understand this better, let’s take a string on a roundtrip from a string to a
symbol and back to a string.

name = "Matz"
name.to_sym # => :Matz
:Matz.id2name # => "Matz"
name == :Matz.id2name # => true

Are your palms getting sweaty? I know symbols may look a little confusing. They are
somewhat abstract, because you don’t really see what is going on under the Ruby
interpreter’s hood. On the surface you see that the content of the string name is magi-
cally transformed into the label of a symbol. So what?

The “so what” is that once a symbol is created, only one copy of the symbol is held in
a single memory address, as long as the program is running. Because of this, rather
than making copy after copy, Ruby keeps referring back to that single memory
address. This makes Ruby programs more efficient because they don’t gobble up as
much memory.

Ruby on Rails uses lots of symbols, and it’s likely that as you become better
acquainted with them, you will use lots of symbols, too. In fact, Ruby uses tons of
symbols internally. To prove it, execute this line of Ruby code:

Symbol.all_symbols

You’ll get more than 1,000 symbols in your lap!

If you are an experienced Java or C# programmer, this analogy will
help: symbols in Ruby are like interned strings, held in a string intern
pool.

Exception Handling
Like Java, C++, and other languages, Ruby offers exception handling. An exception
occurs when a program commits a transgression, and the normal flow of that pro-
gram is interrupted. Ruby is prepared to handle such problems, but you can manage
them in your own way using Ruby’s exception handling.

Java and C++ have try blocks; in Ruby, you would just use a begin block. catch
statements in Java and C++ are used where Ruby has rescue statements. Where Java
uses a finally clause, Ruby uses ensure.

You will learn how to use exception handling in Chapter 10.

Review Questions | 45

Ruby Documentation
When I say “Ruby documentation,” I am mostly referring to the documentation that
is generated by RDoc (http://rdoc.sourceforge.net), a program that extracts documen-
tation from Ruby source files, both C and Ruby files.

The documentation is stored in comments in the source files, and encoded so that
RDoc can easily find it. For example, equals signs (such as ===) on the left margin set
off a heading, and indented text is formatted as code. RDoc can generate output as
HTML, XML, ri (Ruby information), or Windows help (chm) files.

To view the RDoc-generated HTML documentation for Ruby, go to http://www.
ruby-doc.org/core. If you have Ruby documentation installed on your system, which
you likely do if you followed the installation instructions in Chapter 1, you can type
something like the following at a shell prompt to get formatted documentation in
return. Type:

ri Kernel.print

and you will get output that looks like:

--- Kernel#print
 print(obj, ...) => nil
--
 Prints each object in turn to +$stdout+. If the output field
 separator (+$,+) is not +nil+, its contents will appear between
 each field. If the output record separator (+$\+) is not +nil+, it
 will be appended to the output. If no arguments are given, prints
 +$_+. Objects that aren't strings will be converted by calling
 their +to_s+ method.

 print "cat", [1,2,3], 99, "\n"
 $, = ", "
 $\ = "\n"
 print "cat", [1,2,3], 99

 produces:

 cat12399
 cat, 1, 2, 3, 99

In Chapter 10, you’ll find a tutorial on creating documentation with RDoc.

Review Questions
1. What is one of the main differences between a class and a module?

2. What module does the Object class include?

3. What syntax do you use to form block comments?

http://rdoc.sourceforge.net/
http://www.ruby-doc.org/core
http://www.ruby-doc.org/core

46 | Chapter 2: A Quick Tour of Ruby

4. What special character begins an instance variable? A class variable? A global
variable?

5. What is the main feature that distinguishes a constant?

6. When a method ends with a ?, what does that signify by convention?

7. A block is a sort of nameless _____________.

8. What is a proc?

9. What is the most important characteristic of a symbol?

10. What is RDoc?

47

Chapter 3 CHAPTER 3

Conditional Love3

Many of Ruby’s control structures, such as if and while, are standard fare and quite
familiar to programmers, while others, like unless and until, are not. Think of con-
trol structures, which contain conditional statements, as lie detector tests. In every
instance, when you use a control structure with a conditional, you are asking if
something is true or false. When you get the desired answer—true or false depend-
ing on how you’ve designed your code—the code block associated with the control
is executed.

Two related structures, rescue and ensure, which are used for exception
handling, are not explained here. They are discussed in Chapter 10.

This chapter introduces you to Ruby’s control structures with plenty of examples, as
usual. We’ll start out with the if statement—one of the most common structures in
just about any programming language.

The if Statement
Let’s start out really simple and build from there.

if 1 == 1 then
 print "True!"
end

If it’s true that 1 equals (==) 1, which it does, then the if statement returns true, and
the code block, consisting only of a print statement, will execute. (This if state-
ment, by the way, could be typed out on one line.)

Now you’ll create a variable and compare it with a number. If the variable and num-
ber are equal, the code is executed.

x = 256
if x == 256

48 | Chapter 3: Conditional Love

 puts "x equals 256"
end
=> x equals 256

Notice that we dropped then from the if statement. You don’t have to use it in this
instance. In addition, you don’t have to use end if you write this code all on one line,
like so:

x = 256
if x == 256 then puts "x equals 256" end

In fact, you can change the order of things, placing if after puts, and you can drop
then and end.

x = 256
puts "x equals 256" if x == 256

When you change the order like this, the if is referred to as a statement modifier.
You can do this with other control structures, as you will see later on.

Another way you can lay out an if statement is by replacing the then with a colon (:),
like this:

x = 256
if x == 256: puts "x equals 256" end

Play with that code a little bit. Change the value of x so that it won’t return true
when fed to if. Change the text that the statement outputs. Put something else in the
block. Do this until you feel the code in your soul.

Now I’ll show you some other operators for testing the truth or falsehood of a state-
ment or set of statements. For example, the && operator means “and.”

ruby = "nifty"
programming = "fun"

if ruby == "nifty" && programming == "fun"
 puts "Keep programming!"
end
=> Keep programming!

In other words, if both these statements are true, execute the code in the block. You
can have more than two statements separated by &&:

if a == 10 && b == 27 && c == 43 && d == -14
 print sum = a + b + c + d
end

If all these statements are true, sum will be printed.

You can also use the keyword and instead of &&.

if ruby == "nifty" and programming == "fun" and weather == "nice"
 puts "Stop programming and go outside for a break!"
end

The if Statement | 49

Another choice is the || operator; a synonym for this operator is or. When you use
|| or or, if any of the statements are true, the code executes:

if ruby == "nifty" or programming == "fun"
 puts "Keep programming!"
end

If either of the two statements is true, the string Keep programming! will print. Are
more than two statements OK? Of course:

if a == 10 || b == 27 || c = 43 || d = -14
 print sum = a + b + c + d
end

|| and or, and && and and, are considered logical operators. Lots of other operators
are possible, too, such as:

delete_record if record != 0x8ff # not equal to

if amt > 1.00 then desc = "dollars" end # greater than

desc = "cents" if amt < 1.00 # less than

if height >= 6 then print "L or XL" end # greater than or equal to

print "shrimpy" if weight <= 100 # less than or equal to

Two other operators reverse the meaning of a test. They are ! and not.

if !queue then print "The queue is empty." end

What this is saying is that if queue is not equal to true, the statement evaluates as
true and the print statement prints The queue is empty!. An alternative to ! is the
not keyword.

if not queue then print "The the queue is empty." end

Using else and elsif
Sometimes you set flags in programming in order to tell a program to carry out a
task. A flag usually just carries a value of true or false. For example, let’s say your
program had queue and print flags. If the flag is true, then the code in the block is
executed; if false, the block is ignored.

if queue
 pr = true
else
 pr = false
end

start_printer if pr # starts if pr is is true

50 | Chapter 3: Conditional Love

The else keyword gives if an escape hatch. In other words, if the if statement does
not evaluate true, the code after else will be executed, and if if evaluates false, the
code after else is ignored.

I didn’t have to use a logical operator with pr or queue because the actual values were
either true or false, and that’s all the answer that the Ruby interpreter needs from if
in order to act.

There are no quotes around the words true or false because they are
not strings. true is actually the only instance of TrueClass. Its counter-
part, false, is the only instance of FalseClass. true and false are also
considered pseudovariables, which look like variables, and behave like
constants, but cannot be assigned a value.

The elsif keyword provides you with one or more intermediate options after the ini-
tial if, where you can test various statements.

Notice that elsif has only one e, not two. My fingers forget that all
the time, which sends me into debug mode.

The following if statement contains several elsif statements; they are testing to see
which language is currently in use via symbols—English (:en), Spanish (:es), French
(:fr), and German (:de)—to decide how to render dog:

lang = :es
if lang == :en
 print "dog"
elsif lang == :es
 print "perro"
elsif lang == :fr
 print "chien"
elsif lang == :de
 print "Hund"
else
 puts "No language set; default = 'dog'."
end
"perro" is assigned to dog

You can also write this statement a little tighter by using colons after the symbols:

if lang == :en: print "dog"
 elsif lang == :es: print "perro"
 elsif lang == :fr: print "chien"
 elsif lang == :de: print "Hund"
 else puts "No language set; default = 'dog'."
end

The case Statement | 51

Don’t follow the else (the last statement) with a colon.

The Ternary Operator
The ternary or base-three operator (?:) is a concise structure that descended from C
to Ruby. In the C language, it was called the “conditional expression” (see The C
Programming Language, by Brian W. Kernigan and Dennis M. Ritchie (Prentice-Hall)).
The conditional expression is broken into three parts.

Here is an example of something useful you can do with the ternary operator:

label = length == 1 ? " argument" : " arguments"

This expression assigns a string value to label based on the value of length. If the
value of length is 1, then the string value argument (singular) will be assigned to
label; but if it is not true—that is, if length has a value other than 1—then the value
of label will be the string arguments (plural).

Once you get the hang of it, the conditional expression or ternary operator is a great
way to express concise logic on a single line.

The case Statement
Ruby’s case statement provides a way to express conditional logic in a succinct way.
It is similar to using elsifs with colons, but you use case in place of if, and when in
place of elsif.

Here is an example similar to what you saw earlier using lang with the possible sym-
bols :en, :es, :fr, and :de:

lang = :fr

dog = case lang
when :en: "dog"
when :es: "perro"
when :fr: "chien"
when :de: "Hund"

 else "dog"
end
"chien" is assigned to dog

case/when is more convenient and terse than if/elsif/else because the logic of == is
assumed—you don’t have to keep retyping == or the variable name:

Ruby’s case is similar to the switch statement, a familiar C construct, but case is
more powerful. One of the annoying things to me about switch statements in C,
C++, and Java, is that you can’t switch on strings in a straightforward way (though
you can in C#).

52 | Chapter 3: Conditional Love

If the lang variable held a string instead of symbols, your code would look like this:

lang = "de"

dog = case lang
when "en": "dog"
when "es": "perro"
when "fr": "chien"
when "de": "Hund"

 else "dog"
end
"Hund" is assigned to dog

The next example uses several ranges to test values. A range is a range of numbers.

scale = 8
case scale
 when 0: puts "lowest"
 when 1..3: puts "medium-low"
 when 4..5: puts "medium"
 when 6..7: puts "medium-high"
 when 8..9: puts "high"
 when 10: puts "highest"
 else puts "off scale"
end
=> high

The range 1..3 means a range of numbers from 1 to 3, inclusive. Because scale
equals 8, scale matches the range 8..9 and case returns the string high. However,
when you use three dots as in the range 1...5, the ending value 5 is excluded. The
sets of dots, .. and ..., are called range operators; two dots includes all the numbers
in the range, and three dots excludes the last value in the range. Underneath the
hood, case uses the === operator from Range to test whether a value is a member of or
included in a range.

The while Loop
A while loop executes the code it contains as long as its conditional statement
remains true. The following piece of code initializes a counter i to 0 and sets up an
array containing four elements called breeds (horse breeds). It also creates a tempo-
rary array named temp. (You’ll learn more about arrays in Chapter 6.)

The following few paragraphs are fairly fundamental, and are provided for begin-
ning programmers. If you already have plenty of programming under your belt, skip
ahead to the code itself.

The while loop will execute as long as its conditional (i < breeds.size) is true. The i
variable starts out its little life equaling 0, and the size or length of the breeds array is 4.

As you come to the end of the loop, i is incremented by 1, and then control returns
to the top of the loop. In the first loop, i equals 0, and is fed as 0 as an argument to
breeds[i], which retrieves the first element (numbered 0). This is the string value

The while Loop | 53

quarter. That element is appended via << to the temp array. The capitalize method
from String changes quarter to Quarter. At this point, 1 is added to i by the += oper-
ator, so i equals 1. And we take it again from the top.

This continues until i equals 4, whereupon the conditional test for while fails. The
Ruby interpreter moves to the next valid statement, that is, temp.sort!, which sorts
the new array alphabetically. It does not make a copy but changes the array in place.
You know this by the tell-tale ! at the end of the method name (sort!). Then the
contents of temp replace breeds, and we have cleaned up the array.

i = 0
breeds = ["quarter", "arabian", "appalosa", "paint"]
puts breeds.size # => 4
temp = []

while i < breeds.size do
 temp << breeds[i].capitalize
 i +=1
end

temp.sort! # => ["Appalosa", "Arabian", "Paint", "Quarter"]
breeds.replace(temp)
p breeds # => ["Appalosa", "Arabian", "Paint", "Quarter"]

By the way, the do is optional here, so this form of the loop is legitimate, too:

while i < breeds.size
 temp << breeds[i].capitalize
 i +=1
end

Another form you can use is with begin/end:

temp = 98.3

begin
 print "Your temperature is " + temp.to_s + " Fahrenheit. "
 puts "I think you're okay."
 temp += 0.1
end while temp < 98.6

puts "Your temperature is " + temp.to_s + " Fahrenheit. Are you okay?"

When you use while like this, with while at the end, the statements in the loop are
evaluated once before the conditional is checked. This is like the do/while loop
from C.

Also, like if, you can use while as a statement modifier, at the end of a statement:

cash = 100_000.00
sum = 0

cash += 1.00, sum while cash < 1_000_000.00 # underscores ignored

So cash just keeps adding up until it equals $1,000,000.00. I like that!

www.allitebooks.com

http://www.allitebooks.org

54 | Chapter 3: Conditional Love

Give me a break

You can break out of a while loop with the keyword break. For example, let’s say you
were just looping along as before, but you wanted to stop processing once you got to
a certain element in the array. You could use break to bust out, like this:

while i < breeds.size
 temp << breeds[i].capitalize
break if temp[i] == "Arabian"

 i +=1
end
p => temp # => ["Quarter", "Arabian"]

When the if modifier following break found Arabian in the temp array, it broke out of
the loop right then. The next statement (which calls the p method) shows that we
didn’t get very far appending elements to the temp array.

unless and until
The unless and until statements are similar to if and while, except they are executed
while their conditionals are false, whereas if and while statements are executed while
their conditionals are true. Of course, if and while are used more frequently than
unless and until, but the nice thing about having them is that Ruby offers you more
expressiveness.

An unless statement is really like a negated if statement. I’ll show you an if state-
ment first:

if lang == "de"
 dog = "Hund"
else
 dog = "dog"
end

Now I’ll translate it into unless:

unless lang == "de"
 dog = "dog"
else
 dog = "Hund"
end

This example is saying, in effect, that unless the value of lang is de, then dog will be
assigned the value of dog; otherwise, assign dog the value Hund.

See how the statements are reversed? In the if statement, the assignment of Hund to
dog comes first; in the unless example, the assignment of dog to dog comes first.

Like if, you can also use unless as a statement modifier:

puts age += 1 unless age > 29

As unless is a negated form of if, until is really a negated form of while. Compare
the following statements. The first is a while loop:

The loop Method | 55

weight = 150
while weight < 200 do
 puts "Weight: " + weight.to_s
 weight += 5
end

Here is the same logic expressed with until:

weight = 150
until weight == 200 do
 puts "Weight: " + weight.to_s
 weight += 5
end

And like while, you have another form you can use with until—that is, with begin/
end:

weight = 150

begin
 puts "Weight: " + weight.to_s
 weight += 5
end until weight == 200

In this form, the statements in the loop are evaluated once before the conditional is
checked.

And finally, like while, you can also use until as a statement modifier:

puts age += 1 until age > 28

The loop Method
The loop method comes from Kernel. It lets you run a loop continuously—like run-
ning for(;;) in C—until you or the program does something to break out of the
loop.

Run the code in Example 3-1.

You will see a prompt, Type something:. The gets method (also from Kernel) retrieves
what you type, and it is assigned to the line variable. However, if line matches q or
Q, you will break out of loop then and there; otherwise, puts prints the contents of
line to standard output. When you hit end, control returns to the top of the loop
again.

Example 3-1. loop.rb

loop do
 print "Type something: "
 line = gets
 break if line =~ /q|Q/
 puts line
end

56 | Chapter 3: Conditional Love

The for loop
The for loop is a familiar structure to experienced programmers. This example of for
uses a range (1..5) to print out a list of numbers from 1 to 5.

for i in 1..5 do
 print i, " "
end
=> 1 2 3 4 5

Notice the do and end. You can drop the do. It isn’t required, but you have to keep
end:

for i in 1..5
 print i, " "
end
=> 1 2 3 4 5

If you want to do the for loop on one line, you have to throw in the do again:

for i in 1..5 do print i, " " end # => 1 2 3 4 5

Here is an example of a for loop that prints out a times table (from 1 to 12) for the
number 2:

for i in 1..12
 print "2 x " + i.to_s + " = ", i * 2, "\n"
end
=>
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
2 x 5 = 10
2 x 6 = 12
2 x 7 = 14
2 x 8 = 16
2 x 9 = 18
2 x 10 = 20
2 x 11 = 22
2 x 12 = 24

With nested for loops, you can easily print out times tables from 1 to 12:

for i in 1..12
 for j in 1..12
 print i.to_s + " x " + j.to_s + " = ", j * i, "\n"
 end
end

Here is just part of the output:

1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
1 x 4 = 4

The for loop | 57

1 x 5 = 5
1 x 6 = 6
1 x 7 = 7
1 x 8 = 8
1 x 9 = 9
1 x 10 = 10
1 x 11 = 11
1 x 12 = 12
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
...

This is all very nice, but for has some competition in the form of the times, upto, and
downto methods.

The times Method
The times method (from Integer) is convenient and concise. Compare this for loop:

for i in 1..10
 print i, " "
end
=> 1 2 3 4 5 6 7 8 9 10

with this call to times:

10.times { |i | print i, " " } # => 0 1 2 3 4 5 6 7 8 9

Both pieces of code produce the same output. times, as you can see, takes a block
and is slightly easier to type. It is used a lot, and it is Ruby-esque—classy, intuitive,
succinct. Can you guess which form I prefer?

The upto Method
The upto method is a convenience method that does the same thing as a for loop but
is a little more concise to write. The Integer, String, and Date classes all have upto
methods, but I’ll show only the Integer version here (you’ll see the String version in
Chapter 4).

For example, here is a for loop that prints out a list of numbers, like you saw earlier:

for i in 1..10
 print i, " "
end
=> 1 2 3 4 5 6 7 8 9 10

Compare this with upto, which does exactly the same thing:

1.upto(10) { |i| print i, " " } # => 1 2 3 4 5 6 7 8 9 10

upto uses a block to do its magic. for is there for you, but I prefer upto. It’s just a lit-
tle snappier.

58 | Chapter 3: Conditional Love

Here is another example of upto that prints out a times table for 2:

1.upto(12) { |i| print "2 x " + i.to_s + " = ", i * 2, "\n"}
=>
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
2 x 5 = 10
2 x 6 = 12
2 x 7 = 14
2 x 8 = 16
2 x 9 = 18
2 x 10 = 20
2 x 11 = 22
2 x 12 = 24

That was easy to throw together. What if you wanted to do all the times tables from
1 to 12? Try this one:

1.upto(12) { |i| 1.upto(12) { |j| print i.to_s + " x " + j.to_s + " = ", j * i,
"\n"} }

This example uses a nested pair of uptos to do its job. upto seems a little more con-
cise than for to my taste.

The downto Method
The downto method is similar to upto but counts in the other direction. Both the
Integer and Date classes have downto methods, but I’ll just show you the Integer ver-
sion (String does not have a downto method). Like upto, it uses a block:

5.downto(1) { |i| print i, " " } # => 5 4 3 2 1

The program timer.rb, shown in Example 3-2, contains a method named timer. The
argument to this method equals the number of minutes you want to count down.

The timer method uses the Kernel method sleep in the downto method’s block. The
Time class is one of Ruby’s built-in classes. Time’s now method takes a snapshot of the
current time, and the strftime method returns a formatted string using formatting

Example 3-2. timer.rb

def timer(start)
 puts "Minutes: " + start.to_s
 start_time = Time.now
 puts start_time.strftime("Start to_time: %I:%M:%S %p")
 start.downto(1) { |i| sleep 60 }
 end_time = Time.now
 print end_time.strftime("Elapsed time: %I:%M:%S %p")
end

timer 10

Review Questions | 59

directives: %I for hour, %M for minutes, and %S for seconds. (You can find a complete
list of formatting directives for Time in Table A-13 in Appendix A.) The output of this
program is:

Minutes: 10
Start to_time: 09:40:00 AM
Elapsed time: 09:50:00 AM

Execution Before or After a Program
Finally, I want to mention two other control structures, BEGIN and END. These struc-
tures allow code to execute before and after a program runs. Both BEGIN and END are
followed by blocks enclosed by braces ({}), as in Example 3-3.

Review Questions
1. Why is case/when somewhat more convenient than if/elsif/else?

2. What is the ternary operator?

3. What is a statement modifier?

4. Why is upto or downto more convenient than a regular for loop?

5. An unless statement is the negated form of what other control structure?

6. What are the synonyms for && and ||?

7. What is probably the most common control structure used in Ruby and other
languages?

8. What is the benefit of using begin/end with a while statement?

Example 3-3. bmi.rb

BEGIN { puts "Date and time: " + Time.now.to_s }

def bmi(weight, height)
 703.0*(weight.to_f/(height.to_f**2))
end

my_bmi = bmi(196, 73)

puts "Your BMI is: " + x = sprintf("%0.2f", my_bmi)

END { puts "You've got some work ahead of you." }

60

Chapter 4CHAPTER 4

Strings 4

In the simplest terms, a string in a programming language is a sequence of one or more
characters and usually represents some human language, whether written or spoken.
You are probably more likely to use methods from the String class than from any other
class in Ruby. Manipulating strings is one of the biggest chores a programmer has to
manage. Fortunately, Ruby offers a lot of convenience in this department.

For more information on string methods, go to http://www.ruby-doc.org/core/classes/
String.html. You can also use the command line to get information on a method. For
example, to get information on the String instance method chop, type:

ri String#chop [or] ri String.chop

You can use # or . between the class and method names when returning two meth-
ods with ri. This, of course, assumes that you have the Ruby documentation pack-
age installed and that it is in the path (see “Installing Ruby,” in Chapter 1).

Creating Strings
You can create strings with the new method. For example, this line creates a new,
empty string called title:

title = String.new # => ""

Now you have a new string, but it is only filled with virtual air. You can test a string
to see if it is empty with empty?:

title.empty? # => true

You might want to test a string to see if it is empty before you process it, or to end
processing when you run into an empty string. You can also test its length or size:

title.length [or] title.size # => 0

The length and size methods do the same thing: they both return an integer indicat-
ing how many characters a string holds.

http://www.ruby-doc.org/core/classes/String.html
http://www.ruby-doc.org/core/classes/String.html

Creating Strings | 61

The new method can take a string argument:

title = String.new("Much Ado about Nothing")

Now check title:

title.empty? # => false
title.length # => 22

There we go. Not quite so vacuous as before.

Another way to create a string is with Kernel’s String method:

title = String("Much Ado about Nothing")
puts title # => Much Ado about Nothing

But there is an even easier way. You don’t have to use the new or String methods to
generate a new string. Just an assignment operator and a pair of double quotes will
do fine:

sad_love_story = "Romeo and Juliet"

You can also use single quotes:

sad_love_story = 'Romeo and Juliet'

The difference between using double quotes versus single quotes is that double
quotes interpret escaped characters and single quotes preserve them. I’ll show you what
that means. Here’s what you get with double quotes (interprets \n as a newline):

lear = "King Lear\nA Tragedy\nby William Shakespeare"
puts lear # => King Lear
 # A Tragedy
 # by William Shakespeare

And here’s what you get with single quotes (preserves \n in context):

lear = 'King Lear\nA Tragedy\nby William Shakespeare'
puts lear # => King Lear\nA Tragedy\nby William Shakespeare

For a complete list of escape characters, see Table A-1 in Appendix A.

General Delimited Strings
Another way to create strings is with general delimited strings, which are all preceded
by a % and then followed by a matched pair of delimiter characters, such as !, {, or [
(must be nonalphanumeric). The string is embedded between the delimiters. All of
the following examples are delimited by different characters (you can even use quote
characters):

comedy = %!As You Like It!
history = %[Henry V]
tragedy = %(Julius Ceasar)

You can also use %Q, which is the equivalent of a double-quoted string; %q, which is
equivalent to a single-quoted string; or %x for a back-quoted string (`) for command
output.

62 | Chapter 4: Strings

Here Documents
A here document allows you to build strings from multiple lines on the fly, while pre-
serving newlines. A here document is formed with a << and a delimiting character or
string of your choice. I’ll save Shakespeare’s 29th sonnet as a here document, with 29
as the delimiter:

sonnet = <<29
When in disgrace with fortune and men's eyes
I all alone beweep my outcast state,
And trouble deaf heaven with my bootless cries,
And look upon myself, and curse my fate,
Wishing me like to one more rich in hope,
Featured like him, like him with friends possessed,
Desiring this man's art, and that man's scope,
With what I most enjoy contented least;
Yet in these thoughts my self almost despising,
Haply I think on thee, and then my state,
Like to the lark at break of day arising
From sullen earth, sings hymns at heaven's gate;
For thy sweet love remembered such wealth brings
That then I scorn to change my state with kings.
29

This document is stored in the string sonnet, but you can create a here document
without placing it in a string. Wherever the line breaks, a record separator (such as \n)
is inserted at that place. Now use:

puts sonnet

You’ll see for yourself how the lines break.

You can also “delimit the delimiter” for various effects:

sonnet = <<hamlet # same as double-quoted string
O my prophetic soul! My uncle!
hamlet

sonnet = <<"hamlet" # again as double-quoted string
O my prophetic soul! My uncle!
hamlet

sonnet = <<'ghost' # same as single-quoted string
Pity me not, but lend thy serious hearing
To what I shall unfold.
ghost

my_dir = <<`dir` # same as back ticks
ls -l
dir

ind = <<-hello # for indentation
 Hello, Matz!
hello

Accessing Strings | 63

Concatenating Strings
In Ruby, you can add on to an existing string with various concatenation tech-
niques. With Ruby, you don’t have to jump through the hoops that you might if you
were using a language with immutable strings.

Adjacent strings can be concatenated simply because that they are next to each other:

"Hello," " " "Matz" "!" # => "Hello, Matz!"

You can also use the + method:

"Hello," + " " + "Matz" + "!" # => "Hello, Matz!"

You can even mix double and single quotes, as long as they are properly paired.

Another way to do this is with the << method. You can add a single string:

"Hello, " << "Matz!" # => Hello, Matz!

Or you can chain them together with multiple calls to <<:

"Hello," << " " << "Matz" << "!" # => Hello, Matz!

An alternative to << is the concat method (which does not allow you to chain):

"Hello, ".concat "Matz!"

Or you can do it this way:

h = "Hello, "
m = "Matz!"
h.concat(m)

You can make a string immutable with Object’s freeze method:

greet = "Hello, Matz!"
greet.freeze

try to append something
greet.concat("!") # => TypeError: can't modify frozen string

is the object frozen?
greet.frozen? # => true

Accessing Strings
You can extract and manipulate segments of a string using the String method []. It’s
an alias of the slice method: any place you use [], you can use slice, with the same
arguments. slice! performs in-place changes and is a counterpart to []=.

We’ll access several strings in the examples that follow:

line = "A horse! a horse! my kingdom for a horse!"
cite = "Act V, Scene IV"
speaker = "King Richard III"

64 | Chapter 4: Strings

If you enter a string as the argument to [], it will return that string, if found:

speaker['King'] # => "King"

Otherwise, it will return nil—in other words, it’s trying to break the news to you: “I
didn’t find the string you were looking for.” If you specify a Fixnum (integer) as an index,
it returns the decimal character code for the character found at the index location:

line[7] # => 33

At the location 7, [] found the character 33 (!). If you add the chr method (from the
Integer class), you’ll get the actual character:

line[7].chr # => "!"

You can use an offset and length (two Fixnums) to tell [] the index location where
you want to start, and then how many characters you want to retrieve:

line[18, 23] # => "my kingdom for a horse!"

You started at index location 18, and then scooped up 23 characters from there,
inclusive. You can capitalize the result with the capitalize method, if you want:

line[18, 23].capitalize # => "My kingdom for a horse!"

(More on capitalize and other similar methods later in the chapter.)

Enter a range to grab a range of characters. Two dots (..) means include the last
character:

cite[0..4] # => "Act V"

Three dots (...) means exclude the last value:

cite[0...4] # => "Act "

You can also use regular expressions (see the end of the chapter), as shown here:

line[/horse!$/] # => "horse!"

The regular expression /horse!$/ asks, “Does the word horse, followed by ! come at
the end of the line ($)?” If this is true, this call returns horse!; nil if not. Adding
another argument, a Fixnum, returns that portion of the matched data, starting at 0 in
this instance:

line[/^A horse/, 0] # => "A horse"

The index method returns the index location of a matching substring. So if you use
index like this:

line.index("k") # => 21

21 refers to the index location where the letter k occurs in line.

See if you get what is going on in the following examples:

line[line.index("k")] # => 107
line[line.index("k")].chr # => "k"

Comparing Strings | 65

If you figured out these statements, you are starting to catch on! It doesn’t take long,
does it? If you didn’t understand what happened, here it is: when line.index("k")
was called, it returned the value 21, which was fed as a numeric argument to []; this,
in effect, called line[21].

Comparing Strings
Sometimes you need to test two strings to see if they are the same or not. You can do
that with the == method. For example, you might want to test a string before print-
ing something:

print "What was the question again?" if question == ""

Also, here are two versions of the opening paragraph of Abraham Lincoln’s Gettys-
burg Address, one from the so-called Hay manuscript, the other from the Nicolay
(see http://www.loc.gov/exhibits/gadd/gadrft.html):

hay = "Four score and seven years ago our fathers brought forth, upon this continent,
a new nation, conceived in Liberty, and dedicated to the proposition that all men are
created equal."

nicolay = "Four score and seven years ago our fathers brought forth, upon this
continent, a new nation, conceived in liberty, and dedicated to the proposition that
\"all men are created equal\""

The strings are only slightly different (for example, Liberty is capitalized in the Hay
version). Let’s compare these strings:

hay == nicolay # => false

The result is false, because they must match exactly. (We’ll let the historians figure
out how to match them up.) You could also apply the eql? method and get the same
results, though eql? and == are slightly different:

• == returns true if two objects are Strings, false otherwise.

• eql? returns true if two strings are equal in length and content, false otherwise.

Here eql? returns false:

hay.eql? nicolay # => false

Yet another way to compare strings is with the <=> method, commonly called the
spaceship operator. It compares the character code values of the strings, returning -1
(less than), 0 (equals), or 1 (greater than), depending on the comparison, which is
case-sensitive:

"a" <=> "a" # => 0
"a" <=> 97.chr # => 0
"a" <=> "b" # => -1
"a" <=> "`" # => 1

http://www.loc.gov/exhibits/gadd/gadrft.html

66 | Chapter 4: Strings

A case-insensitive comparison is possible with casecmp, which has the same possible
results as <=> (-1, 0, 1) but doesn’t care about case:

"a" <=> "A" # => 1
"a".casecmp "A" # => 0
"ferlin husky".casecmp "Ferlin Husky" # => 0
"Ferlin Husky".casecmp "Lefty Frizzell" # => -1

Manipulating Strings
Here’s a fun one to get started with. The * method repeats a string by an integer factor:

"A horse! " * 2 # => "A horse! A horse! "

You can concatenate a string to the result:

taf = "That's ".downcase * 3 + "all folks!" # => "that's that's that's all folks!"
taf.capitalize # => "That's that's that's all folks!"

Inserting a String in a String
The insert method lets you insert another string at a given index in a string. For
example, you can correct spelling:

"Be carful.".insert 6, "e" # => "Be careful."

or add a word (plus a space):

"Be careful!".insert 3, "very " # => "Be very careful!"

or even throw the * method in just to prove that you can:

"Be careful!".insert 3, "very " * 5 # => "Be very very very very very careful!"

Changing All or Part of a String
You can alter all or part of a string, in place, with the []= method. (Like [], which is
the counterpart of slice, []= is an alias of slice!, so anywhere you use []=, you can
use slice!, with the same arguments.)

Given the following strings (some scoundrel has been editing our Shakespeare text):

line = "A Porsche! a Porsche! my kingdom for a Porsche!"
cite = "Act V, Scene V"
speaker = "King Richard, 2007"

enter a string as the argument to []=, and it will return the new, corrected string, if
found; nil otherwise.

speaker[", 2007"]= "III" # => "III"
p speaker # => "King Richard III"

That’s looking better.

Manipulating Strings | 67

If you specify a Fixnum (integer) as an index, it returns the corrected string you placed
at the index location. (String lengths are automatically adjusted by Ruby if the
replacement string is a different length than the original.)

cite[13]= "IV" # => "IV"
p cite # => "Act V, Scene IV"

At the index 13, []= found the substring V and replaced it with IV.

You can use an offset and length (two Fixnums) to tell []= the index of the substring
where you want to start, and then how many characters you want to retrieve:

line[39,8]= "Porsche 911 Turbo!" # => "Porsche 911 Turbo!"
p line # => "A Porsche! a Porsche! my kingdom for a Porsche 911 Turbo!"

You started at index 39, and went 8 characters from there (inclusive).

You can also enter a range to indicate a range of characters you want to change.
Include the last character with two dots (..):

speaker[13..15]= "the Third" # => "the Third"
p speaker # => "King Richard the Third"

You can also use regular expressions (see “Regular Expressions,” later in this chap-
ter), as shown here:

line[/Porsche!$/]= "Targa!" # => "Targa!"
p line # => "A Porsche! a Porsche! my kingdom for a Targa!"

The regular expression /Porsche!$/ matches if Porsche! appears at the end of the line
($). If this is true, the call to []= exchanges Porsche! with Targa!.

The chomp and chop Methods
The chop (or chop!) method chops off the last character of a string, and the chomp
(chomp!) method chomps off the record separator ($/)—usually just a newline—from
a string. Consider the string joe, a limerick created as a here document:

joe = <<limerick
There once was a fellow named Joe
quite fond of Edgar Allen Poe
 He read with delight
 Nearly half the night
When his wife said "Get up!" he said "No."
limerick # => "There once was a fellow named Joe\nquite fond of Edgar Allen Poe\n
He read with delight\n Nearly half the night\nWhen his wife said \"Get up!\" he
said \"No.\"\n"

Apply chomp! to remove the last record separator (\n):

joe.chomp! # => "There once was a fellow named Joe\nquite fond of Edgar Allen Poe\n
He read with delight\n Nearly half the night\nWhen his wife said \"Get up!\" he
said \"No.\""

Now apply it again, and chomp! returns nil without altering the string because there
is no record separator at the end of the string:

joe.chomp! # => nil

68 | Chapter 4: Strings

chop, chomp’s greedy twin, shows no mercy on the string, removing the last character
(a quote) with abandon:

joe.chop! = "There once was a fellow named Joe\nquite fond of Edgar Allen Poe\n He
read with delight\n Nearly half the night\nWhen his wife said \"Get up!\" he said \
"No"

The delete Method
With delete or delete!, you can delete characters from a string:

"That's call folks!".delete "c" # => "That's all folks"

That looks easy, because there is only one occurrence of the letter c in the string, so
you don’t see any interesting side effects, as you would in the next example. Let’s say
you want to get rid of that extra l in alll:

"That's alll folks".delete "l" # => "That's a foks"

Oh, boy. It cleaned me out of all ls. I can’t use delete the way I want, so how do I fix
calll? What if I use two ls instead of one?

"That's alll folks".delete "ll" # => "That's a foks"

I got the same thing. (I knew I would.) That’s because delete uses the intersection
(what intersects or is the same in both) of its arguments to decide what part of the
string to take out. The nifty thing about this, though, is you can also negate all or
part of an argument with the caret (^), similar to its use in regular expressions:

"That's all folks".delete "abcdefghijklmnopqrstuvwxyz", "^ha" # => "haa"

The caret negates both the characters in the argument, not just the first one (you can
do "^h^a", too, and get the same answer).

Substitute the Substring
Try gsub (or gsub!). This method replaces a substring (first argument) with a replace-
ment string (second argument):

"That's alll folks".gsub "alll", "all" # => "That's all folks"

Or you might do it this way:

"That's alll folks".gsub "lll", "ll" # => "That's all folks"

The replace method replaces a string wholesale. Not just a substring, the whole
thing.

call = "All hands on deck!"
call.replace "All feet on deck!" # => "All feet on deck!"

So why wouldn’t you just do it this way?

call = "All hands on deck!"
call = "All feet on deck!"

Manipulating Strings | 69

Wouldn’t you get the same result? Not exactly. When you use replace, call remains
the same object, with the same object ID, but when you assign the string to call
twice, the object and its ID will change. Just a subtlety you ought to know.

same object
call = "All hands on deck!" # => "All hands on deck!"
call.object_id # => 1624370
call.replace "All feet on deck!" # => "All feet on deck!"
call.object_id # => 1624370

different object
call = "All hands on deck!" # => "All hands on deck!"
call.object_id # => 1600420
call = "All feet on deck!" # => "All feet on deck!"
call.object_id # => 1009410

Turn It Around
To reverse the characters means to alter the characters so they read in the opposite
direction. You can do this with the reverse method (or reverse! for permanent dam-
age). Say you want to reverse the order of the English alphabet:

"abcdefghijklmnopqrstuvwxyz".reverse # => "zyxwvutsrqponmlkjihgfedcba"

Or, maybe you’d like to reverse a palindrome:

palindrome = "dennis sinned"
palindrome.reverse! # => "dennis sinned"
p palindrome

Not much harm done, even though reverse! changed the string in place. Think
about that one for a while.

From a String to an Array
Conveniently, split converts a string to an array. The first call to split is without an
argument:

"0123456789".split # => ["0123456789"]

That was easy, but what about splitting up all the individual values and converting
them into elements? Do that with a regular expression (//) that cuts up the original
string at the junction of characters.

"0123456789".split(//) # => ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]

 In the next example, the regular expression matches a comma and a space (/, /):

c_w = "George Jones, Conway Twitty, Lefty Frizzell, Ferlin Husky"
=> "George Jones, Conway Twitty, Lefty Frizzell, Ferlin Husky"
c_w.split(/, /) # => ["George Jones", "Conway Twitty", "Lefty Frizzell", "Ferlin
Husky"]

70 | Chapter 4: Strings

Case Conversion
You can capitalize a word, sentence, or phrase with capitalize or capitalize!. (By
now you should know the difference between the two.) Here is a pair of sentences
that are under the influence of capitalize:

"Ruby finally has a killer app. It's Ruby on Rails.".capitalize # => "Ruby finally
has a killer app. it's ruby on rails."

Notice that the second sentence is not capitalized, which doesn’t look so good. Now
you can see that capitalize only capitalizes the first letter of the string, not the
beginning of succeeding sentences. Plan accordingly.

Iterating Over a String
To get the effect you want, you may have to split strings up. Here is a list of menu
items, stored in a string. They are separated by \n. The each method (or its synonym
each_line) iterates over each separate item, not just the first word in the overall
string, and capitalizes it:

"new\nopen\nclose\nprint".each { |item| puts item.capitalize }# =>
New
Open
Close
Print

By the way, there is one other each method: each_byte. It takes a string apart byte by
byte, returning the decimal value for the character at each index location. Print each
character as a decimal, separated by /:

"matz".each_byte { |b| print b, "/" } # => 109/97/116/122/

This example assumes that a character is represented by a single byte,
which is not always the case. The default character set for Ruby is
ASCII, whose characters may be represented by bytes. However, if you
use UTF-8, characters may be represented in one to four bytes. You
can change your character set from ASCII to UTF-8 by specifying
$KCODE = 'u' at the beginning of your program.

Convert each decimal to its character equivalent with Integer’s chr method:

"matz".each_byte { |b| print b.chr, "/" } # => m/a/t/z/

Or append the output to an array—out:

out = [] # create an empty array
"matz".each_byte { |b| p out << b} # =>
[109]
[109, 97]
[109, 97, 116]
[109, 97, 116, 122]
p out # => [109, 97, 116, 122]

You’ll learn more about arrays in Chapter 6.

Managing Whitespace, etc. | 71

downcase, upcase, and swapcase
YOU KNOW IT CAN BE ANNOYING TO READ SOMETHING THAT IS ALL IN
UPPERCASE LETTERS! It’s distracting to read. That’s one reason it’s nice that Ruby
has the downcase and downcase! methods.

"YOU KNOW IT CAN BE ANNOYING TO READ SOMETHING THAT IS IN ALL UPPERCASE LETTERS!".
downcase # => "you know it can be annoying to read something that is all in uppercase
letters!"

There, that’s better. But now the first letter is lowercase, too. The grammar police
will be on our case. Fix this by adding a call to capitalize onto the statement.

"YOU KNOW IT CAN BE ANNOYING TO READ SOMETHING THAT IS ALL IN UPPERCASE LETTERS!".
downcase.capitalize # => "You know it can be annoying to read something that is all
in uppercase letters!"

Good. That took care of it.

What if you want to go the other way and change lowercase letters to uppercase? For
example, you may want to get someone’s attention by turning warning text to all
uppercase. You can do that with upcase or upcase!.

"warning! keyboard may be hot!".upcase # => WARNING! KEYBOARD MAY BE HOT!

Sometimes you may want to swap uppercase letters with lowercase. Use swapcase or
swapcase!. For example, you can switch an English alphabet list that starts with lower-
case first to a string that starts with uppercase first:

"aAbBcCdDeEfFgGhHiI".swapcase # => "AaBbCcDdEeFfGgHhIi"

Managing Whitespace, etc.
You can adjust whitespace (or other characters) on the left or right of a string, center
a string in whitespace (or other characters), and strip whitespace away using the fol-
lowing methods. First, create a string—the title of a Shakespeare play:

title = "Love's Labours Lost"

How long is the string? This will be important to you (length and size are synonyms).

title.size # => 19

The string title is 19 characters long. With that information in tow, we can start
making some changes. The ljust and rjust methods pad a string with whitespace
or, if specified, some other character. The string will be right justified, and the num-
ber of characters, whitespace or otherwise, must be greater than the length of the
string. Make sense? I hope so. Let’s go over an example or two.

Let’s call these two methods with an argument (an integer) that is less than or equal
to the length of the string.

title.ljust 10 # => "Love's Labours Lost"
title.rjust 19 # => "Love's Labours Lost"

72 | Chapter 4: Strings

What happened? Nothing! That’s because the argument must be greater than the
length of the string in order to do anything. The added whitespace is calculated
based on the length of the string plus the value of the argument. Watch:

title.ljust 20 # => "Love's Labours Lost "
title.rjust 25 # => " Love's Labours Lost"

See how it works now? In the call to ljust, one space character is added on the right
(20 – 19 = 1), and the call to rjust adds six characters to the left (25 – 19 = 6). If it
seems backward, just remember that the string is always right justified. Still con-
fused? So am I, but we’ll go on. You can use another character besides the default
space character if you’d like:

title.rjust(21, "-") # => "--Love's Labours Lost"

or use more than one character—the sequence will be repeated:

title.rjust 25, "->" # => "->->->Love's Labours Lost"

OK, now let’s really mess with your head:

title.rjust(20, "-").ljust(21, "-") # => "-Love's Labours Lost-"

You might want to do something like that someday.

If you want to play both ends to the middle, we are be better off using center instead:

title.center 23 # => " Love's Labours Lost "
title.center 23, "-" # => "--Love's Labours Lost--"

With one more tip of the hat, I’ll use center to create a comment:

filename = "hack.rb" # => "hack.rb"
filename.size # => 7
filename.center 40-7, "#" # => "#############hack.rb#############"

We’ve been adding whitespace and other characters. What if you just want to get rid
of it? Use lstrip, rstrip, and strip (lstrip!, rstrip!, and strip!). Suppose you have
a string surrounded by whitespace:

fear = " Fear is the little darkroom where negatives develope. -- Michael
Pritchard "

Oops. Fell asleep with my thumb on the space bar—twice! I can fix it easily now,
starting with the left side (make the change stick to the original string with lstrip!):

fear.lstrip! # => "Fear is the little darkroom where negatives develope. -- Michael
Pritchard "

Now the right side:

fear.rstrip! # => "Fear is the little darkroom where negatives develope. -- Michael
Pritchard"

Or do the whole thing at once:

fear.strip! # => "Fear is the little darkroom where negatives develope. -- Michael
Pritchard"

strip removes other kinds of whitespace, too:

"\t\tBye, tabs and line endings!\r\n".strip # => "Bye, tabs and line endings!"

Incrementing Strings | 73

Incrementing Strings
The Ruby String class has several methods that let you produce successive strings—
that is, strings that increment, starting at the rightmost character. You can incre-
ment strings with next and next! (or succ and succ!). I prefer to use next. (The meth-
ods ending in ! make in-place changes.) For example:

"a".next [or] "a".succ # => "b"

Remember, next increments the rightmost character:

"aa".next # => "ab"

It adds a character when it reaches a boundary, or adds a digit or decimal place when
appropriate, as shown in these lines:

"z".next # => "aa" # two a's after one z
"zzzz".next # => "aaaaa" # five a's after four z's
"999.0".next # => "999.1" # increment by .1
"999".next # => "1000" # increment from 999 to 1000

We’re not just talking letters here, but any character, based on the character set in
use (ASCII in these examples):

" ".next # => "!"

Chain calls of next together—let’s try three:

"0".next.next.next # => "3"

As you saw earlier, next works for numbers represented as strings as well:

"2007".next # => "2008"

Or you can get it to work when numbers are not represented as strings, though the
method will come from a different class, not String. For example:

2008.next # => 2009

Instead of from String, this call actually uses the next method from Integer. (The
Date, Generator, Integer, and String classes all have next methods.)

You can even use a character code via chr with next:

120.chr # => "x"
120.chr.next # => "y"

The upto method from String, which uses a block, makes it easy to increment. For
example, this call to upto prints the English alphabet:

"a".upto("z") { |i| print i } # => abcdefghijklmnopqrstuvwxyz

You could also do this with a for loop and an inclusive range:

for i in "a".."z"
 print i
end

You decide what’s simpler. The for loop takes only slightly more keystrokes (29 ver-
sus 31, including whitespace). But I like upto.

74 | Chapter 4: Strings

Converting Strings
You can convert a string into a float (Float) or integer (Fixnum). To convert a string
into a float, or, more precisely, an instance of the String class into an instance of
Float, use the to_f method:

"200".class # => String
"200".to_f # => 200.0
"200".to_f.class # => Float

Likewise, to convert a string to an integer, use to_i:

"100".class # => String
"100".to_i # => 100
"100".to_i.class # => Fixnum

To convert a string into a symbol (Symbol class), you can use either the to_sym or
intern methods.

"name".intern # => :name
"name".to_sym # => :name

The value of the string, not its name, becomes the symbol:

play = "The Merchant of Venice".intern # => :"The Merchant of Venice"

Convert an object to a string with to_s. Ruby calls the to_s method from the class of
the object, not the String class (parentheses are optional).

(256.0).class # => Float
(256.0).to_s # => "256.0"

Regular Expressions
You have already seen regular expressions in action. A regular expression is a special
sequence of characters that helps you match or find other strings or sets of strings,
using a specialized syntax held in a pattern. The syntax for regular expressions was
invented by mathematician Stephen Kleene in the 1950s.

I’ll spend a little time demonstrating some patterns to search for strings. In this little
discussion, you’ll learn the fundamentals: how to use basic string patterns, square
brackets, alternation, grouping, anchors, shortcuts, repetition operators, and braces.
Table 4-1 lists the syntax for regular expressions in Ruby.

We need a little text to munch on. Here are the opening lines of Shakespeare’s 29th
sonnet:

opening = "When in disgrace with fortune and men's eyes\nI all alone beweep my
outcast state,\n"

Note that this string contains two lines, set off by the newline character \n.

You can match the first line just by using a word in the pattern:

opening.grep(/men/) # => ["When in disgrace with fortune and men's eyes\n"]

Regular Expressions | 75

By the way, grep is not a String method; it comes from the Enumerable module,
which the String class includes, so it is available for processing strings. grep takes a
pattern as an argument, and can also take a block (see http://www.ruby-doc.org/core/
classes/Enumerable.html).

When you use a pair of square brackets ([]), you can match any character in the
brackets. Let’s try to match the word man or men using []:

opening.grep(/m[ae]n/) # => ["When in disgrace with fortune and men's eyes\n"]

It would also match a line with the word man in it:

Alternation lets you match alternate forms of a pattern using the pipe character (|):

opening.grep(/men|man/) # => ["When in disgrace with fortune and men's eyes\n"]

Grouping uses parentheses to group a subexpression, like this one that contains an
alternation:

opening.grep(/m(e|a)n/) # => ["When in disgrace with fortune and men's eyes\n"]

Anchors anchor a pattern to the beginning (^) or end ($) of a line:

opening.grep(/^When in/) # => ["When in disgrace with fortune and men's eyes\n"]
opening.grep(/outcast state,$/) # => ["I all alone beweep my outcast state,\n"]

The ^ means that a match is found when the text When in is at the beginning of a line,
and $ will only match outcast state if it is found at the end of a line.

One way to specify the beginning and ending of strings in a pattern is with shortcuts.
Shortcut syntax is brief—a single character preceded by a backslash. For example,
the \d shortcut represents a digit; it is the same as using [0-9] but, well, shorter. Sim-
ilarly to ^, the shortcut \A matches the beginning of a string, not a line:

opening.grep(/\AWhen in/) # => ["When in disgrace with fortune and men's eyes\n"]

Similar to $, the shortcut \z matches the end of a string, not a line:

opening.grep(/outcast state,\z/) # => ["I all alone beweep my outcast state,"]

The shortcut \Z matches the end of a string before the newline character, assuming
that a newline character (\n) is at the end of the string (it won’t work otherwise).

Let’s figure out how to match a phone number in the form (555)123-4567. Suppos-
ing that the string phone contains a phone number like this, the following pattern will
find it:

phone.grep(/[\(\d\d\d\)]?\d\d\d-\d\d\d\d/) # => ["(555)123-4567"]

The backslash precedes the parentheses (\(...\)) to let the regexp engine know that
these are literal characters. Otherwise, the engine will see the parentheses as enclos-
ing a subexpression. The three \ds in the parentheses represent three digits. The
hyphen (-) is just an unambiguous character, so you can use it in the pattern as is.

The question mark (?) is a repetition operator. It indicates zero or one occurrence of
the previous pattern. So the phone number you are looking for can have an area code
in parentheses, or not. The area-code pattern is surrounded by [and] so that the ?

http://www.ruby-doc.org/core/classes/Enumerable.html#M003157
http://www.ruby-doc.org/core/classes/Enumerable.html#M003157

76 | Chapter 4: Strings

operator applies to the entire area code. Either form of the phone number, with or
without the area code, will work. Here is a way to use ? with just a single character, u:

color.grep(/colou?r/) # => ["I think that colour is just right for you office."]

The plus sign (+) operator indicates one or more of the previous pattern, in this case
digits:

phone.grep(/[\(\d+\)]?\d+-\d+/) # => ["(555)123-4567"]

Braces ({}) let you specify the exact number of digits, such as \d{3} or \d{4}:

phone.grep(/[\(\d{3}\)]?\d{3}-\d{4}/)# => ["(555)123-4567"]

It is also possible to indicate an “at least” amount with {m,}, and a
minimum/maximum number with {m,n}.

The String class also has the =~ method and the !~ operator. If =~ finds a match, it
returns the offset position where the match starts in the string:

color =~ /colou?r/ # => 13

The !~ operator returns true if it does not match the string, false otherwise:

color !~ /colou?r/ # => false

Also of interest are the Regexp and MatchData classes. The Regexp class (http://www.ruby-
doc.org/core/classes/Regexp.html) lets you create a regular expression object. The
MatchData class (http://www.ruby-doc.org/core/classes/MatchData.html) provides the
special $- variable, which encapsulates all search results from a pattern match.

This discussion has given you a decent foundation in regular expressions (see
Table 4-1 for a listing). With these fundamentals, you can define most any pattern.

Table 4-1. Regular expressions in Ruby

Pattern Description

/pattern/options Pattern pattern in slashes, followed by optional options, i.e., one or more of: i for case-
insensitive; o for substitute once; x for ignore whitespace, allow comments; m for match multi-
ple lines, newlines as normal characters

%r!pattern! General delimited string for a regular expression, where ! can be an arbitrary character

^ Matches beginning of line

$ Matches end of line

. Matches any character

\1...\9 Matches nth grouped subexpression

\10 Matches nth grouped subexpression, if already matched; otherwise, refers to octal representa-
tion of a character code

\n, \r, \t, etc. Matches character in backslash notation

http://www.ruby-doc.org/core/classes/Regexp.html
http://www.ruby-doc.org/core/classes/Regexp.html
http://www.ruby-doc.org/core/classes/MatchData.html

Regular Expressions | 77

\w Matches word character, as in [0-9A-Za-z_]

\W Matches nonword character

\s Matches whitespace character, as in [\t\n\r\f]

\S Matches nonwhitespace character

\d Matches digit, same as [0-9]

\D Matches nondigit

\A Matches beginning of a string

\Z Matches end of a string, or before newline at the end

\z Matches end of a string

\b Matches word boundary outside [], or backspace (0x08) inside []

\B Matches nonword boundary

\G Matches point where last match finished

[..] Matches any single character in brackets, such as [ch]at

[^..] Matches any single character not in brackets

* Matches 0 or more of previous regular expressions

*? Matches zero or more of previous regular expressions (nongreedy)

+ Matches one or more of previous regular expressions

+? Matches one or more of previous regular expressions (nongreedy)

{m} Matches exactly m number of previous regular expressions

{m,} Matches at least m number of previous regular expressions

{m,n} Matches at least m but at most n number of previous regular expressions

{m,n}? Matches at least m but at most n number of previous regular expressions (nongreedy)

? Matches zero or one of previous regular expressions

| Alternation, such as color|colour

() Grouping regular expressions or subexpression, such as col(o|ou)r

(?#..) Comment

(?:..) Grouping without back-references (without remembering matched text)

(?=..) Specify position with pattern

(?!..) Specify position with pattern negation

(?>..) Matches independent pattern without backtracking

(?imx) Toggles i, m, or x options on

(?-imx) Toggles i, m, or x options off

(?imx:..) Toggles i, m, or x options on within parentheses

(?-imx:..) Toggles i, m, or x options off within parentheses

(?ix-ix:) Turns on (or off) i and x options within this noncapturing group

Table 4-1. Regular expressions in Ruby (continued)

Pattern Description

78 | Chapter 4: Strings

1.9 and Beyond
In the versions of Ruby that follow, String will likely:

• Add the start_with? and end_with? methods, which will return true if a string
starts with or ends with a given prefix or suffix of the string.

• Add a clear method that will turn a string with a length greater than 1 to an
empty string.

• Add an ord method that will return a character code.

• Add the partition and rpartition methods to partition a string at a given separator.

• Add a bytes method that will return the bytes of a string, one by one.

• Return a single character string instead of a character code when a string is
indexed with [].

• Consider characters to be more than one byte in length.

Review Questions
1. How do chop and chomp differ?

2. Name two ways to concatenate strings.

3. What happens when you reverse a palindrome?

4. How do you iterate over a string?

5. Name two or more case conversion methods.

6. What methods would you use to adjust space in a string?

7. Describe alternation in a regular expression pattern?

8. What does /\d{3}/ match?

9. How do you convert a string to an array?

10. What do you think is the easiest way to create a string?

79

Chapter 5 CHAPTER 5

Math5

In other programming languages, numbers are primitives, or basic building blocks,
that are used by other objects to create logic. In Ruby, everything (almost) is an
object, even numbers. For example, here are some numbers that are considered
primitives by other languages. What classes do they come from?

2.class # => Fixnum
2.0.class # => Float
2_000_000_000.class # => Bignum

There’s the proof in living code: Ruby does turn almost everything into an object.
(The underscores in the last number, by the way, are just there for readability; the
Ruby interpreter ignores them.)

Ruby has a number of classes and modules related to numbers. Here are the more
important ones:

Numeric
The base class for numbers

Integer
The basic integer class, and the basis for the Fixnum class

Float
The class for real or floating-point numbers, based on the computer’s native
capacity to represent double-precision

Fixnum
The main integer class, based on what the computer can hold in a native
machine word, such as 32 bits or 64 bits, minus 1

Bignum
The class of integers outside the range of the basic, native machine word

Math
A module that holds math functions (as methods)

80 | Chapter 5: Math

Precision
A module for approximating the precision of real numbers

Rational
A class that represents fractional numbers

Complex
A class that represents complex numbers, which extend real numbers with imag-
inary numbers (x + iy)

Matrix
A class for creating mathematical matrixes

A hierarchy of the math classes, along with modules, is shown in Figure 5-1.

Class Hierarchy and Included Modules
By the way, a handy way to quickly determine the hierarchy of a math class (or any
other Ruby class) is with the ancestors method, one of Ruby’s reflection methods.
(Reflection is a term that describes a programming language’s ability to observe itself
and report on what it sees. Ruby is good at reflection, and you’ll learn more about it
in Chapter 10.) Call ancestors on a class name to see its inheritance hierarchy, like
this:

Fixnum.ancestors # => [Fixnum, Integer, Precision, Numeric, Comparable, Object,
Kernel]

The names of included modules Precision, Comparable, and Kernel are also in the
genealogy. In addition, you can use the included_modules method to discover what
modules a class uses:

Object.included_modules # => [Kernel]
Numeric.included_modules # => [Comparable, Kernel]
Integer.included_modules # => [Precision, Comparable, Kernel]
Fixnum.included_modules # => [Precision, Comparable, Kernel]

Figure 5-1. Math class and module hierarchy

Object

Numeric

Integer

Bignum

Matrix

Rational

Complex
Fixnum

Math
module

Precision
module

Basic Math Operations | 81

Converting Numbers
You can convert a number from another form into an integer with the Integer
method from Kernel. Let’s call it a few times in irb.

irb(main):001:0> Integer(1.4) # convert a floating-point number
=> 1
irb(main):002:0> Integer("256") # convert a string
=> 256
irb(main):002:0> Integer("0b11110010") # convert a binary number from a string
=> 242
irb(main):003:0> Integer(0177) # convert an octal number
=> 127
irb(main):004:0> Integer(0x20) # convert a hexadecimal number
=> 32
irb(main):005:0> Integer(?z) # convert a character code
=> 122

Floating-point numbers are rounded down; for example, 1.9999 becomes 1. Integer
honors the 0 (octal), 0b (binary), and 0x (hexadecimal) prefixes, whether they’re in
strings or not.

You can also create or convert floating-point numbers with Kernel’s Float method.
Use irb again to see how it works.

irb(main):001:0> Float(167) # convert an integer
=> 167.0
irb(main):002:0> Float("77") # convert a string
=> 77.0
irb(main):003:0> Float(?a) # convert a character code
=> 97.0

Basic Math Operations
The easiest way to show you the basic math operations is with irb. Fire up irb again
and type in some basic expressions, like these:

irb(main):001:0> 7 + 5 # add
=> 12
irb(main):002:0> 20 - 8 # subtract
=> 12
irb(main):003:0> 2 * 6 # multiply
=> 12
irb(main):004:0> 144 / 12 # divide
=> 12
irb(main):005:0> 12**2 # exponent
=> 144
irb(main):006:0> 12 % 5 # modulo (remainder of division)
=> 2

Don’t forget the unary operators, + and -, which indicate negative and positive
numbers:

irb(main):007:0> +7 + -5
=> 2

82 | Chapter 5: Math

irb(main):008:0> -20 + 32
=> 12
irb(main):009:0> -20 - +32
=> -52
irb(main):010:0> 20 * -8
=> -160

If there is no sign immediately before the number, it is positive.

You can also do some of these operations with named methods such as div, modulo,
divmod, quo, and remainder. Method calls are shown with integer, float, and parenthe-
ses so you can see the differences they make.

irb(main):011:0> 24.div 2 # division
=> 12
irb(main):012:0> (25.0).div(2.0) # result is integer
=> 12
irb(main):013:0> 12.modulo 5 # modulo
=> 2
irb(main):014:0> 12.modulo(5.0) # modulo with float
=> 2.0
irb(main):015:0> 12.divmod 5 # return array with quotient, modulus
=> [2, 2]
irb(main):016:0> 12.0.divmod 5.0 # with float
=> [2, 2.0]
irb(main):017:0> 12.quo 5 # return the quotient
=> 2.4
irb(main):018:0> 12.remainder 5 # return the remainder
=> 2

Many of these methods started life as methods of the Numeric class, but were over-
ridden or redefined in other subclasses. You will find versions of div, for example, in
Numeric, Fixnum, and Bignum.

Division and Truncation
Division presents a little problem. When you do integer division in Ruby, any frac-
tional part in the result will be truncated, and you may not realize it.

irb(main):019:0> 24 / 2 # no problem
=> 12
irb(main):020:0> 25 / 2 # uh-oh, truncation
=> 12
irb(main):021:0> 25.0 / 2 # using a float as at least one operand solves it
=> 12.5
irb(main):022:0> 25.0 / 2.0 # same when both operands are floats
=> 12.5

Just keep in mind that in order to get a fractional result, you must use at least one
float as an operand. See the section “Rational Numbers,” later in the chapter, for
more on fractions.

Basic Math Operations | 83

Also, be careful when you use the div method:

irb(main):005:0> 24.div 2 # division method
=> 12
irb(main):006:0> (25.0).div(2.0) # returns result as integer, truncates
=> 12

div returns only the integral part as a result, truncating the decimal part, even if one
or more of the operands are floats.

Equality, Less Than, or Greater Than
Test two numbers for equality with ==, eql?, or <=>:

irb(main):007:0> 12 == 24/2
=> true
irb(main):008:0> 24.eql?(12*2)
=> true
irb(main):009:0> 12 == 14
=> false
irb(main):010:0> 12 <=> 12
=> 0
irb(main):011:0> 12 <=> 10
=> 1
irb(main):012:0> 12 <=> 14
=> -1

The == and eql? return true or false; the <=> (spaceship operator) returns -1, 0, or 1,
depending on whether the first value is equal to the second (0), less than the second
(-1), or greater than the second (1).

Test if two numbers are equal, less than, or greater than each other:

irb(main):013:0> 12 < 14 #less than
=> true
irb(main):014:0> 12 < 12
=> false
irb(main):015:0> 12 <= 12 # less than or equal to
=> true
irb(main):016:0> 12.0 > 11.9
=> true
irb(main):017:0> 12.0 >= 12 # greater than or equal to
=> true

Abbreviated Assignment Operators
Ruby offers abbreviated assignment operators that perform operations on variables
without an added operand. I’ll show you what this means. Given that x equals 5, you
could add a value to x the normal way:

x = x + 1

84 | Chapter 5: Math

or the abbreviated way:

x += 1

Which way do you prefer? Probably, like me, the one with 33 percent fewer key-
strokes. Either operation results in 6. Here are the abbreviated assignment operators
in action in irb:

irb(main):001:0> x = 12 # regular assignment
=> 12
irb(main):002:0> x += 6 # addition
=> 18
irb(main):003:0> x -= 12 # subtraction
=> 6
irb(main):004:0> x *= 4 # multiplication
=> 24
irb(main):005:0> x /= 8 # division
=> 3
irb(main):006:0> x **= 2 # power (exponentiation)
=> 9
irb(main):007:0> x %= 3 # modulo
=> 0
irb(main):008:0> x # return the variable's value
=> 0

Ruby does not have the increment (++) or decrement (--) operators
that C and other languages have.

You can also do bitwise operations in Ruby. A bitwise operation operates on each bit,
bit for bit, rather than on the numeral as a single unit. Bitwise operations are often
faster than regular arithmetic operations. Here are a few examples in irb:

irb(main):001:0> ~1011 # bitwise not or complement
=> -1012
irb(main):002:0> 1011 | 1010 # bitwise or
=> 1011
irb(main):003:0> 1011 & 1010 # bitwise and
=> 1010
irb(main):004:0> 1011 ^ 1010 # bitwise exclusive or
=> 1
irb(main):005:0> 1011 << 1 # shift left
=> 2022
irb(main):006:0> 1011 >> 1 # shift right
=> 505

The bitwise operators also include abbreviated assignment operators such as &=, ^=,
or ||=, to name a few.

Ranges | 85

Operators
Table 5-1 lists all of Ruby’s operators in the order of precedence. If the operator is
defined as a method, it is indicated in the Method column, and may be overridden.

Ranges
As discussed earlier, Ruby has ranges, with range operators and a Range class. Ranges
are intervals with a start value and an end value, separated by a range operator. There
are two range operators, .. (two dots) and ... (three dots). The range operator ..
means an inclusive range of numbers. For example, 1..10 means a range of numbers
from 1 to 10, including 10 (1, 2, 3, 4, 5, 6, 7, 9, 10). The range operator ... means an
exclusive range of numbers that exclude the last in the series; in other words, 1...10
means a range of numbers from 1 to 9, as the 10 at the end of the range is excluded
(1, 2, 3, 4, 5, 6, 7, 9).

Table 5-1. Ruby operators

Operator Description Method

:: Scope resolution

[] []= Reference, set �

** Raise to power (exponentiation) �

+ - ! ~ Positive (unary), negative (unary), logical negation, complement � (but not !)

* / % Multiplication, division, modulo (remainder) �

+ - Addition, subtraction �

<< >> Shift left, shift right �

& Bitwise and �

| ^ Bitwise or, bitwise exclusive or �

> >= < <= Greater than, greater than or equal to, less than, less than or
equal to

�

<=> == === != =~
!~

Equality comparison (spaceship), equality (e.g., range), not equal
to, match, not match

� (but not != or !~)

&& Logical and (also keyword and, which has lower precedence)

|| Logical or (also keyword or, which has lower precedence)

.. ... Range inclusive, range exclusive � (but not ...)

?: Ternary operator

= += -= *= /= %=
**= <<= >>= &= |=
^= &&= ||=

Assignment, abbreviated assignment

not Logical negation

and or Logical composition

defined? Special operator (no precedence)

86 | Chapter 5: Math

The === method determines if a value is a member of, or included in, a range, as you
can see in these lines of code:

(1..25) === 14 # => true, in range
(1..25) === 26 # => false, out of range
(1...25) === 25 # => false, out of range if ... used

When a range is used as an iterator, each value in the sequence is returned. So you
can use a range to do things like create an array of digits:

(1..9).to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

With the Range class, you can also create a range like this:

digits = Range.new(1, 9)
digits.to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

Inquiring About Numbers
At times you need to find out things about a number or variable. Is it an integer? A
zero? A number at all? Ruby’s math methods can handle that. These methods come
from all kinds of classes.

Let’s start things out simple. Let’s ask if a value is a zero or not.

op = 0
op.zero? # => true
op.nonzero? # => false

That was a little too obvious. (But that’s what I like about Ruby.) Try something
more meaningful:

op = 0

if !op.zero? # not a zero?
 puts 12 / op
else
 puts "Can't divide by zero."
end

op = 2

if op.nonzero? # is it nonzero?
 puts 12 / op
else
 puts "Can't divide by zero."
end

Both if statements mean essentially the same thing: divide 12 by op if it isn’t a zero.

The integer? method comes from the Numeric class:

12.integer? # => true
12.0.integer? # => false
-1.integer? # => true
-12.integer? # => true

Inquiring About Numbers | 87

This method needs a little more meaning in its life.

num = 4 # => 4

if num.integer?
 puts "Invited guests: " + num.to_s
else
 puts "Only whole persons can come to this party."
end

Check whether a number is finite or infinite with the finite? and infinite? Float
methods (in fact, these methods only work for floats):

0.0.finite? # => true
(-1.0/0.0).finite? # => false
(+1.0/0.0).finite? # => false

0.0.infinite? # => nil
(-1.0/0.0).infinite? # => -1
(+1.0/0.0).infinite? # => 1

Check whether a floating-point value is a number at all with Float’s nan?:

val = 1.0
val.nan? # => false
val = 0.0/0.0
val.inspect # => "NaN"
val.nan? # => true

Iterating Through Blocks
Starting with zero, the times method iterates value times. Here, value is 10:

10.times { |i| print i, " " } # => 0 1 2 3 4 5 6 7 8 9

You also get the ability to do something like this:

10.times { |i| print 5*i, " " } # => 0 5 10 15 20 25 30 35 40 45

You can rewrite the block this way:

10.times do |i|
 puts 5*i
end

or this way:

10.times do |i| print 5*i, " " end

The block can be opened and closed with do/end or {and }. The braces are a little
more concise and more common.

Integer also has the downto and upto methods, which were already demonstrated and
compared to the for loop in Chapter 3, but I’ll show them again here for a brief
refresher. First, the downto method:

100.downto(1) { |c| print c, " "; sleep 1 }

88 | Chapter 5: Math

This method prints out the numbers from 100 down to 1, sleeping for 1 second
before each number is printed. The upto method goes the other direction:

1.upto(100) { |c| print c, " "; sleep 1 }

More Math Methods
Following are just a few common math instance methods. Get the absolute value of a
number (Bignum, Complex, Fixnum, Float, Numeric, Rational):

-40.abs # => 40
40.abs # => 40

Get the ceiling or floor of a number (from Float, Integer, or Numeric):

4.65.ceil # => 5
4.65.floor # => 4

Or round a number up or down (Float, Integer, or Numeric):

100.45.round # => 100
100.49.round # => 100
100.5.round # => 101
100.6.round # => 101

Get the next integer with next (or its alias succ):

-24.next # => -23
1.next # => 2
999.next # => 1000

Get the character value of an integer with chr:

97.chr # => "a"
98.chr # => "b"
125.chr # => "}"
126.chr # => "~"
127.chr # => "\177"

For a nonprinting character, chr outputs an octal representation of that character (for
example, \177 is the octal representation of DEL).

Math Functions
The Math module provides a number of math functions (via class methods). I’ll show
you how to use a few of them, so you can get started.

Math also has two constants, along with its methods. To find out what constants Math
(or any other module or class) has defined, use reflection by invoking the constants
method:

Math.constants # => ["E", "PI"]

Let’s check what the values of these constants, Euler and π, are.

Math Functions | 89

print Math::E # => 2.71828182845905
print Math::PI # => 3.14159265358979

The Math.exp function returns Euler to the power of x.

Math.exp(1) # => 2.71828182845905
Math.exp(11) # => 59874.1417151978

The Math.sqrt method returns the square root of x.

Math.sqrt(4) # => 2.0
Math.sqrt(16) # => 4.0
Math.sqrt(144) # => 12.0

You can do natural logarithms (base E or Euler) and base-10 logarithms.

Math.log(Math::E) # => 1.0
Math.log(1) # => 0.0
Math.log(0) # => -Infinity
Math.log10(100.0) # => 2.0

Table 5-2 shows all the math functions (all class methods) available from the Math
module. By convention, remember that Ruby methods ending in ! mean that the
method makes in-place, or destructive, changes to an object, not to a copy of it.

Table 5-2. Math functions (methods)

Method(s) Description

Math.acos, Math.acos! Arc cosine

Math.acosh, Math.acosh! Hyperbolic arc cosine

Math.asin, Math.asin! Arc sine

Math.asinh, Math.asinh Hyperbolic arc sine

Math.atan, Math.atan!,

Math.atan2, Math.atan2!

Arc tangent; atan takes an x argument; atan2 takes an x and a y argument

Math.atanh, Math.atanh! Hyperbolic arc tangent

Math.cos, Math.cos! Cosine

Math.cosh, Math.cosh Hyperbolic cosine

Math.sin, Math.sin! Sine

Math.erf Error function

Match.erfc Complementary error function

Math.exp, Math.exp! Base x of Euler

Math.frexp Normalized fraction and exponent

Math.hypot Hypotenuse

Math.ldexp Floating-point value corresponding to a given mantissa and exponent

Math.sinh, Math.sinh! Hyperbolic sine

Math.sqrt, Math.sqrt! Square root

Math.tan, Math.tan! Tangent

Math.tanh, Math.tanh! Hyperbolic tangent

90 | Chapter 5: Math

Rational Numbers
A rational number is a number that can be expressed as a fraction of integers. Ruby
supports the use of rational numbers via the Rational class. To use the Rational
class, you must require it in the program. If you also require the mathn library, the
Rational library works better. Now, briefly, I’ll show you how to play with fractions
in Ruby.

You usually create a rational number with the Rational method. It reduces the frac-
tion in its argument down to its lowest terms. (You can use Rational.new!, but it
doesn’t reduce to lowest terms.)

Rational expects you to use integers, by the way. It will generate errors if you use
floats.

Example 5-1 demonstrates how to use fractions in Ruby, including how to create a
fraction; how to add (+), subtract (-), multiply (*), and divide (/) fractions; how to
perform modulo (%), power (**), and equality (== or <=>); and how to produce a
string or a float representation of a fraction (inspect).

Example 5-1. fractions.rb

require 'rational'
require 'mathn'

rat = Rational(25/100) # => 1/4 -- lowest terms

rat + Rational(1/4) # => 1/2 -- add
rat + 1/4 # => 1/2

rat - Rational(1/8) # => 1/8 -- subtract
rat - 1/8 # => 1/8

rat * 3 # => 3/4 -- multiply
rat / 2 # => 1/8 -- divide

rat % Rational(1/2) # => 1/4 -- modulo or remainder

rat**2 # => 1/16 -- exponent or power

rat == 1/8 # => false -- equality
rat == 1/4 # => true
rat <=> 1/4 # => 0
rat <=> 1/8 # => 1
rat <=> 1/2 # => -1

rat.inspect # => "1/4"
rat.to_s # => "1/4"
rat.to_f # => 0.25
p rat # => 1/4

Prime Numbers | 91

When you use Rational, all operations on numbers in the program
will likely create rational results.

Prime Numbers
The mathn library, which helps math classes get along a little better, has a Prime class
that allows you to successively generate prime numbers, starting from 2. Actually, it
starts from 1 as the seed, but it calculates the first prime as 2, as it must. Prime has
four methods: new, which creates a new Prime object; next and succ (synonyms),
which produce the next prime number; and each, which lists prime numbers until
something halts it.

The program in Example 5-2 shows you how to generate primes one by one.

The code in Example 5-3 generates 25 prime numbers—all the prime numbers from
2 to 97:

Just for Fun
Here’s a sentence that can help you remember the first seven prime numbers: “In the
early morning astronomers spiritualized nonmathematicians.” (See http://mathworld.
wolfram.com/PrimeNumber.html.) The number of letters of each word in the sen-
tence add up to a prime number, in succession.

Example 5-2. prime.rb

require 'mathn'

prime_number = Prime.new # instantiate a Prime object
prime_number.next # => 2 # return the next prime number (seed = 1)
prime_number.succ # => 3 # succ works, too

print the next prime number as a string
puts "The next prime number is " + prime_number.next.to_s + "."
=> The next prime number is 5.

Example 5-3. prime_each.rb

require 'mathn'

list_primes = Prime.new

list_primes.each { |prime| print prime, " "; break unless prime < 90 }
=> 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

http://mathworld.wolfram.com/PrimeNumber.html
http://mathworld.wolfram.com/PrimeNumber.html

92 | Chapter 5: Math

This line of Ruby code analyzes the sentence, returning the length of each word so
you can see the underlying prime number (punctuation has been removed to get the
counting right):

"In the early morning astronomers spiritualized nonmathematicians".split.each { |p|
print p.length, " " } # => 2 3 5 7 11 13 17

The split method is from the String class. It splits the string at the spaces (by
default), returning each word as an element of an array. Then the length (number of
characters) of each string element is printed, yielding the first seven prime numbers.

Review Questions
1. In Ruby, are numbers primitives or objects?

2. What method can you use to discover what modules a Ruby class includes?

3. What is the possible range of numbers represented by the Fixnum class?

4. How can you avoid truncating the result of division?

5. Rational numbers are another name for ______________.

6. If a unary operator is absent, what is the sign of the number that follows?

7. What are the two constants in the Math module?

8. What method can you use to convert an integer into a character representation?

93

Chapter 6 CHAPTER 6

Arrays6

The Array class is one of Ruby’s built-in classes. Arrays are compact, ordered collec-
tions of objects. Ruby arrays can hold objects such as String, Integer, Fixnum, Hash,
Symbol, even other Array objects—you name it. Any object that Ruby can create, it
can hold in an array.

Each element in an array is associated with and referred to by an index (also known
as a subscript in other languages). Array elements are automatically indexed (num-
bered) with an integer (Fixnum), starting with 0, then numbered consecutively, add-
ing 1 for each additional element. In certain instances, you can refer to the last
element of an array with –1, the second to last with –2, and so forth. That’s handy.

Ruby arrays are not as rigid as arrays in other languages. In static, compiled pro-
gramming languages, you have to guess the ultimate size of the array at the time it is
created. If an array grows beyond that size, you must copy the array into a tempo-
rary one and then create a new, larger array, copying the temporary array into it.
Ruby is a dynamic language—as are Perl, Python, and PHP, among others—and
therefore lets you grow an array at will, adding elements while it automatically
increases the size. Another interesting distinction is that Ruby can hold arrays with
objects of all different types, not just one type, as is common in static languages.
You’ll see this in action later in this chapter.

Remember that, by convention, any Ruby method that ends with an exclamation
point (!), like sort!, changes an object in place. It doesn’t make a copy. In other
words, it’s destructive. Well, not in the same way that Caligula was destructive, but
it will change an array for good. Also, any method ending with a question mark (?),
such as eql?, returns either true or false.

This chapter shows you by example how to create and manipulate arrays. It’s my
same old pattern. Type in the examples in irb, or type the examples in files and then
run them as Ruby programs, and you’ll learn as you go along. This chapter intro-
duces you to many of Array’s methods—not all, but many.

94 | Chapter 6: Arrays

Creating Arrays
There are many ways to create or initialize an array. One way is with the new class
method:

months = Array.new

This creates an empty array, represented as [], named months. Not much to it, is
there? In fact, you test whether an array is empty or not with the empty? method
(returns true if the array is truly and madly empty, false otherwise):

months.empty? # => true

This isn’t very exciting. Let’s improve on this a little. You can set the size of an array
(the number of elements in an array) like this:

months = Array.new(12)

or like this:

months = Array.new 12

The array months now has a size (or length) of 12 elements. You can return the size of
an array with either the size or length method:

months.size # => 12

or:

months.length # => 12

But what elements are in months so far? They are all nil, because no one (that would
be me) has bothered to specify what they are. At this point, the months array con-
tains 12 nils. To inspect the array—that is, to look at the array as an array—use:

puts months.inspect

or:

p months

I usually use p—you can probably guess why. Either of these methods return:

[nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil]

Not very exciting, frankly. But we can fix that. Another form of new lets you assign an
object (such as a string) to each element in the array:

month = Array.new(12, "month")

month now appears like this:

["month", "month", "month", "month", "month", "month", "month", "month", "month",
"month", "month", "month"]

Creating Arrays | 95

Clear the Deck
Slightly better, but we’re not there yet. You know, if you don’t like what you got,
you can always ream out an array with clear:

month.clear # => []
month.empty? # => true

Don’t use clear in a fit of anger. You might be sorry.

Creating an Array with a Block
You can also use a block with new, populating each element with what the block eval-
uates to:

num = Array.new(10) { |e| e = e * 2 }

giving you an array like this:

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

That’s a little better. We’ve got things more under control now.

There’s an Easier Way
There is another method of Array, []. It works like this:

month_abbrv = Array.[]("jan", "feb", "mar", "apr", "may", "jun",
"jul", "aug", "sep", "oct", "nov", "dec")

or like this, dropping the dot (.) and parentheses (()), which is possible because of
Ruby’s flexible method syntax:

month_abbrv = Array["jan", "feb", "mar", "apr", "may", "jun",
"jul", "aug", "sep", "oct", "nov", "dec"]

This keeps getting easier. An even simpler method for creating an array is by just
using the square brackets:

months = [nil, "January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"]

Why does this array begin with nil? It’s just an artificial filler. It is the
first element in the array months, and, as such, is associated with the
index 0. I want to associate the first month of the year with index 1,
not 0, so I prepended a nil as the first element. It’s just my prefer-
ence, but it doesn’t have to be yours.

96 | Chapter 6: Arrays

It Gets Even Easier
Here is one easier way to create an array. The Kernel module, included in Object, has
an Array method, which only accepts a single argument. Here, the method takes a
range as an argument to create an array of digits.

digits = Array(0..9) # => [1, 2, 3, 4, 5, 6, 7, 8, 9]

But if you submit a set of strings, Array accepts them as a single, concatenated element.

donald_duck_nephews = Array("Huey" "Dewey" "Louie")
=> ["HueyDeweyLouie"]

Not what you wanted, eh? Well, an even easier way to define an array of strings is
with the %w notation. It assumes that all elements are strings (even nil), but it sure
saves keystrokes (no typing quotes or commas):

months = %w[nil January February March April May June July August September October
November December]

This produces the array months:

["nil", "January", "February", "March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"]

But I don’t want nil represented as a string. How do I use my favorite notation (%w)
and fix this problem? Like this:

months[0] = nil;

I accessed the array with [0] and assigned a new value to the element with =. Look at
the array and notice the change:

[nil, "January", "February", "March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"]

Now for another conundrum. If I fill an array with numbers using %w, like the following:

year = %w[2000 2001 2002 2003 2004 2005 2006 2007 2008 2009]

it treats those numbers as strings:

["2000", "2001", "2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009"]

You can check an element of this array to see its class:

year[0].class # => String

This may be an unintended consequence. To correct this so that the elements are
numbers, avoid %w and use one of the other methods for creating an array:

year = [2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009]

Check the element’s class again, and you’ll see that you’re in good shape:

year[0].class # => Fixnum

Accessing Elements | 97

You can even have an array that contains objects from different classes, not all just
one type. For example, here’s an array that contains four elements, each a different
kind of object:

hodge_podge = ["January", 1, :year, [2006,01,01]]

Use each to iterate over the array, and class to find what kind of object each element is:

hodge_podge.each {|e| print e.class, " " } # => String Fixnum Symbol Array

Accessing Elements
You just saw that you can access elements with the [] method. Given the q1 array:

q1 = %w[January February March]

you can access the first element of the array, element 0, with the 0 index:

q1[0] # => January

Access the last element of the array, element 2, with:

q1[2] # => March

You can also use the at method, like so:

q1.at(0) # => January

The at method is supposed to be slightly faster than [], according to the Ruby docu-
mentation for at. I’ll just use [] from now on, but at will work, too.

Access elements for use in a string in this way:

print "The event is scheduled for " + months[3] + " " + years[8] + "."
=> The event is scheduled for March 2008.

Good work. Index 3 matches March, the third month of the year, and the index 8
matches 2008.

You can access the last element in the array with:

q1[-1] # => March

With -1, you access the last element in an array by looping back around with a nega-
tive number. What about the second element (1)? How do you get that? You could
use as an index either:

q1[1]

or:

q1[-2]

98 | Chapter 6: Arrays

Another way to get the first and last elements of an array is with the first and last
methods:

q1.first # => January
q1.last # => March

Both first and last take integer arguments, indicating the number of elements to
return:

q1.first 2 # => ["January", "February"]
q1.last 0 # => [] not particularly useful

You can get the flip side with index. This method returns an index, not an element,
based on the argument (an object). It returns the index of the first element that
matches the object:

q1.index "March" # => 2

Similarly, rindex matches the last element that matches the object.

I’ll use a longer array for the next few methods:

year = [2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009]

This time, specify where to start in the array and how many elements you want:

year[0, 3] # => [2000, 2001, 2002]

The 0 is the start parameter. It says to start at 0, or the beginning of the array. The
second is the length parameter, which tells how many elements you want. (You can’t
do this with the at method.) You can also use a range:

year[7..9] # => [2007, 2008, 2009]

Remember that two dots means “include both elements,” and three dots means
“don’t include the last element.” (By the way, you can’t use ranges with the at
method.)

Instead of [], you can also use the slice method, another alias:

year.slice(1) # => 2001
year.slice(0,4) # => [2000, 2001, 2002, 2003]
year.slice(0..2) # => [2000, 2001, 2002]
year.slice(0...2) # => [2000, 2001]

It’s a matter of taste, but I’d stick with the [] notation myself.

I’ll show you one last method—include?. It tests to see if an array includes an ele-
ment with a given value, returning true or false:

year.include? 2004 # => true
year.include?(2010) # => false

Set Operations | 99

Concatenation
Let’s play a little bit with the following arrays:

q1 = %w[January February March]
q2 = %w[April May June]
q3 = %w[July August September]
q4 = %w[October November December]

You can concatenate these arrays in several ways. One way is with the + operator or
method:

half1 = q1 + q2
half2 = q3 + q4
yr = half1 + half2

Inspecting these new arrays yields the following results, respectively:

["January", "February", "March", "April", "May", "June"]
["July", "August", "September", "October", "November", "December"]
["January", "February", "March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"]

Another way to concatenate is with the << method, like this:

yrs = [1999]
yrs << 2000 # => [1999, 2000]

You can chain these, too:

yrs << 2001 << 2002 << 2003 # => [1999, 2000, 2001, 2002, 2003]

Static languages, such as Java and C, require you to grow the size of the array in
order to add elements to it. A Java ArrayList collection eliminates this need, but if
you try to add the 11th element onto a plain old 10-element array in Java, you’ll get
an exception. Programmers usually copy arrays and create a new one with a higher
index. I like the Ruby way of doing things better.

As with +, you can concatenate one array onto another with concat:

last_part = q3.concat(q4)

This concatenated q3 and q4, making a new array, last_part. concat always returns a
new array; it does not add elements to an existing array the way << does.

Set Operations
Ruby can do several set operations on arrays, such as:

• Intersection with &

• Difference with -

• Union with |

100 | Chapter 6: Arrays

Intersection (&) creates a new array, merging the common elements of two arrays but
removing uncommon elements and duplicates.

tue = ["shop", "make pie", "sleep"]
wed = ["shop", "make pie", "read", "sleep"]
tue & wed # => ["shop", "make pie", "sleep"]

The result tells what things I plan to do on both days (I won’t be reading).

Difference (-) creates a new array, removing elements that appear in both arrays:

wed - tue # => ["read"]

Union (|) joins two arrays together, removing duplicates:

tue | wed # => ["shop", "make pie", "read", "sleep"]

You can also do set operations with arrays and other objects using the Ruby Set class
(see http://www.ruby-doc.org/core/classes/Set.html or do ri Set).

Unique Elements
Vaguely related to the set operations, the uniq method also removes duplicates from
a single array, creating a new array. Its next-door neighbor uniq! changes the array
itself, in place.

shopping_list = %w[cheese bread crackers potatoes carrots cheese]
=> ["cheese", "bread", "crackers", "potatoes", "carrots", "cheese"]

shopping_list.uniq!=> ["cheese", "bread", "crackers", "potatoes", "carrots"]

Blow Your Stack
If you have ever eaten at a cafeteria, you might remember the stack of warm plates
that were held in a rack with a spring in the bottom of it. The first plate in was also
the last one out.

This is similar to a stack structure in computer science. A stack is a LIFO (last in,
first out) structure. You can use an array like a stack by using the push and pop meth-
ods from the Array class. Here’s how:

fruit = %w[apple orange banana]
fruit.pop # => "banana"
p fruit # => ["apple", "orange"]
fruit.push "mango"
p fruit # => ["apple", "orange", "mango"]

http://www.ruby-doc.org/core/classes/Set.html

Changing Elements | 101

Comparing Arrays
Three methods allow you to compare arrays to see if they are equal. Those methods
are ==, <=>, and eql?. Consider these arrays. Each is named for an employee and
answers whether they work full time or part time (full or part), how many hours per
week they work, and whether or not they have benefits (yes or no).

bob = ["full", 40, "yes"]
lou = ["part", 23, "no"]
schlomo = ["full", 40, "yes"]

The == method compares two arrays to test if they are equal. Two arrays are consid-
ered equal if (1) they contain the same number of elements, and (2) each element is
equal to the corresponding element in the other array (compare with Object#==).

Compare these arrays with ==:

lou == lou # => true
bob == schlomo # => true
schlomo == lou # => false

Closely related is eql?. This method will return true if the objects are the same or if
their content is the same. What’s the difference between == and eql?. eql? checks to
see if the values are equal (as in ==), but also checks if the values are of the same type.

bob == schlomo # => true
bob.eql?("full, 40, yes") # => false, bob is not a string

Another way to compare arrays is with <=> (spaceship operator). When it compares
two arrays, it compares each object in the arrays. The two arrays are considered
equal if they are the same length and if the value of each element is equal to the value
of the corresponding element in the other array. When a comparison is made, it
determines whether the values of the compared elements are greater than, lesser
than, or equal to each other. Rather than true or false, the comparison returns an
integer: -1 for less than, 0 for equal, and 1 for greater than.

lou <=> lou # => 0
bob <=> lou # => -1
lou <=> schlomo # => 1

Changing Elements
Ruby give you lots of ways to manipulate the elements in arrays—e.g., ways to
change their values, ways to change the way they are represented. We’ll start out
with some simple changes. Let’s go back to our months array:

months = %w[nil January February March April May June July August September October
November December]

102 | Chapter 6: Arrays

This creates an array that looks like:

["nil", "January", "February", "March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"]

Look familiar? There’s the nil again, shown as a string, in index 0. That’s not what
we want. Let’s change that with insert:

months.insert(0, nil)

This fixes that problem:

[nil, "January", "February", "March", "April", "May", "June", "July", "August",
"September", "October", "November", "December"]

Let’s say you wanted to change three of the elements to have German rather than
English spelling. Here are several ways you could do it. This example uses a range to
change elements 5 through 7 to hold the strings Mai, Juni, and Juli instead of May,
June, and July.

months[5..7] = "Mai", "Juni", "Juli" # => [nil, "January", "February", "March",
"April", "Mai", "Juni", "Juli", "August", "September", "October", "November",
"December"]

You can also do this with start and length parameters (going back to English):

months[5, 3] = "May", "June", "July" # => [nil, "January", "February", "March",
"April", "May", "June", "July", "August", "September", "October", "November",
"December"]

As a String
You can extract the elements of an array as a single string using to_s. to_s is com-
mon to many classes.

greeting = ["Hello! ", "Bonjour! ", "Guten Tag!"]
puts greeting.to_s # => Hello! Bonjour! Guten Tag!

Use join to smash all the elements together into a single string:

months.join # =>
"JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember"

Not exactly what you had in mind? Let’s throw in a comma and a space between
each of the elements:

months.join ", " # => " , January, February, March, April, May, June, July, August,
September, October, November, December"

Looks better, but what about that comma at the beginning? Yuck. How do you get
rid of that? For one, you can use the compact method, which removes all nils from an
array.

months.compact.join(", ") # => "January, February, March, April, May, June, July,
August, September, October, November, December"

There you go. Much better.

Arrays and Blocks | 103

Using shift and unshift
Another way to remove an element from an array is with the shift method. This
method returns the first element of an array (nil if the array is empty), and then
removes the element, shifting all other elements down by one. It is sort of like a pop
method except it works on the frontend of the array rather than the backend
(FIFO—first in, first out).

dates = [4, 5, 6, 7] # => [4, 5, 6, 7]
dates.shift # => 4
p dates # => [5, 6, 7]

Related to shift is unshift, which prepends objects (one or more) to an array. It is
like push but works on the beginning of an array, not the end.

dates.unshift 4 # => [4, 5, 6, 7]
dates.unshift(2,3) # => [2, 3, 4, 5, 6, 7]

Deleting Elements
The delete method removes a matching object from an array, returning the deleted
object if found. Given the following array:

month_a = %w[nil jan feb mar apr may jun jul aug sep oct nov dec] # => ["nil",
"jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec"]

The following call deletes the string nil from month_a:

month_a.delete "nil"

This method also takes a block. The result of the block is returned if the object is not
found:

month_a.delete("noon") {"noon wasn't found. What are you going to do about it?"}

With delete_at, you can also delete an element based on its index (the example
assumes you are working with the original array):

month_a.delete_at(12) # => "dec"
p month_a # ["nil", "jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep",
"oct", "nov"]

Arrays and Blocks
Array has an each method, too—just like lots of other Ruby classes. each lets you
iterate over every element in an array and do something to it. This call capitalizes the
names of all the abbreviations in month_a (no nil at 0):

month_a.each { |e| print e.capitalize + " " }

yielding the following string, not an array:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

104 | Chapter 6: Arrays

The map method (and its synonym collect) is similar to each, but it returns a new
array instead of a string.

month_a_2007 = month_a.map { |e| e.capitalize + " 2007" }

This gives you:

p month_a_2007 # => ["Jan 2007", "Feb 2007", "Mar 2007", "Apr 2007", "May 2007", "Jun
2007", "Jul 2007", "Aug 2007", "Sep 2007", "Oct 2007", "Nov 2007", "Dec 2007"]

Sorting Things and About Face
You’ve added number objects to an array in a higgledy-piggledy fashion. It’s time to
straighten things out. Given x:

x = [2, 5, 1, 7, 23, 99, 14, 27]

apply the sort (or sort!, for in-place changes), and your wayward array will line up
its elements in numeric order:

x.sort! # => [1, 2, 5, 7, 14, 23, 27, 99]

In order for an array to be sorted, its elements must be comparable
(greater than, less than, or equal). That’s easy to do with strings and
numbers. But because Ruby arrays can hold objects of any type, it is
possible that the elements won’t be comparable, and in that case, you
won’t be able to sort the elements with sort or sort!.

The reverse method reverses the order of the elements in an array, returning a new
array of elements, reversed:

%w[one two three four five six seven eight nine ten].reverse # => ["ten", "nine",
"eight", "seven", "six", "five", "four", "three", "two", "one"]

Multidimensional Arrays
A multidimensional array is an array of arrays. You create such an array by giving
array elements that are themselves arrays. This is a two-dimensional array:

d2 = [["January", 2007],
 ["February", 2007],
 ["March", 2007]]

The array d2’s elements are also arrays. Here is an example of how to form a three-
dimensional array (it’s a hummer):

yrs = [2007, 2008, 2009]
days = [31, [28, 29], 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
months = ["Jn", "Fb", "Mr", "Ap", "Ma", "Ju", "Jl", "Au", "Sp", "Oc", "Nv", "Dc"]
d3 = [yrs, days, months] # => => [[2007, 2008, 2009], [31, [28, 29], 31, 30, 31,
30, 31, 31, 30, 31, 30, 31], ["Jn", "Fb", "Mr", "Ap", "Ma", "Ju", "Jl", "Au", "Sp",
"Oc", "Nv", "Dc"]]

Review Questions | 105

On second thought, let’s turn d2 into a one-dimensional array with flatten.

d2.flatten # => ["January", 2007, "February", 2007, "March", 2007]

Nice! That saved me a little typing.

A two-dimensional array is like a table, with rows and columns. Let’s try the
transpose method on d2, turning this:

d2 = [["January", 2007], ["February", 2007], ["March", 2007]]

into this:

d2.transpose # => => [["January", "February", "March"], [2007, 2007, 2007]]

1.9 and Beyond
These may be added for 1.9:

• The Array class may have a new method: nitems. This method will return the
size of the resulting array, after the conditions of the block have been met.

• The index and rindex methods will take a block.

• The pop method will take an argument, allowing it to pop more than one item
off an array at a time.

• You will be able to assign nil to existing array elements, thus deleting them.

• Like Hash, the to_s method will have the same result as the inspect method.

Other Array Methods
To get a list of all the Array methods, type:

ri Array

For more information on any method via ri, type something like this at a command
line:

ri Array#map [or] ri Array.map [or] ri "Array.&"

You can look up any of these methods in Ruby’s online documentation at http://
www.ruby-doc.org/core/classes/Array.html.

Review Questions
1. Name the class methods for Array. Come on, there’s only two of them.

2. Show three ways to create an array.

3. Use two methods to access the last element in an array.

4. True or false: shift and unshift perform reverse stack operations.

http://www.ruby-doc.org/core/classes/Array.html.
http://www.ruby-doc.org/core/classes/Array.html.

106 | Chapter 6: Arrays

5. What is the difference between delete and delete_at?

6. Multiple choice: You need to add an object to every element in an array. Where
do you turn?

a. value_at

b. length

c. map

d. []=

7. What are two methods for comparing arrays for equality?

8. What method can you use to remove nils from an array?

107

Chapter 7 CHAPTER 7

Hashes7

A hash is an unordered collection of key-value pairs that look like this: "storm" =>
"tornado". A hash is similar to an Array (see Chapter 6), but instead of a default inte-
ger index starting at zero, the indexing is done with keys that can be made up from
any Ruby object. In other words, you can use integer keys just like an Array, but you
also have the option of using any Ruby object as a key, even an Array! (Hashes are
actually implemented as arrays in Ruby.)

Hashes can be accessed by keys or by values, but usually by keys, which must be
unique. If you attempt to access a hash with a key that does not exist, the method
will return nil (unless the hash has a default value). The key-value pairs in a hash are
not stored in the same order that they are inserted (the order you placed them in the
hash), so don’t be surprised if the contents of a hash look different from what you
put in—the contents are not ordered the same way as in an array.

Creating Hashes
Like arrays, there are a variety of ways to create hashes. You can create an empty
hash with the new class method.

months = Hash.new

You can test to see if a hash is empty with empty?:

months.empty? # => true

or how big it is with length or size:

months.length
months.size # => 0

You can also use new to create a hash with a default value—which is otherwise just
nil—like this:

months = Hash.new("month")

or like this:

months = Hash.new "month"

108 | Chapter 7: Hashes

When you access any key in a hash that has a default value, if the key or value
doesn’t exist, accessing the hash will return the default value:

months[0]

or:

months[72]

or:

months[234] # => "month"

Hash also has a class method [], which is called in either one of two ways: with a
comma separating the pairs, like this:

christmas_carol = Hash[:name, "Ebenezer Scrooge", :partner, "Jacob Marley", :
employee, "Bob Cratchit", :location, "London", :year, 1843] # => {:name=>"Ebenezer
Scrooge", :employee=>"Bob Cratchit", :year=>1843, :partner=>"Jacob Marley", :
location=>"London"}

Or with =>:

christmas_carol = Hash[:name => "Ebenezer Scrooge", :partner => "Jacob Marley", :
employee => "Bob Cratchit" =>:location, "London", :year => 1843] # => {:name=>
"Ebenezer Scrooge", :employee =>"Bob Cratchit", :year=>1843, :partner=>"Jacob
Marley", :location=>"London"}

The easiest way to create a hash, I think, is with curly braces, like this:

months = { 1 => "January", 2 => "February", 3 => "March", 4 => "April", 5 => "May",
6 => "June", 7 => "July", 8 => "August", 9 => "September", 10 => "October", 11 =>
"November", 12 => "December" }

But that looks just like an array we created in the last chapter. What else could you
do? Instead of integers, you could use strings for the keys:

month_a = { "jan" => "January", "feb" => "February", "mar" => "March", "apr" =>
"April", "may" => "May", "jun" => "June", "jul" => "July", "aug" => "August", "sep"
=> "September", "oct" => "October", "nov" => "November", "dec" => "December" }

So far I’ve used symbols, integers (Fixnums), and strings as keys. You can use any
Ruby object as a key or value, even an array. So this will work, for example:
[1,"jan"] => "January".

Accessing Hashes
Here’s a hash that associates zip codes with the names of towns in Wyoming that
start with the letter T (had to limit it somehow):

zip = { 82442 => "Ten Sleep", 83025 => "Teton Village", 83127 => "Thayne", 82443 =>
"Thermopolis", 82084 => "Tie Siding", 82336 => "Tipton", 82240 => "Torrington", 83110
=> "Turnerville", 83112 => "Turnerville" }

There are tons of ways to access keys and/or values from a hash. You can pick what
works for you—what works for the task at hand.

Iterating over Hashes | 109

You can test to see if the hash zip has a given key with any of the following meth-
ods, which are all synonyms of each other: key?, has_key?, member?, or include?:

zip.has_key? 82442 # => true

Or you can do the flip side, and see if it has a given value with value? or has_value?:

zip.has_value? "Ten Sleep" # => true

Let’s start pulling stuff out of zip. Here is a simple way of grabbing a value: the []
method. It retrieves a single hash value based on a key:

zip[82442] # => "Ten Sleep"

Then we have the methods keys and values. Return an array containing all the keys
in a hash with keys:

zip.keys # => [83110, 83127, 82336, 83112, 82084, 83025, 82442, 82443, 82240]

Get an array with all the values from a hash with values:

zip.values # => ["Turnerville", "Thayne", "Tipton", "Turnerville", "Tie Siding",
"Teton Village", "Ten Sleep", "Thermopolis", "Torrington"]

Retrieve the values out of a hash based on one or more keys with values_at, also
placing the value or values in an array:

zip.values_at 82084 # => ["Tie Siding"]
zip.values_at 82442, 82443, 82240 # => ["Ten Sleep", "Thermopolis", "Torrington"]

Now return a value for a given key (one key only) with the index method:

zip.index "Thayne" # => 83127

The select method uses a block to return a new, multidimensional array of key-
value pairs:

zip.select { |key,val| key > 83000 } # => [[83110, "Turnerville"], [83127, "Thayne"],
[83112, "Turnerville"], [83025, "Teton Village"]]

Iterating over Hashes
Like you have seen before, Ruby does a good job of handing you easy ways to munch
on an object. You can iterate over hashes with each, each_key, each_value, or each_
pair. Here are the differences.

The each method calls a block once for each key in a hash, letting you take a swipe at
each pair:

zip.each {|k,v| puts "#{k}/#{v}" } # =>
83110/Turnerville
83127/Thayne
82336/Tipton
83112/Turnerville
82084/Tie Siding
83025/Teton Village

110 | Chapter 7: Hashes

82442/Ten Sleep
82443/Thermopolis
82240/Torrington

each may take one or two parameters, which are passed to the block as two-element
arrays. The each_pair method is similar to each except it must take two parameters
and is somewhat more efficient than each when using both parameters.

The each_key method passes only the keys to the block:

zip.each_key { |key| print key, " " } # => 83110 83127 82336 83112 82084 83025 82442
82443 82240

Compare this with the keys method, which returns all the keys in an array. The each_
value method passes all the values to a block:

zip.each_value { |value| print value, " " } # => Turnerville Thayne Tipton
Turnerville Tie Siding Ten Sleep Teton Village Thermopolis Torrington

Changing Hashes
Hash’s []= method replaces or adds key-value pairs to an existing hash. For example:

rhode_island = { 1 => "Bristol", 2 => "Kent", 3 => "Newport", 4 => "Providence",
5 => "Washington" }

By the way, this hash uses integers as keys, similar to the way an array is indexed, but
it doesn’t use 0, which is the first index of an array.

You can use []= to add a pair to this array:

rhode_island[6]= "Dunthorpe"

This adds the value "Dunthorpe" with a key 6. Or you can use []= to change a value:

rhode_island[2]= "Bent"

This changes the value associated with the key 2 to "Bent". Similarly, you can use the
store method to add a pair to the rhode_island array:

rhode_island.store(6, "Dunthorpe")

Merging Hashes
In addition to rhode_island, you also have a hash listing the counties in Delaware.
There are only three:

delaware = { 1 => "Kent", 2 => "New Castle", 3 => "Sussex" }

Look again at the Rhode Island hash:

rhode_island = { 1 => "Bristol", 2 => "Kent", 3 => "Newport", 4 => "Providence",
5 => "Washington" }

Changing Hashes | 111

The merge method merges two hashes together, producing a copy of the hashes that
removes duplicate keys by overwriting the key-value pairs from the merged array. To
see what I mean by all that, run the example:

rhode_island.merge delaware # => {5=>"Washington", 1=>"Kent", 2=>"New Castle", 3=>
"Sussex", 4=>"Providence"}

Do you see what happened in the result? The keys and values from delaware took
over the pairs with the same keys in rhode_island, making Bristol, Kent, and Newport
disappear.

You can also cherry-pick your values by using merge with a block:

rhode_island.merge(delaware){|key,old,new| new = old + "_new" } # => {5=>
"Washington", 1=>"Bristol_new", 2=>"Kent_new", 3=>"Newport_new", 4=>"Providence"}

The merge! method makes the changes in place to the hash in the first argument. It
works with a block as well; you can also use its synonym, update.

Sorting a Hash
When you sort a hash with the sort method, you get a multidimensional array of
two-element arrays in return. Remember, when you create a hash, the key-value pairs
are not stored in the order they were added. Ruby orders them however it wants to,
most likely because the values can be accessed or retrieved via the keys, not by
sequence, as with an array. So order is of no moment to a hash. But it might be to
you. If it is, try sort:

rhode_island = { 1 => "Bristol", 2 => "Kent", 3 => "Newport", 4 => "Providence", 5 =>
"Washington" }
p rhode_island # => {5=>"Washington", 1=>"Bristol", 2=>"Kent", 3=>"Newport", 4=>
"Providence"}
rhode_island.sort # => [[1, "Bristol"], [2, "Kent"], [3, "Newport"], [4,
"Providence"], [5, "Washington"]]

Hash does not have a sort! method, to change the contents of the hash in place.

Deleting and Clearing a Hash
You can delete key-value pairs from a hash with the delete method. The delete
method uses a key to find the pair and then destroy it. Back to our Rhode Island
hash:

rhode_island = { 1 => "Bristol", 2 => "Kent", 3 => "Newport", 4 => "Providence", 5 =>
"Washington" }

I’ll delete the pair identified by key 5:

rhode_island.delete(5) # => "Washington"

112 | Chapter 7: Hashes

Now if you look at the hash again, you’ll see that the deleted pair has been removed.

p rhode_island # => {1=>"Bristol", 2=>"Kent", 3=>"Newport", 4=>"Providence"}

You can pass a block to your call to delete. If the key you're wanting to delete is not
found, the block runs, and its return value will be returned by delete.

rhode_island.delete(6) { |key| puts "not found, bubba" }

The delete_if method also uses a block, but in a different way. It removes the key-
values from the hash for which the block evaluates to true. Restoring the Rhode
Island hash:

rhode_island = { 1 => "Bristol", 2 => "Kent", 3 => "Newport", 4 => "Providence", 5 =>
"Washington" }

With delete_if, I’ll remove all pairs whose key values are less than 3:

rhode_island.delete_if { |key, value| key < 3 } # => {5=>"Washington", 3=>"Newport",
4=>"Providence"}

delete_if passes all pairs into the block, so you can delete based on a key or a value.
Here is an example of a deletion based on value:

rhode_island.delete_if { |key, value| value == "Kent" } # => {5=>"Washington", 1=>
"Bristol", 3=>"Newport", 4=>"Providence"}

The key-value pair 2=>"Kent" has now been removed from the hash.

Hash’s reject method works just like delete_if, but it returns a copy of the hash with
the indicated pairs removed, and doesn’t actually change the original. The reject!
method makes its changes in place and is the equivalent of delete_if.

Maybe you are feeling ruthless. The clear method will help you. It removes all the
key-value pairs from a hash, leaving it empty:

counties = { "Delaware" => 3, "Rhode Island" => 5 }
counties.clear # bye-bye
counties.empty? # => true

Use clear at your own risk!

Replacing a Hash
In order to completely replace the contents of a hash, use the replace method. This
example replaces the contents of the counties hash with those of temp:

temp = {"Delaware" => 3 }
counties.replace(temp)

You can also do it this way with an anonymous hash, so to speak:

counties.replace({ "Delaware" => 3 })

1.9 and Beyond | 113

Converting Hashes to Other Classes
You can convert a hash into an array with to_a. Let’s say you have a hash that con-
tains a few novels written by F. Scott Fitzgerald (no relation):

fitzgerald = { 1920 => "This Side of Paradise", 1925 => "The Great Gatsby", 1934 =>
"Tender Is the Night" }

You can convert that to an array with to_a like this:

fitzgerald.to_a # => [[1925, "The Great Gatsby"], [1920, "This Side of Paradise"],
[1934, "Tender Is the Night"]]

to_a converts a hash into a multidimensional array, where each key-value pair is a
two-element array within an array.

You can also convert this hash to a string with to_s:

novels = fitzgerald.to_s # => "1925The Great Gatsby1920This Side of
Paradise1934Tender Is the Night"

Whoa. That’s ugly. Let’s clean it up a bit with the String function gsub:

novels.gsub(/\d{4}/, " ") { |token| print token } # => " The Great Gatsby This Side
of Paradise Tender Is the Night"

When you convert a hash to a hash (self) with to_hash, it may not seem like you are
accomplishing much on the surface, but you are getting a benefit.

fitz = fitzgerald.to_hash # => {1925=>"The Great Gatsby", 1920=>"This Side of
Paradise", 1934=>"Tender Is the Night"}
fitz.object_id # => 1745050
fitzgerald.object_id # => 1745050

Notice that both fitz and fitzgerald have the same object ID of 1745050, but differ-
ent names.

1.9 and Beyond
In version 1.9, Hash will have the following changes:

• The output of inspect and to_s in Hash will be the same.

• Two instance methods will be added—compare_by_identity and compare_by_
identity?. With compare_by_identity, the Hash can compare keys by identity—in
other words, by using equal? instead of eql?; compare_by_identity? returns true
if the hash compares its keys by their identity.

114 | Chapter 7: Hashes

Other Hash Methods
For more information on Hash, type this at a command line:

ri Hash

For information on a class method, type:

ri Hash::new

or:

ri Hash::[]

For more information on an instance method, type something like:

ri Hash.keys

or:

ri Hash#keys

ri only works if you installed the Ruby documentation at the time you installed Ruby
(see “Installing Ruby” in Chapter 1). If Ruby documentation is not installed locally,
you can look up any Hash method online at http://ruby-doc.org/core/classes/Hash.html.

Review Questions
1. What is the difference between a hash and an array?

2. Why would you choose a hash over an array?

3. How would you check to see if a hash has a given key, or a given value?

4. The Hash class is based on what other class?

5. What is the benefit of converting a hash to a hash?

6. What is the difference between has_key? and key??

7. Show how to create a hash with Hash[].

8. What is the result of sorting a hash?

http://ruby-doc.org/core/classes/Hash.html.

115

Chapter 8 CHAPTER 8

Working with Files8

You can manipulate file directories (folders) and files from within Ruby programs
using methods from the Dir and File classes. There are other related classes, such as
FileUtils, with lots of interesting methods, but we’ll narrow our focus to methods
from Dir and File.

Most of the methods I’ll show you are class methods—that is, the method name is
prefixed by the class name, as in File.open and File::open (you can use either :: or .
to separate the class and method names).

Ruby uses a number of global constants (for a complete list, see Appendix A). Two
global constants that are important in working with files are ARGV (or $*) and ARGF (or
$<). Like Perl’s @ARGV, Ruby’s ARGV is an array that contains all the command-line
arguments passed to a program. ARGF provides an I/O-like stream that allows access
to a virtual concatenation of all files provided on the command line, or standard
input if no files are provided. I’ll demonstrate both ARGV and ARGF later in the chapter.

Let’s start working with directories.

Directories
You can navigate directory structures on your computer with class methods from the
Dir class. I’ll highlight three here: Dir.pwd, Dir.chdir (or Dir.getwd), and Dir.mkdir.

First, I’ll change directories (using an absolute path), and then store the value of the
directory path in a variable.

Dir.chdir("/Users/mikejfz")
home = Dir.pwd # => "/Users/mikejfz/"
p home # => "/Users/mikejfz"

Compare a variable storing a directory path with the current directory:

ruby_progs = "/Users/mikejfz/Desktop/Ruby"

if not Dir.pwd == ruby_progs
Dir.chdir ruby_progs

end

116 | Chapter 8: Working with Files

If you need a directory, create it with mkdir; later on, delete it with rmdir (or delete, a
synonym of rmdir):

Dir.mkdir("/Users/mikejfz/sandbox")

Dir.rmdir("/Users/mikejfz/sandbox")

You can also set permissions on a new directory (not one that already exists) with
mkdir:

Dir.mkdir("/Users/mikejfz/sandbox", 755)

755 means the owner or user of the directory can read, write, and execute; the group
can read and execute; and others can read and execute as well (see Table 8-2).

Looking Inside Directories
Dir’s class method entries returns an array that contains all the entries found in a
directory, including files, hidden files, and other directories, one array element per
entry. I’ll apply Array’s each method to the output of entries:

Dir.entries("/usr/local/src/ruby-1.8.6").each { |e| puts e }

The beginning of the output from this command looks like this:

.

..

.cvsignore

.document

.ext

.rbconfig.time
array.c
array.o
bcc32
bignum.c
bignum.o
...

You can do the same thing with Dir’s foreach:

Dir.foreach("/usr/local/src/ruby-1.8.6") { |e| puts e }

The Directory Stream
You can open a directory stream and have a look around in it with some of Dir’s
instance methods. The class method open (or new) opens a directory stream on the
given directory. path tells you the path of the stream. tell returns the current entry.
read reads the next available entry from dir. rewind takes you back to the beginning
of the stream. each iterates through each entry in dir.

dir = Dir.open("/usr/local/src/ruby-1.8.6") # => #<Dir:0x1cd784>
dir.path # => "/usr/local/src/ruby-1.8.6"
dir.tell # => "."
dir.read # => 1

Opening an Existing File | 117

dir.tell # => ".."
dir.rewind # => rewind to beginning
dir.each { |e| puts e } # puts each entry in dir
dir.close # => close stream

Creating a New File
To create a new file and open it at the same time, use the File method new, like this:

file = File.new("file.rb", "w") # => #<File:file.rb>

The first argument names the new file, and the second argument specifies the file
mode—r for readable, w for writable, or x for executable.

Table 8-1 shows the effect of the different modes.

You can also create files using new with flags and permission bits. For
more information, see http://www.ruby-doc.org/core/classes/File.html.

Opening an Existing File
You open an existing file with the open method. Example 8-1 opens the file sonnet_
129.txt (it comes with the code archive), prints each line of the file using each with a
block, then closes it with close. (By the way, you can use file.closed? to test
whether a file is closed. It returns true or false.)

Table 8-1. File modes

Mode Description

"r" Read-only. Starts at beginning of file (default mode).

"r+" Read-write. Starts at beginning of file.

"w" Write-only. Truncates existing file to zero length or creates a new file for writing.

"w+" Read-write. Truncates existing file to zero length or creates a new file for reading and writing.

"a" Write-only. Starts at end of file if file exists; otherwise, creates a new file for writing.

"a+" Read-write. Starts at end of file if file exists; otherwise, creates a new file for reading and writing.

"b" (DOS/Windows only.) Binary file mode. May appear with any of the key letters listed above.

Example 8-1. open.rb

file = File.open("sonnet_129.txt")

file.each { |line| print "#{file.lineno}. ", line }

file.close

http://www.ruby-doc.org/core/classes/File.html#M002633

118 | Chapter 8: Working with Files

The expression substitution syntax, that is, #{file.lineno}, inserts the line number
in the output, followed by the line from the file.

The open, each, and close methods are all from the IO class, not File.
See “The IO Class,” later in this chapter.

The output is:

1. The expense of spirit in a waste of shame
2. Is lust in action: and till action, lust
3. Is perjured, murderous, bloody, full of blame,
4. Savage, extreme, rude, cruel, not to trust;
5. Enjoyed no sooner but despised straight;
6. Past reason hunted; and no sooner had,
7. Past reason hated, as a swallowed bait,
8. On purpose laid to make the taker mad.
9. Mad in pursuit and in possession so;
10. Had, having, and in quest to have extreme;
11. A bliss in proof, and proved, a very woe;
12. Before, a joy proposed; behind a dream.
13. All this the world well knows; yet none knows well
14. To shun the heaven that leads men to this hell.

I used the print method in open.rb because the line-end character already exists at
the end of each line in the file.

ARGV and ARGF
Another interesting way to do the same procedure is with ARGV, using only two lines
of code (see Example 8-2).

How does that work? Remember that ARGV (or $*) is an array, and each of its ele-
ments is a filename submitted on the command line—usually. But in this case, we
have appended a filename to ARGV directly with <<, an array method. Clever. You can
apply any method to ARGV that you might apply to any other array. For example, try
adding this command:

p ARGV # => ["sonnet_119.txt"]

or:

ARGV#[0] # => ["sonnet_119.txt"]

The gets method is a Kernel method that gets lines from ARGV, and as long as gets
returns a string, that line is printed with print. Thus, this code produces:

Example 8-2. argv.rb

ARGV << "sonnet_129.txt"
print while gets

Opening an Existing File | 119

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O, no! it is an ever-fixed mark,
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come;
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
I never writ, nor no man ever loved.

ARGF ($<) is, once again, a virtual concatenation of all the files that appear on the
command line. Compare the program argf.rb in Example 8-3 with the argv.rb.

While there is a line to be retrieved from files on the command line, argf.rb prints
that line to standard output. To see how it works, run the program with these three
files on the command line:

$ argf.rb sonnet_29.txt sonnet_119.txt sonnet_129.txt

All three files are printed on the display, one line at a time.

Opening a URI
This is not directly related to File, but I think it is related enough and will be of keen
interest to some of you. (I have Ryan Waldron to thank for pointing this out.
Thanks, Ryan.)

Peter Szinek wrote a blog where he used Ruby to do some screen scraping. He is the
creator of the scRubyt web scraping toolkit written in Ruby (see http://www.scrubyt.
org). I am borrowing his simplest example (Example 8-4) to give you an idea of how
it works.

Example 8-3. argf.rb

while line = ARGF.gets
 print line
end

Example 8-4. scrape.rb

require 'open-uri'

url = "http://www.google.com/search?q=ruby"

open(url) { |page| page_content = page.read()

120 | Chapter 8: Working with Files

Without going into a lot of detail, scrape.rb uses the built-in class OpenURI (http://
www.ruby-doc.org/core/classes/OpenURI.html) to open a URI of a Google query on
Ruby. The URI is read and scanned using a regular expression, looking for the value
of the href attribute on a (anchor) elements. Those matched elements are stored in
the links variable, and each is used to iterate over the lot of them. This is the out-
put—a group of links to Ruby resources:

http://www.ruby-lang.org/
http://www.rubyonrails.org/
http://www.rubycentral.com/
http://www.rubycentral.com/book/
http://en.wikipedia.org/wiki/Ruby_programming_language
http://en.wikipedia.org/wiki/Ruby
http://www.w3.org/TR/ruby/
http://poignantguide.net/
http://www.zenspider.com/Languages/Ruby/QuickRef.html
http://www.rubys.com/

Try changing the value ruby in q=ruby to some other value of interest to you and
see what happens. For the complete story on screen scraping with Ruby, see Peter
Szinek’s blog at http://www.rubyrailways.com/data-extraction-for-web-20-screen-
scraping-in-rubyrails.

Deleting and Renaming Files
You can rename and delete files programmatically with Ruby using the rename and
delete methods. Type these lines into irb:

File.new("books.txt", "w")
File.rename("books.txt", "chaps.txt")
File.delete("chaps.txt")

File Inquiries
You can make all kinds of inquires about files with File methods. These kinds of
tests are often done before another file procedure is done. For example, the follow-
ing command tests whether a file exists before opening it:

File::open("file.rb") if File::exists?("file.rb")

 links = page_content.scan(/<a class=l.*?href=\"(.*?)\"/).flatten

 links.each {|link| puts link}

}

Example 8-4. scrape.rb (continued)

http://www.ruby-doc.org/core/classes/OpenURI.html
http://www.ruby-doc.org/core/classes/OpenURI.html
http://www.rubyrailways.com/data-extraction-for-web-20-screen-scraping-in-rubyrails/
http://www.rubyrailways.com/data-extraction-for-web-20-screen-scraping-in-rubyrails/

Changing File Modes and Owner | 121

You can also test whether the file exists with exist? (singular), a synonym of exists?.
Inquire whether the file is really a file with file?:

File.file?("sonnet29.txt") # => true

Or find out if it is a directory with directory?:

try it with a directory
File::directory?("/usr/local/bin") # => true

try it with a file...oops
File::directory?("file.rb") # => false

Test if the file is readable with readable?, writable with writable?, and executable
with executable?:

File.readable?("sonnet_119.txt") # => true
File.writable?("sonnet_119.txt") # => true
File.executable?("sonnet_119.txt") # => false

You can find out if a file has a length of zero (0) with zero?:

system("touch chap.txt") # Create a zero-length file with a system command
File.zero?("chap.txt") # => true

Get its size in bytes with size? or size:

File.size?("sonnet_129.txt") # => 594
File.size("sonnet_129.txt") # => 594

Finally, inquire about the type of a file with ftype:

File::ftype("file.rb") # => "file"

The ftype method identifies the type of the file by returning one of the following:
file, directory, characterSpecial, blockSpecial, fifo, link, socket, or unknown.

Find out when a file was created, modified, or last accessed with ctime, mtime, and
atime, respectively:

File::ctime("file.rb") # => Wed Nov 08 10:06:37 -0700 2006
File::mtime("file.rb") # => Wed Nov 08 10:44:44 -0700 2006
File::atime("file.rb") # => Wed Nov 08 10:45:01 -0700 2006

Changing File Modes and Owner
To change the mode (permissions or access list) of a file, use the chmod method with a
mask (see Table 8-2 for a list of masks):

file = File.new("books.txt", "w")
file.chmod(0755)

or:

file = File.new("books.txt", "w").chmod(0755)
system "ls -l books.txt" # => -rwxr-xr-x 1 mikejfz mikejfz 0 Nov 8 22:13
books.txt

122 | Chapter 8: Working with Files

The preceding example means that only the owner can write the file, but all can read
or execute it. Compare that with the following:

file = File.new("books.txt", "w").chmod(0644)
system "ls -l books.txt" # => -rw-r--r-- 1 mikejfz mikejfz 0 Nov 8 22:13
books.txt

All can read the file, but only the owner can write the file, and none can execute it.

For documentation on how the system command chmod works on Mac OS X, see
http://www.hmug.org/man/2/chmod.php.

You can change the owner and group of a file with the chown method, which is like
the Unix/Linux command chown. You need superuser or root privileges to use this
method.

file = File.new("books.txt", "r")
file.chown(109, 3333)

or:

file = File.new("books.txt", "r").chown(109, 3333)

Now perform this system command (works on Unix-like systems only) to see the
result:

system "ls -l books.txt" # => -rw-r--r-- 1 109 3333 0 Nov 8 11:38 books.txt

Table 8-2. Masks for chmod

Mask Description

0700 rwx mask for owner

0400 r for owner

0200 w for owner

0100 x for owner

0070 rwx mask for group

0040 r for group

0020 w for group

0010 x for group

0007 rwx mask for other

0004 r for other

0002 w for other

0001 x for other

4000 Set user ID on execution

2000 Set group ID on execution

1000 Save swapped text, even after use

http://www.hmug.org/man/2/chmod.php

The IO Class | 123

The IO Class
The basis for all input and output in Ruby is the IO class, which represents an input/
output (I/O) stream of data in the form of bytes. Standard streams include standard
input stream ($stdin) or the keyboard, standard output stream ($stdout), the display
or screen, and standard error output stream ($stderr), which is also the display by
default. IO is closely associated with the File class, and File is the only standard sub-
class of IO in Ruby. I’ll show you a sampling of IO code.

To create a new I/O stream named ios, use the new method. The first argument is 1,
which is the numeric file descriptor for standard input. Standard input can also be
represented by the predefined Ruby variable $stdin (see Table 8-3). The optional sec-
ond argument, w, is a mode string meaning “write.”

ios = IO.new(1, "w")

ios.puts "IO, IO, it's off to the computer lab I go."

$stdout.puts "Do you copy?"

Other mode strings include r for read-only (the default), r+ for read-write, and w for
write-only. For details on all available modes, see Table 8-4.

Table 8-3. Standard streams

Stream description File descriptor Predefined Ruby variable Ruby environment variable

Standard input stream 0 $stdin STDIN

Standard output stream 1 $stdout STDOUT

Standard error output
stream

2 $stderr STDERR

Table 8-4. I/O modes

Mode Description

r Read-only. Starts at the beginning of the file (default mode).

r+ Read-write. Starts at the beginning of the file.

w Write-only. Truncates existing file to zero length or creates a new file for writing.

w+ Read-write. Truncates existing file to zero length or creates a new file for reading and writing.

a Write-only. Starts at the end of file if the file exists, otherwise creates a new file for writing.

a+ Read-write. Starts at the end of the file if the file exists, otherwise creates a new file for reading and writing.

b (DOS/Windows only.) Binary file mode. May appear with any of the modes listed in this table.

124 | Chapter 8: Working with Files

With the IO instance method fileno, you can test what the numeric file descriptor is
for your I/O stream (to_i also works).

ios.fileno # => 1
ios.to_i # => 1

$stdout.fileno # => 1

You can also write strings to the stream (buffer) with the << method, then flush the
buffer with flush.

ios << "Ask not " << "for whom the bells toll." << " -John Donne"

ios.flush # => Ask not for whom the bells toll. -John Donne

Finally, close the stream with close. This also flushes any pending writes.

ios.close

Write characters to an I/O stream with putc, and retrieve those characters with getc.

ios = IO.new(1)
ios.putc "M"
ios.putc "a"
ios.putc "t"
ios.putc "z"
ios.getc => Matz

Open a file stream, and then retrieve each line in order with the IO method gets.

file = File.new("sonnet_29.txt")
file.gets # => "When in disgrace with fortune and men's eyes\n"
file.gets # => "I all alone beweep my outcast state,\n"

Or do it with readline. readline is slightly different from gets because it raises an
EOFError when it reaches the end of the file.

file = File.new("sonnet_119.txt")
file.readline # => "Let me not to the marriage of true minds\n"
file.readline # => "Admit impediments. Love is not love\n"
file.readline # => "Which alters when it alteration finds,\n"

Review Questions
1. How is ARGV useful?

2. How would you obtain a file type from a file on disk with Ruby?

3. What does the mask 0700 do to a file’s permissions?

4. How would you access the date and time a file was created?

5. What kind of object does the entries method from Dir return?

125

Chapter 9 CHAPTER 9

Classes9

Finally, I’ll go into classes in some detail. By now you certainly know that Ruby is an
object-oriented programming (OOP) language, and that the centerpiece of OOP is
the class. A class is a container of sorts that holds methods and properties such as
variables and constants (collectively known as class members). One of the most
important things about classes is that they can be reused by means of inheritance.

A class can inherit or derive characteristics from another class. That means that a
child class or subclass can inherit the methods and data from a parent class. This
parent is also referred to as the superclass. This parent-child chain forms a hierarchy
of classes, with the base class at the root, top, or base of the hierarchy. For Ruby, the
base class of the hierarchy is Object.

Ruby supports single inheritance, like Java, not multiple inheritance, like C++.
What’s the difference? With single inheritance, a class can only inherit from one
other class; with multiple inheritance, a class can inherit from more than one class.
The problem with multiple inheritance is that it opens up management issues such as
name collision—that is, when classes and methods and variables have the same
names but different meanings. Most programmers agree that single inheritance is less
prone to headaches and avoids collision and other issues related to multiple inherit-
ance; on the other hand, they would also like the power of multiple inheritance.

Java addresses the multiple-inheritance dilemma with interfaces. An interface in Java
can define abstract methods but cannot implement them; a Java class can inherit an
interface, then implement its abstract methods. Java also has abstract classes and
abstract methods that can be inherited and then later implemented.

Ruby also offers a compromise between single and multiple inheritance: modules.
Modules let you define variables, constants, and methods, but you can’t use them
until they are included in a class. You can include as many modules as you want in a
class, and when Ruby encounters name collision, the last defined method or variable
is the one used. In other words, you can override methods and member variables in
Ruby.

126 | Chapter 9: Classes

Now, step by step, I’ll show you how to define classes, instance methods and vari-
ables, class methods and variables, and how to define modules and include them. I’ll
also explain what it means to override a method, and what a singleton method is.

Defining the Class
A class is defined with the class keyword, followed by an end. The class identifier is a
constant, so it must be capitalized (the norm), but it can also be all uppercase—
Hello or HELLO instead of hello.

Example 9-1 shows the Hello class, which you saw in Chapter 1, but here I’ll go into
more detail about it.

The keyword class, followed by end, defines the Hello class. The initialize method
defines the instance variable @name by storing a copy of the name argument passed into
the initialize method.

The initialize method is a Ruby convention that acts something like a class con-
structor in other languages, but not completely. At this point, the instance is already
there, fully instantiated. initialize is the first code that is executed after the object is
instantiated; you can execute just about any Ruby code in initialize. initialize is
always private; that is, it is scoped only to the current object, not beyond it.

You access the instance variable @name with the method hello_matz. More about
instance methods are coming up in the following section.

A class is itself an object, even if you don’t directly instantiate it. Classes are always
open, so you can add to any class, even built-in classes like String and Array. You
can open the Array class and add a method to it such as array_of_ten, as shown in
Example 9-2. This feature makes the language incredibly flexible.

Example 9-1. hello.rb

class Hello

 def initialize(name)
 @name = name
 end

 def hello_matz
 puts "Hello, " + @name + "!"
 end

end

hi = Hello.new("Matz")
hi.hello_matz # => Hello, Matz!

Instance Variables | 127

Instance Variables
In Rubyland, an instance variable is a variable that is available from within an
instance of a class, and is limited in scope because it belongs to a given object. As
already mentioned, an instance variable is prefixed by a single at sign (@), as in:

@name = "Easy Jet"

You can define an instance variable inside a method or outside of one. You can only
access an instance variable from outside an object via a method. (You can, however,
access an instance variable within the object without a method.) For example, you
can define an instance variable in a class like this:

class Horse

@name = "Easy Jet"

end

This works if you want to reference @name only from within the object, but is decid-
edly inadequate if you want to access it from outside of the object. You have no way
to retrieve the value of @name directly from the outside. If you try to access @name from
an instance of Horse—something like horse.name—the attempt generates an error.
You must define a method to retrieve the value.

class Horse

 def name
 @name = "Easy Jet"
 end

end

h = Horse.new
h.name # => "Easy Jet"

Example 9-2. array_of_ten.rb

class Array

 def array_of_ten
 (1..10).to_a
 end

end

arr = Array.new
ten = arr.array_of_ten
p ten # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

128 | Chapter 9: Classes

The method name is the kind of method that is referred to as an accessor method or
getter. It gets a property (the value of a variable) from an instance of a class.

Usually, when you have a getter, you also want a setter—an accessor method that
sets the value of a variable. This version of the Horse class adds such a method and
shows you another convention:

class Horse

 def name
 @name
 end

 def name=(value)
 @name = value
 end

end

h = Horse.new
h.name= "Poco Bueno"
h.name # => "Poco Bueno"

The setter method name= follows a Ruby convention: the name of the method ends
with an equals sign (=). (This convention is not a requirement.) You could call name=
whatever you like, as long as the characters are legal. But it is a nice convention, easy
on the eyes, because name and name= look like business partners.

Here is yet another version of the class Horse that initializes the instance variable
@name with the standard initialize method. Later the program creates an instance of
the class by calling new, and then accesses the instance variable through the accessor
method horse_name, via the instance horse.

class Horse

 def initialize(name)
@name = name

 end

 def horse_name
@name

 end

end

horse = Horse.new("Doc Bar")
puts horse.horse_name # => Doc Bar

There is a far easier way to write accessor methods, as you will see next.

Accessors | 129

Accessors
If you are accustomed to creating classes in other programming languages, you have
no doubt created getter and setter methods. These methods set and get (return)
properties in a class. Ruby simplifies the creation of getters and setters with a little
metaprogramming and the methods attr, attr_reader, attr_writer, and attr_accessor,
all from the Module class. Metaprogramming is a shorthand way to write a program,
or part of one, with another program. By supplying the attr method, Ruby provides
a way to quickly create the equivalent of six lines of code with a single line.

The method attr creates a single getter method, named by a symbol, with an
optional setter method (if the second argument is true), as in Example 9-3.

By calling attr, with :bark and true as arguments, the class Dog will have the instance
methods bark and bark=. If you called attr with only the :bark argument, Dog would
have only the method bark. (Notice how you can subtract out Object’s instance
methods when retrieving Dog’s instance methods. It’s the little things like this that
make me really like Ruby.)

The single line attr :bark, true is equivalent to writing out the bark and bark= meth-
ods in six lines of code:

class Dog

 def bark
 @bark
 end

 def bark=(val)
 @bark = val
 end

end

You’ll learn more about metaprogramming in the section “Metaprogramming” in
Chapter 10.

Example 9-3. dog.rb

#!/usr/bin/env ruby

class Dog
attr :bark, true

end

Dog.instance_methods - Object.instance_methods # => ["bark", "bark="]

dog = Dog.new

dog.bark="Woof!"
puts dog.bark # => Woof!

130 | Chapter 9: Classes

The method attr_reader automatically creates one or more instance variables, with
corresponding methods that return (get) the values of each method. The attr_writer
method automatically creates one or more instance variables, with corresponding
methods that set the values of each method. Example 9-4 calls these methods. It cre-
ates one getter and a corresponding setter.

Calling the attr_accessor method does the same job as calling both attr_reader and
attr_writer together, for one or more instance methods, as shown in Example 9-5.

Ruby’s metaprogramming makes life so much easier when creating getters and setters.

Class Variables
In Ruby, a class variable is shared among all instances of a class, so only one copy of
a class variable exists for a given class. In Ruby, a class variable is prefixed by two at
signs (@@). You must initialize a class attribute before you use it.

@@times = 0

The Repeat class, shown in Example 9-6, uses the @@total class variable. The pro-
gram instantiates the class three times, calls the repeat method for each instance, and
accesses the value of @@total for each instance, too. Notice how the value stored in
@@total is maintained between instances.

Example 9-4. dogs.rb

class Dog
attr_reader :bark
attr_writer :bark

end

dog = Dog.new

dog.bark="Woof!"
puts dog.bark # => Woof!

dog.instance_variables.sort # => ["@bark"]
Dog.instance_methods.sort - Object.instance_methods # => ["bark", "bark="]

Example 9-5. gaits.rb

#!/usr/bin/env ruby

class Gaits
attr_accessor :walk, :trot, :canter

end

Gaits.instance_methods.sort - Object.instance_methods # => ["canter", "canter=", "trot",
"trot=", "walk", "walk="]

Class Methods | 131

Class Methods
A class method is a method that is associated with a class (and with a module in
Ruby), not an instance of a class. You can invoke class methods by prefixing the
name of the method with the name of the class to which it belongs. Class methods
are also known as static methods.

In Ruby, you can also associate the name of a module with a method name, just like
with a class, but to use such a method, you must include the module in a class. This
line prefixes the name of the sqrt method with Math, from the Math module, which
you read about in Chapter 5.

Math.sqrt(36) # => 6.0

To define a class method, you simply prefix the name of the method with the name of
the class or module in the method definition. In Example 9-7, the area of a rectangle is
calculated with the class method Area.rect.

Example 9-6. repeat.rb

class Repeat
@@total = 0

 def initialize(string, times)
 @string = string
 @times = times
 end
 def repeat

@@total += @times
 return @string * @times
 end
 def total
 "Total times, so far: " + @@total.to_s
 end
end

data = Repeat.new("ack ", 8)
ditto = Repeat.new("Again! ", 5)
ditty = Repeat.new("Rinse. Lather. Repeat. ", 2)

puts data.repeat # => ack ack ack ack ack ack ack ack
puts data.total # => Total times, so far: 8

puts ditto.repeat # => Again! Again! Again! Again! Again!
puts ditto.total # => Total times, so far: 13

puts ditty.repeat # => Rinse. Lather. Repeat. Rinse. Lather. Repeat.
puts ditty.total # => Total times, so far: 15

Example 9-7. area.rb

class Area

 def Area.rect(length, width, units="inches")

132 | Chapter 9: Classes

Singletons
Another way you can define class methods is by using a class within a class—a sin-
gleton class—like the code in Example 9-8.

In this form, you don’t have to prefix the method with the class name in the defini-
tion. A singleton class is tied to a particular object, can be instantiated only once,
and is not distinguished by a prefixed name.

The method rect is also effectively a singleton method because it is tied to the single-
ton class. Here is a way to define a singleton method—in this case, one that is tied to
a single object:

class Singleton
end

s = Singleton.new
def s.handle
 puts "I'm a singleton method!"
end

s.handle # => I'm a singleton method!

 area = length*width
 printf("The area of this rectangle is %.2f %s.", area, units)
 sprintf("%.2f", area)
 end

end

Area.rect(12.5, 16) # => The area of this rectangle is 200.00 inches.

Example 9-8. area_singleton.rb

class Area

class << self

 def rect(length, width, units="inches")
 area = length*width
 printf("The area of this rectangle is %.2f %s.", area, units)
 sprintf("%.2f", area)
 end

 end

end

Area.rect(10, 10) # The area of this rectangle is 100.00 inches.=> "100.00"

Example 9-7. area.rb (continued)

Inheritance | 133

The singleton design pattern comes from Design Patterns: Elements of Reusable
Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, known as the “Gang of Four” (Addison-Wesley). In basic terms, a single-
ton is designed so that it can only be instantiated once. It is often used like a global vari-
able. Ruby also has a class for defining singleton objects; see http://www.ruby-doc.org/
core/classes/Singleton.html.

Inheritance
Ruby supports single inheritance, which means that a class can inherit only one other
class—the parent or superclass. When a child class inherits or derives from a parent,
it has access to the methods and properties of the parent class. Inheritance is accom-
plished with the < operator.

As mentioned earlier, Ruby does not support multiple inheritance, which allows a
class to inherit more than one class and therefore have access to the functionality
from more than one class. One problem with multiple inheritance is that some defi-
nitions of classes, methods, and properties may collide; for example, two classes may
have the same name but carry entirely different meanings. There are simple reasons
why multiple inheritance can be convenient, but more complex reasons why it can
be a headache. Ruby manages this problem with modules and mixins, which you will
read about in the next section.

Example 9-9 is an example of simple, single inheritance. The Address child class
inherits (<) the methods and properties (instance variables) from the Name class, the
parent. The method respond_to? tests to see whether an instance of Address has
access to :given_name, inherited from the Name class. The answer is yes (true).

Example 9-9. inherit.rb

#!/usr/bin/env ruby

class Name

 attr_accessor :given_name, :family_name

end

class Address < Name

 attr_accessor :street, :city, :state, :country

end

a = Address.new
puts a.respond_to?(:given_name) # => true

http://www.ruby-doc.org/core/classes/Singleton.html
http://www.ruby-doc.org/core/classes/Singleton.html

134 | Chapter 9: Classes

If the class Name were in a different file, you would just require that file first, and then
the inheritance operation would work fine, as you can see in Examples 9-10 and
9-11. (The require method in address.rb assumes that name.rb is in the load path.)

What is a load path? The system path is not necessarily the same thing
as the Ruby path or load path. What’s the difference? Here are some
hints. Ruby has a predefined variable called $LOAD_PATH (which also
has a Perl-like synonym, $:). $LOAD_PATH is an array that contains the
names of directories and that is searched by load and require meth-
ods when loading files. Type $LOAD_PATH in irb to see what the array
holds. Ruby can also use the environment variables PATH and RUBYPATH
(if it is set). PATH is the system path and acts as a search path for Ruby
programs, among other things; RUBYPATH may be the same thing as
PATH, but because it takes precedence over PATH, it is likely to hold
other directories beyond PATH. (See Table A-4 and Table A-5.)

Modules
In addition to classes, Ruby also has modules. A module is like a class, but it cannot
be instantiated like a class. How is that useful? Well, a class can include a module so
that when the class is instantiated, it gets the included module’s goodies. The meth-
ods from an included module become instance methods in the class that includes the
module. This is called mixing in, and a module is referred to as a mixin. Using mix-
ins helps overcome the problems that stem from multiple inheritance.

Example 9-10. name.rb

class Name

 attr_accessor :given_name, :family_name

end

Example 9-11. address.rb

#!/usr/bin/env ruby

require 'name'

class Address < Name

 attr_accessor :street, :city, :state, :country

end

a = Address.new
puts a.respond_to?(:given_name)

Modules | 135

A module is a form of a namespace in Ruby. A namespace is a set of names—such as
method names—that have a scope or context. A Ruby module associates a single
name with a set of method and constant names. The module name can be used in
classes in other modules. Generally, the scope or context of such a namespace is the
class or module where the namespace (module name) is included. A Ruby class can
also be considered a namespace.

A module name must be a constant, that is, it must start with an uppercase letter. A
module can contain methods, constants, other modules, and even classes. A module
can inherit from another module, but it may not inherit from a class. As a class may
include a module, it may also include modules that have inherited other modules.

The code in Example 9-12 demonstrates how to create a module (Dice) and then
include it in a class (Game). The method roll is available from the instance of Game
called g. (The Kernel method rand generates a pseudo-random number—between 0.0
and 1.0 if it has no argument, or between 0 and argument. The roll method uses rand
with a little fancy footwork to make sure it does not return 0. Admittedly, it may not
be the most efficient way to guarantee a nonzero result, but it works).

If the module were in a separate file (see Example 9-13), like with a class, you would
simply require the file containing the module (see Example 9-14), and then it would
work (again, require is expecting a name in the load path).

Example 9-12. mixin.rb

#!/usr/bin/env ruby

module Dice

 # virtual roll of a pair of dice
 def roll
 r_1 = rand(6); r_2 = rand(6)
 r1 = r_1>0?r_1:1; r2 = r_2>0?r_2:6
 total = r1+r2
 printf("You rolled %d and %d (%d).\n", r1, r2, total)
 total
 end

end

class Game
include Dice
end

g = Game.new
g.roll

136 | Chapter 9: Classes

When you define module methods as you would class methods—that is, prefixed
with the module name—you can call the method from anywhere, as is the case
with the Math module. Example 9-15 shows how to prefix a module method and
then call it later.

Example 9-13. dice.rb

module Dice

 # virtual roll of a pair of dice
 def roll
 r_1 = rand(6); r_2 = rand(6)
 r1 = r_1>0?r_1:1; r2 = r_2>0?r_2:6
 total = r1+r2
 printf("You rolled %d and %d (%d).\n", r1, r2, total)
 total
 end

end

Example 9-14. game.rb

#!/usr/bin/env ruby

require 'dice'

class Game
 include Dice
end

g = Game.new
g.roll

Example 9-15. binary.rb

#!/usr/bin/env ruby

module Binary

 def Binary.to_bin(num)
 bin = sprintf("%08b", num)
 end

end

Binary.to_bin(123) # => "01111011"

public, private, or protected | 137

public, private, or protected
The visibility or access of methods and constants may be set with the methods
public, private, or protected.

• A class member marked public is accessible by anyone from anywhere; it is the
default.

• private means that the receiver for the method is always the current object or
self, so its scope is always the current object (often helper methods, that is,
methods that get called by other methods to perform some job).

• A method marked protected means that it can be used only by instances of the
class where it was defined, or by derived classes.

You can label methods as shown in Example 9-16. Methods following the keywords
private or protected will have the indicated visibility until changed or until the defi-
nition ends.

Example 9-16. access.rb

class Names

 def initialize(given, family, nick, pet)
 @given = given
 @family = family
 @nick = nick
 @pet = pet
 end

these methods are public by default

 def given
 @given
 end

 def family
 @family
 end

all following methods private, until changed

private

 def nick
 @nick
 end

138 | Chapter 9: Classes

When you change the access of methods as in Example 9-16, you have to define
those methods after you use the public, private, or protected methods. You can also
call the methods after a definition (you must use symbols for method names):

def pet
 @pet
end

protected :pet

Review Questions
1. True or false: You cannot add methods or variables to built-in classes.

2. An instance variable is prefixed by a _____ character.

3. What is one distinguishing characteristic of a class method?

4. True or false: In Ruby, even a class is an object.

5. What is a singleton method, and how do you create one?

6. Can you instantiate a module?

7. What is the main difference between single and multiple inheritance?

8. What is Ruby’s base class?

9. What is the default visibility for members of a class?

all following methods protected, until changed

protected

 def pet
 @pet
 end

end

name = Names.new("Klyde", "Kimball", "Abner", "Teddy Bear")

name.given # => "Klyde"
name.family # => "Kimball"

see what happens when you call nick or pet

name.nick
name.pet

Example 9-16. access.rb (continued)

139

Chapter 10 CHAPTER 10

More Fun with Ruby10

It’s time to explore beyond the basics and move into some other areas of Ruby. Here
you’ll learn how to use the sprintf method to format output, process or generate
XML with REXML or XML Builder, use reflection methods, use RubyGems, create
documentation with RDoc, and do some error handling. You’ll even do a little
metaprogramming and embedded Ruby (ERB). The purpose of this chapter is to
expand your knowledge and broaden your experience before cutting you loose. After
this, only Chapter 11 remains.

Formatting Output with sprintf
The Kernel module has a method called sprintf (which also has a synonym called
format) for creating formatted strings. If you have C programming in your DNA, as
many programmers do, it is likely that you will want to reach for sprintf to do all
kinds of string formatting chores for you. sprintf relies on a format string—which
includes format specifiers, each preceded by a %—to tell it how to format a string.
For example, let’s say you wanted to print out the number 237 in binary format.
Enter this:

sprintf("%b", 237) # => "11101101"

The format specifier %b indicates that you want a binary result. b is the field type for
binary, and the argument 237 is the number you want to convert to binary, which
sprintf does very handsomely. sprintf doesn’t actually print the return value to
standard output (the screen); to do that you would have to use printf, another
Kernel method:

printf("%b", 237) # => 11101101

which is nearly identical to:

$stdout.write(sprintf("%b", 237)) # => 11101101

140 | Chapter 10: More Fun with Ruby

write is a method of the IO class that writes a string to the open I/O stream, which
happens to be $stdout, the predefined variable for standard output (your display by
default). You can even use puts (or print):

puts sprintf("%b", 237) # => 11101101

But I wouldn’t. I prefer printf over $stdout.write or puts sprintf—it’s more elegant.

You can also assign the return value to a variable:

bin = sprintf("%b", 237)

Or you might use a variable as an argument:

to_bin = 237
sprintf("%b", to_bin) # => "11101101"

The result of converting 237 is a nice, eight-digit binary number string. What if you
are converting a smaller number to binary—say, 14:

sprintf("%b", 14) # => "1110"

If you want eight digits, you can specify that, plus pad out the result with zeros:

sprintf("%08b", 14) # => "00001110"

That looks better. To review, a format specifier always begins with a percent sign (%)
and may be followed by optional flags, which modify how the result is displayed (see
Table 10-1 for a complete list of flags). The flag in this format specifier is 0, which indi-
cates that you want to fill or pad the result with zeros instead of spaces (the default).
The number 8 denotes the width of the result (eight digits). (Following the width, you
can also have a precision indicator. More on that later.) The string ends with a field
type character, such as b. Field type characters control how the corresponding argu-
ment is displayed in the result. See Table 10-2 for all the field type characters.

Let’s make a sentence out of it by embedding more than one format specifier in the
string.

sprintf("The integer %d is %08b in binary format.", 72, 72)
=> "The integer 72 is 01001000 in binary format."

Any characters other than the format specifiers are also copied over. The %d specifies
a decimal number in the result. This call to sprintf includes two arguments (72, 72).
It expects two arguments because there are two format strings, but that is unneces-
sary. OK, so delete the second argument:

sprintf("The integer %d is %08b in binary format.", 72)
ArgumentError: too few arguments
 from (irb):25:in `sprintf'
 from (irb):25
 from :0

That didn’t work. We have to let sprintf know what argument you want to use,
then it will be happy.

sprintf("The integer %1$d is %1$08b in binary format.", 72)
=> "The integer 72 is 01001000 in binary format."

Formatting Output with sprintf | 141

The 1$ lets the method know you want it to look for the first argument only.

For a floating-point number, use the f field type. The following line displays dollars:

sprintf("$%.2f", 100) # => "$100.00"

A precision indicator consists of a period followed by a number (.2 in this example).
It follows the width indicator, if a width is used (it’s not used here). A precision indi-
cator controls the number of decimal places displayed in the result (two). The dollar
sign at the beginning of the format string is copied through, so you get $100.00.

The x type converts an argument to a hexadecimal value.

sprintf("%x", 30) # => "1e"

For uppercase characters in the hex value, use X.

sprintf("%X", 30) # => "1E"

To prefix a hex result with 0x, use a hash or pound symbol (#).

sprintf("%#x", 256) # => "0x100"

The %o field type returns an octal number. To prefix the octal result with 0, use the
hash as you did with the hexadecimal.

sprintf("%#o", 100) # => "0144"

Use %s to substitute a string argument into the format string.

sprintf("Hello, %s", "Matz!") # => "Hello, Matz!"

This is the same as using the % method from String, as you saw in Chapter 1.

"Hello, %s" % "Matz!" # => "Hello, Matz!"

You can also feed this method an array:

birthdate = ["November", 8, 2007]
p "He was born %s %d, %d." % birthdate

You can use % instead of sprintf wherever you want a formatted string.

For a string, the precision indicator sets the maximum number of characters that will
be copied from the argument string. Here, only two characters are allowed from this
substitution string:

sprintf("Hello, %.2s", "Matz!") # => "Hello, Ma"

Table 10-1. Flag characters for sprintf

Flag For field types Description

[space] bdeEfgGiouxX Places a space at the start of a positive number.

[1–9]$ All field types Absolute number of an argument for this field.

beEfgGoxX For the field b, prefixes the result with 0b; for o, with 0; for x, with 0x; for X, with
0X. For e, E, f, g, and G, adds decimal point. For g and G, does not remove trailing
spaces.

+ bdeEfgGiouxX Adds a leading plus sign (+) to positive numbers.

142 | Chapter 10: More Fun with Ruby

Processing XML
Ruby has a growing number of XML facilities. Sean Russell’s Ruby Electric XML
(REXML) is built into Ruby, so it’s an obvious choice for discussion (http://www.
germane-software.com/software/rexml). Builder is built into Rails, so we will pay
some attention to that as well (http://rubyforge.org/projects/builder).

- All field types Left-justifies the result.

0 bdeEfgGiouxX Pads result with zeros (0) instead of spaces.

* All field types Uses the next argument as the field width. If negative, left-justifies result. If asterisk
(*) is followed by a number and a dollar sign ($), uses argument as width.

Table 10-2. Field types for sprintf

Field Description

b Converts a numeric argument to binary.

c Converts a numeric argument (character code) to a character.

d Converts a numeric argument to a decimal number. Same as i.

e Converts a floating-point argument into exponential notation, using one digit before the decimal point.
Defaults to six fractional digits. Compare with g.

E Same as e, but uses E in result.

f Converts a numeric argument to a floating-point number. Defaults to six fractional digits. Precision determines
the number of fractional digits.

g Converts a numeric argument to a floating-point number, using the exponential form if the exponent is less
than -4 or greater than or equal to precision, otherwise using the form d.dddd. Compare with e.

G Same as g, but uses E in result.

i Converts a numeric argument to a decimal number. Same as d.

o Converts a numeric argument to octal.

p Same as argument.inspect where inspect gives you a printable version of the argument, with special
characters escaped.

s Substitutes an argument as a string. If the format string contains precision, at most that many characters are
copied in the substitution.

u Treats argument as an unsigned decimal. Negative integers are displayed as a 32-bit two’s complement plus
one for the underlying architecture (for example, 2**32+n). Because Ruby has no inherent limit on the num-
ber of bits used to represent an integer, negative values are preceded by two leading periods, indicating an infi-
nite number of leading sign bits.

x Converts a numeric argument to hexadecimal with lowercase letters a through f. Negative numbers are dis-
played with two leading periods, indicating an infinite string of leading ffs.

X Same as x, but uses uppercase letters A through F in the result. Negative numbers are displayed with two lead-
ing periods, indicating an infinite string of leading FFs.

Table 10-1. Flag characters for sprintf (continued)

Flag For field types Description

http://www.germane-software.com/software/rexml/
http://www.germane-software.com/software/rexml/
http://rubyforge.org/projects/builder/

Processing XML | 143

Here are a couple more that I won’t be showing you. Libxml-Ruby, a C-language
Ruby binding to GNOME’s libxml2 library, is a speedy alternative (see http://
libxml.rubyforge.org). There is also XmlSimple, a Ruby translation of the Perl mod-
ule XML::Simple (http://xml-simple.rubyforge.org). XmlSimple requires REXML.

The following discussions assume that you already know XML, so I won’t be
explaining what elements or attributes are, and so forth. There is so much I could tell
you about, but I must be brief. You’ll learn just enough about processing XML to be
a little heady with the lunchroom crowd.

REXML
Because REXML is already part of Ruby, you get it free of charge. Example 10-1
shows a small program that creates an XML document from a here document and
then writes the document out to standard output.

You must require rexml/document. If you include the REXML namespace, you don’t
have to prefix the class name with REXML (as in REXML::Document). The address string
holds the here document that contains an XML document—an address for our good
friend Mondo Mangrove. The Document class from REXML represents an XML docu-
ment. I use puts to write document to standard output.

<address>

 <name><given>Mondo</given><family>Mangrove</family></name>

 <street>9876 Trekker St.</street>

 <city>Granola</city>

 <state>Colorado</state>

 <code>81000</code>

 <country>USA</country>

</address>

Example 10-1. mondo.rb

#!/usr/bin/env ruby

require 'rexml/document'
include REXML

address = <<XML
<address>
 <name><given>Mondo</given><family>Mangrove</family></name>
 <street>9876 Trekker St.</street>
 <city>Granola</city>
 <state>Colorado</state>
 <code>81000</code>
 <country>USA</country>
</address>
XML

document = Document.new(address)
puts document

http://libxml.rubyforge.org/
http://libxml.rubyforge.org/
http://xml-simple.rubyforge.org/

144 | Chapter 10: More Fun with Ruby

The program shown in Example 10-2 puts together an XML document out of thin air
and then displays it.

Document.new is called without any arguments because this program builds the XML
file as it goes along. XMLDecl.new adds an XML declaration to the document, which
will appear at the top. The first argument is the version information (1.0); the sec-
ond is the encoding declaration (UTF-8). Without any arguments, XMLDecl.new cre-
ates a basic, default XML declaration (<?xml version='1.0'?>).

Comment.new creates a comment for insertion in the document, with the text our good
friend Mondo.

The first call to the add_element method adds the root element name to the document
with a lang attribute. The given and family elements are also added, and given is
given an attribute called nickname with add_attribute. The text method adds text
content to these new elements.

The write method pretty-prints the document to standard output (the second argu-
ment of write specifies the indentation). With write, the output appears as:

<?xml version='1.0' encoding='UTF-8'?>
<!--our good friend Mondo
-->
<name lang='en'>
 <given nickname='false'>Mondo</given>
 <family>Mangrove</family>
</name>

Example 10-2. mangrove.rb

#!/usr/bin/env ruby

require 'rexml/document'
include REXML

document = Document.new

document << XMLDecl.new("1.0", "UTF-8")

document << Comment.new("our good friend Mondo")

document.add_element("name", { "lang" => "en"})

given = document.root.add_element("given")
family = document.root.add_element("family")

given.add_attribute("nickname", "false")

given.text = "Mondo"
family.text = "Mangrove"

document.write($stdout, 0)

Processing XML | 145

I don’t want you to get the wrong idea. The way I did things in these examples is not
the only way to do things. This little sampling should get you started. There are lots
of things I didn’t talk about, like deleting elements or attributes, stream parsing, and
much more.

If you want to learn more, look at Sean Russell’s tutorial on REXML at http://
www.germane-software.com/software/rexml/docs/tutorial.html, and also check out Koen
Vervloesem’s article “REXML: Processing XML in Ruby,” at http://www.xml.com/
pub/a/2005/11/09/rexml-processing-xml-in-ruby.html. You’ll find the online docu-
mentation for REXML at http://www.ruby-doc.org/core/classes/REXML.html.

Builder
Jim Weirich’s XML Builder (http://rubyforge.org/projects/builder) is another way to
create XML. It is currently at version 2.0.0. It first caught my attention when I found
it was packaged in Rails. Personally, I find it a little easier to use than REXML, and
you may, too.

Compare Example 10-2 with Example 10-3, which is in Builder.

In this example, you first require rubygems, then builder with require_gem. The
require_gem method comes from the rubygems package. It can take another argu-
ment, allowing you to indicate what version of a package you want to use (see http://
docs.rubygems.org/read/chapter/4#page71).

The here document is saved in the string address, which is the target for the
XmlMarkup object (similar to the Document object in REXML). You can also set the
indentation of the output here. puts writes document to standard output with the help
of the to_xs method—not that different from REXML on the surface.

Example 10-3. mondo_b.rb

#!/usr/bin/env ruby

require 'rubygems'
require_gem 'builder'

address = <<XML
<address>
 <name><given>Mondo</given><family>Mangrove</family></name>
 <street>9876 Trekker St.</street>
 <city>Granola</city>
 <state>Colorado</state>
 <code>81000</code>
 <country>USA</country>
</address>
XML

document = Builder::XmlMarkup.new(:target => address, :indent => 1)
puts document.to_xs

http://www.germane-software.com/software/rexml/docs/tutorial.html
http://www.germane-software.com/software/rexml/docs/tutorial.html
http://www.xml.com/pub/a/2005/11/09/rexml-processing-xml-in-ruby.html
http://www.xml.com/pub/a/2005/11/09/rexml-processing-xml-in-ruby.html
http://www.ruby-doc.org/core/classes/REXML.html
http://rubyforge.org/projects/builder/
http://docs.rubygems.org/read/chapter/4#page71
http://docs.rubygems.org/read/chapter/4#page71

146 | Chapter 10: More Fun with Ruby

Here’s the output. A little to_xs tag follows the end tag of the root element:

<address>
 <name><given>Mondo</given><family>Mangrove</family></name>
 <street>9876 Trekker St.</street>
 <city>Granola</city>
 <state>Colorado</state>
 <code>81000</code>
 <country>USA</country>
</address>
<to_xs/>

Now compare Example 10-2 with Example 10-4.

The target is standard output ($stdout). The XML declaration is formed with the
instruct! method, and the comment with comment!. Notice how you use element
names in the place of the method. (Would you guess there is a little metaprogram-
ming magic going on in the background?)

I like how you can represent a parent/child relationship by enclosing the child ele-
ments in braces ({}). The output is sent to standard output.

<?xml version="1.0" encoding="UTF-8"?>
<!-- our good friend Mondo -->
<name lang="en">
 <given nickname="false">Mondo</given>
 <family>Mangrove</family>
</name>

REXML has more features than Builder and is built into Ruby, but Builder has a
Rubyness that is hard for me to resist.

You will find a tutorial for Builder (written by yours truly) at http://www.xml.com/
pub/a/2006/01/04/creating-xml-with-ruby-and-builder.html, and full documentation at
http://builder.rubyforge.org.

Example 10-4. mangrove_b.rb

#!/usr/bin/env ruby

require 'rubygems'
require_gem 'builder'
include Builder

document = XmlMarkup.new(:target => $stdout, :indent => 1)

document.instruct!

document.comment! "our good friend Mondo"

document.name(:lang => "en") {
 document.given "Mondo", :nickname => "false"
 document.family "Mangrove"
}

http://www.xml.com/pub/a/2006/01/04/creating-xml-with-ruby-and-builder.html
http://www.xml.com/pub/a/2006/01/04/creating-xml-with-ruby-and-builder.html
http://builder.rubyforge.org/

Date and Time | 147

Date and Time
Figuring out the day and time is important in daily life and in computing, so Ruby
naturally offers facilities to do so. In this section, I’ll talk about Ruby’s Date and Time
classes.

The Time Class
I cover many of the most commonly used Time methods here. See http://ruby-doc.org/
core/classes/Time.html for documentation on all the Time methods.

To determine the current time, use the now method (or its synonym new) from Time.
Calling the method twice can help you determine how much time has elapsed in
between.

start = Time.now # => Tue Jan 30 04:12:50 -0700 2007
stop = Time.now # => Tue Jan 30 04:13:00 -0700 2007

To set a given time, use the local method (mktime is a synonym):

local_time = Time.local(2007, "jan", 30, 1, 15, 20)
=> Tue Jan 30 01:15:20 -0700 2007

The arguments to this call to local are (in order) year, month, date, hour, minutes,
seconds. You can also call local with these arguments:

my_time = Time.local(20, 15, 1, 30, "jan", 2007, 2, 30, false, "MST")
=> Tue Jan 30 01:15:20 -0700 2007

In this call, the arguments, in order, are seconds, minutes, hour, day, month, year, day
of the week, day of the year, is-it-daylight-savings-time?, and timezone.

From a Time object you can get all kinds of particulars, such as the day, the day of the
week, and the day of the year:

stop.day # the day of the month => 30
stop.yday # how many days so far this year => 30
stop.wday # the day of the week => 2, or Tue (Sun == 0)

You can retrieve the year, the month, and the timezone:

stop.year # => 2007
stop.month # => 1 (January)
stop.zone # timezone => "MST" or Mountain Standard Time

You can find out the hour of the day and the number of minutes and seconds on that
hour:

stop.hour # => 4
stop.min # => 13
stop.sec # => 0

Canonical refers to a standard determined by a set of rules. Ruby uses standards such
as ISO 8601, “Data elements and interchange formats—Information interchange—

http://ruby-doc.org/core/classes/Time.html
http://ruby-doc.org/core/classes/Time.html

148 | Chapter 10: More Fun with Ruby

Representation of dates and times” (http://www.iso.ch/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=40874), and RFC 2822, “Internet Message Format”
(http://www.ietf.org/rfc/rfc2822.txt), to determine how to format times (though I can-
not claim to know whether Ruby conforms to these specifications in every detail).
You can get a canonical string for a given time using ctime (or asctime). It looks like
the same time format you would see in an email message.

local_time.ctime # => "Tue Jan 30 01:15:20 2007"

Query a Time object with utc? (or gmt?) to determine whether it represents Coordi-
nated Universal Time, or UTC (also known as Greenwich Mean Time or GMT):

local_time.utc? # => false

Check whether a time is daylight savings time or not with dst? or isdst:

my_time.dst? # => false

Check for the equality of two time objects with eql? or the spaceship operator <=>:

make a new time object time
temp = stop # => Tue Jan 30 04:13:00 -0700 2007
stop.object_id # => 1667650
temp.object_id # => 1667650

true or false
start.eql? stop # => false

same object, so true
temp.eql? stop # => true

start is less than stop
start <=> stop # => -1

stop is greater than start
stop <=> start # => 1

same object, so 0
temp <=> stop # => 0

You can see the difference in two Time objects by subtracting them:

stop - start # => 10.112668 (in seconds)

There is about a 10-second difference between stop and start.

Add seconds and multiples of seconds to add to a time with +:

stop.inspect # => "Tue Jan 30 04:13:00 -0700 2007"

Add a minute (60 seconds)
stop + 60 # => Tue Jan 30 04:14:00 -0700 2007

Add an hour (60*60)
stop + 60*60 # => Tue Jan 30 05:13:00 -0700 2007

http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874
http://www.ietf.org/rfc/rfc2822.txt

Date and Time | 149

Add three hours (60*60*3)
stop + 60*60*3 # => Tue Jan 30 07:13:00 -0700 2007

Add a day (60*60*24)
stop + 60*60*24 # => Wed Jan 31 04:13:00 -0700 2007

The Date Class
I’ll present some of the Date methods in this section, but certainly not all. For docu-
mentation on all the Date methods, go to http://ruby-doc.org/core/classes/Date.html.

To create a Date object, use the new method (or its synonym civil). You must require
the Date class before using it. The to_s method returns the date as a string.

require 'date'

date = Date.new(2006, 11, 8)

date.to_s # => "2006-11-08"

With the today class method, you can create a date based on today’s date:

today = Date.today
today.to_s # => "2007-01-30"

Use expression substitution to show the date in a user-specified format. This line of
code uses the month, day, and year methods from Date.

puts "The date was #{date.month}/#{date.day}/#{date.year}."
=> The date was 11/8/2006.

What’s the next day?

date.next.to_s # => "2006-11-09"

next finds the next day but does not change date in-place. (A synonym for next is
succ.)

Add 61 days to a date:

(date + 61).to_s # => "2007-01-08"

Subtract 61 days from a date:

(date - 61).to_s # => "2006-09-08"

Add and subtract six months using the >> and << methods.

(date >> 6).to_s # => "2007-05-08"
(date << 6).to_s # => "2006-05-08"

With Date’s downto method, count down five days, displaying each date as you go
(this makes in-place changes to the date):

date.downto(date - 5) { |date| puts date }
2006-11-08
2006-11-07

http://ruby-doc.org/core/classes/Date.html

150 | Chapter 10: More Fun with Ruby

2006-11-06
2006-11-05
2006-11-04
2006-11-03

date has changed
date.to_s # => "2007-11-03"

Now, using the upto method, add the same amount of days back, showing the dates
as you progress along:

date.upto(date + 5) { |date| puts date }
2006-11-03
2006-11-04
2006-11-05
2006-11-06
2006-11-07
2006-11-08

date.to_s # => "2006-11-08"

Like Time, you can check for the equality of two date objects with eql? or the space-
ship operator <=>:

make a new date object time
temp = date
temp.object_id # => 2708130
date.object_id # => 2708130

true or false
date.eql? today # => false

same object, so true
temp.eql? date # => true

date is less than today
date <=> today # => -1

today is greater than date
today <=> date # => 1

same object, so 0
temp <=> date # => 0

Calendar forms

The Gregorian calendar system (since A.D. 1582) has largely replaced the Julian sys-
tem (45 B.C.), though the Julian system is still in use by Orthodox churches. One of
the main reasons for this 16th-century reform was that the dates for events such as
the equinox were shifting to earlier in the year. (Compare http://en.wikipedia.org/
wiki/Gregorian_calendar with http://en.wikipedia.org/wiki/Julian_calendar.)

A date can conform to the Gregorian or Julian calendar by adding a fourth argument
to new:

http://en.wikipedia.org/wiki/Gregorian_calendar
http://en.wikipedia.org/wiki/Gregorian_calendar
http://en.wikipedia.org/wiki/Julian_calendar

Reflection | 151

gdate = Date.new(2006, 11, 8, "Gregorian")

jdate = Date.new(2006, 11, 8, "Julian")

To see the difference between Julian and Gregorian dates (there is a difference of
more than 10 days), find the Julian day with the julian method:

date.julian.to_s # => "2006-10-26"

Likewise, you can find the Gregorian day with gregorian.

date.gregorian.to_s # => "2006-11-08"

You can get the Julian day (days from January 1, 4713 B.C., starting from 0) with the
jd instance method:

date.jd # => 2454048

You can even create a year based on the Julian day with the jd class method:

nd = Date.jd(2454048)
nd.to_s # => "2006-11-08"

The modified Julian day (days since November 17, 1858) with mjd:

date.mjd # => 54047

The astronomical Julian day is available via ajd:

date.ajd # => 4908095/2

Much more could be said about different calendar forms and conversions between
them, but this section has offered a sufficient introduction. For more information,
see the Date and Time class documentation at http://www.ruby-doc.org/core. Also of
interest is the DateTime class, which represents both a date and a time; see http://
ruby-doc.org/core/classes/DateTime.html.

Reflection
Ruby can easily tell you about itself—its programs and objects—through methods
that, taken as a whole, constitute a feature called reflection. You’ve seen a few of
these methods in action earlier in this book. I’ll go over some of the most frequently
called methods and point out some others you may find useful.

Using a here document (see Chapter 4), I’ll define a string, a bit of a Walt Whitman
poem, and then do some reflecting on it.

asiponder = <<whitman
As I ponder'd in silence,
Returning upon my poems, considering, lingering long,
A Phantom arose before me, with distrustful aspect,
Terrible in beauty, age, and power,
The genius of poets of old lands
whitman # => "As I ponder'd in silence, \nReturning upon my poems, considering,
lingering long, \nA Phantom arose before me, with distrustful aspect, \nTerrible in
beauty, age, and power, \nThe genius of poets of old lands\n"

http://www.ruby-doc.org/core/
http://ruby-doc.org/core/classes/DateTime.html
http://ruby-doc.org/core/classes/DateTime.html

152 | Chapter 10: More Fun with Ruby

asiponder is an instance of the String class. The Object class has a class method that
returns the name of an instance’s class:

asiponder.class # => String

The class method supercedes Object’s deprecated method type, or gets the name of
the class as a string with the name method:

asiponder.class.name # => "String"

To determine the name of the superclass—the parent class that is one step higher in
the class hierarchy—use the superclass method from Class.

asiponder.class.superclass # => Object
String.superclass # => Object

Discover the names of any of the included modules of an instance or its class using
the included_modules method from Module.

asiponder.class.included_modules # => [Enumerable, Comparable, Kernel]
asiponder.class.superclass.included_modules # => [Kernel]

String.included_modules # => [Enumerable, Comparable, Kernel]
Object.included_modules # => [Kernel]

Each object has its own numeric object ID. You can find out what this ID is with the
object_id method from Object.

whitman = asiponder # copy one string object to another
whitman == asiponder # => true
asiponder.object_id # => 968680
whitman.object_id # => 968680

These objects are identical and have the same object ID, a hint that Ruby is manag-
ing resources efficiently. (The id method from Object has been deprecated; use
object_id instead.)

You can also test to see if an object is an instance of a given class with the instance_
of? method from Object:

asiponder.instance_of? String # => true
asiponder.instance_of? Fixnum # => false

Use instance_of? for robustness. In other words, don’t do the block (do |t|...end)
unless the variable asiponder is a string.

if asiponder.instance_of?(String)
 asiponder.split.each do |t|
 puts t
 end
end

Or use Object’s is_a? or kind_of? methods (they are synonyms):

asiponder.is_a? String # => true
asiponder.kind_of? String # => true

Reflection | 153

Unlike instance_of?, is_of? or kind_of? also work if the argument is a superclass or
module.

asiponder.is_a? Object # => true
asiponder.kind_of? Kernel # => true
asiponder.instance_of? Object # => false

Look at an object’s ancestors with Module’s ancestors method, which returns a list of
both classes and modules:

asiponder.class.ancestors # => [String, Enumerable, Comparable, Object, Kernel]
String.ancestors # => [String, Enumerable, Comparable, Object, Kernel]

Reflection on Variables and Constants
Now let’s examine variables and constants. Let’s do this in irb. First I’ll define a few
variables based on some familiar elements from Joseph Conrad’s Lord Jim:

irb(main):001:0> $ship = "Patna"
=> "Patna"
irb(main):002:0> @friend_1 = "Marlow"
=> "Marlow"
irb(main):003:0> @friend_2 = "Jewel"
=> "Jewel"
irb(main):004:0> bad_chap = "'Gentleman' Brown"
=> "'Gentleman' Brown"

Let’s use some methods to find out about these variables. Do we have any local vari-
ables in the lot? Use Kernel’s local_variables method to find out.

irb(main):005:0> local_variables
=> ["_", "bad_chap"]

We have bad_chap, and _, a peculiar animal that gives you the last value in irb (conf.
last_value also returns the last value).

Return the instance variables with Object’s instance_variables:

irb(main):006:0> instance_variables
=> ["@friend_2", "@friend_1"]

Kernel’s method global_variables returns all the global variables, including $ship.

irb(main):007:0> global_variables
=> ["$-p", "$:", "$FILENAME", "$defout", "$,", "$`", "$binding", "$-v", "$stdin",
"$PROGRAM_NAME", "$\"", "$?", "$\\", "$=", "$-d", "$>", "$&", "$-F", "$-a",
"$VERBOSE", "$0", "$LOAD_PATH", "$$", "$-0", "$+", "$!", "$DEBUG", "$stderr", "$~",
"$;", "$SAFE", "$<", "$_", "$-K", "$-l", "$-I", "$-i", "$deferr", "$/", "$'", "$@",
"$-w", "$stdout", "$ship", "$*", "$LOADED_FEATURES", "$.", "$KCODE"]

Want to know what constants the Object class (or some other class) has? Use the
constants method from Module (output is truncated):

irb(main):008:0> Object.constants.sort # => ["ARGF", "ARGV", "ArgumentError",
"Array", ...]

I added the sort method (from Array) on the end to make the results more readable.

154 | Chapter 10: More Fun with Ruby

Reflection on Methods
The Object method methods returns a list of names of publicly accessible methods
from an object, including the methods accessible from the ancestors of the object.
Here is a sample call (truncated):

irb(main):009:0> Object.methods.sort
=> ["<", "<=", "<=>", "==", "===", "=~", ">", ">=", "__id__", "__send_ _", "allocate",
"ancestors", "autoload", "autoload?", "class", "class_eval", "class_variables",
"clone", ...]

You can inquire after instance methods with a method from Module:

irb(main):010:0> Object.instance_methods.sort
=> ["==", "===", "=~", "__id__", "__send_ _", "class", "clone", "display", "dup",
"eql?", "equal?", "extend", "freeze", "frozen?", ...]

You can also query about methods with the Object methods private_methods,
protected_methods, public_methods, and singleton_methods. Module also has the
methods private_instance_methods, protected_instance_methods, and public_instance_
methods.

Here is a sample call to Object’s private_methods with puts:

irb(main):010:0> puts Object.private_methods.sort
Array
Float
Integer
String
...

The respond_to? method from Object lets you check to see if a given object responds
to a given method. You have to refer to a method as a symbol.

Object.respond_to? :instance_methods # => true

class A
 attr_accessor :x
end

a = A.new

a.respond_to? :x # => true
a.respond_to? :x= # => true
a.respond_to? :y # => false

Using Tk
Back in Chapter 1, you saw a little program that created a graphical version of
“Hello, Matz!” with the Tk toolkit, which comes with Ruby as part of its standard
library (http://www.ruby-doc.org/stdlib). Tk is a library—a widget toolkit—of basic

http://www.ruby-doc.org/stdlib/

Using Tk | 155

elements for creating graphical user interfaces. It works on a variety of platforms and
is open source. John Ousterhout developed Tk as an extension for his Tcl scripting
language. For more information on Tk, see http://www.tcl.tk.

Example 10-5 shows another Tk program. It manipulates the font, the size of the
label, and colors. It also provides a Quit button.

The Tk window is labeled with the title Ruby is fun!. A label containing the text Ruby
is fun, in case you didn’t notice! appears in the center of the pane. The font is Mis-
tral and the font size is 42. (Mistral may not be available on your system, so you may
have to change the font to run this program without an error.)

The foreground color (fg), the color of the text, is blue. The width is 30 and the
height is 3. A button labeled Quit performs the exit command. The mainloop method
makes everything happen.

Run the program with:

tk.rb &

If you are on a Unix/Linux system, the & at the end of the command puts the process
in the background. Don’t use it if you are on Windows.

The graphic in Figure 10-1 will appear on your display. Click Quit to exit the program.

The program in Example 10-6 displays a photo of my horse, Sunrise.

Example 10-5. tk.rb

#!/usr/bin/env ruby

require 'tk'

TkRoot.new {title "Ruby is fun!" }

TkLabel.new {
 font TkFont.new('mistral 42')
 text "Ruby is fun, in case you didn't notice!"
 width 30
 height 3
 fg 'blue'
 pack
}

TkButton.new {
 text 'Quit'
 command 'exit'
 pack
}

Tk.mainloop

http://www.tcl.tk/

156 | Chapter 10: More Fun with Ruby

This program opens a URI with a photo of my mare Sunrise in JPEG format, as shown
in Figure 10-2, with the open method from the OpenURI class. The tkextlib/tkimg/jpeg
or Tk::Img::JPEG library helps Tk handle JPEG images. The data from the photo is
stored in photo. The title of the window is “Sunrise.” The TkPhotoImage class manages
the image. The label “Sunrise at sunset!” appears below the photo. A Quit button lets
you exit gracefully.

Figure 10-1. Ruby is fun!

Example 10-6. photo.rb

#!/usr/bin/env ruby

require 'tk'
require "tkextlib/tkimg/jpeg"
require "open-uri"

photo = open("http://www.wyeast.net/images/sunrise.jpg", "rb") {|io| io.read}

TkRoot.new {title "Sunrise" }

TkLabel.new {
 image TkPhotoImage.new(:data => Tk::BinaryString(photo))
 width 300
 pack
}

TkLabel.new {
 font TkFont.new('verdana 24 bold')
 text "Sunrise at sunset!"
 pack
}

TkButton.new {
 text 'Quit'
 command 'exit'
 pack
}

Tk.mainloop

Metaprogramming | 157

If you want to further explore Tk, I recommend a gallery of Ruby Tk examples at
http://pub.cozmixng.org/~the-rwiki/rw-cgi.rb?cmd=view;name=%B5%D5%B0%FA%A
4%ADRuby%2FTk. The text is in Japanese, so if you aren’t fluent in Japanese, you
will only be able to read the code examples. The code is the key.

Metaprogramming
Metaprogramming is a shorthand way to write a program, or part of one, with
another program. In the previous chapter, you saw metaprogramming in practice
when calling the attr family of methods (attr, attr_reader, attr_writer, and attr_
accessor from the Module class) to create getter and setter methods for classes. Now
you will have a chance here to do a little metaprogramming yourself.

Figure 10-2. Sunrise, my quarter horse, at sunset

http://pub.cozmixng.org/~the-rwiki/rw-cgi.rb?cmd=view;name=%B5%D5%B0%FA%A4%ADRuby%2FTk
http://pub.cozmixng.org/~the-rwiki/rw-cgi.rb?cmd=view;name=%B5%D5%B0%FA%A4%ADRuby%2FTk

158 | Chapter 10: More Fun with Ruby

One key is the define_method method from Module, which allows you to create meth-
ods on the fly. Have a look at the program in Example 10-7, which creates a method
using the names from each element in an array.

Yes, the names in the string array (%w{...}) are the names of the five Bennet sisters in
Jane Austen’s Pride and Prejudice. The each method feeds all the elements of the
array to the define_method method as n. Each method will output (puts) a string that
contains a capitalized version of each string element by means of expression substitu-
tion (#{n.capitalize}).

When you instantiate Meta and call the instance method elizabeth, you get the out-
put My name is Elizabeth Bennet. And that, ladies and gentlemen, is an example of
metaprogramming, pure and simple.

Other reflective methods and practices could be put to good use when metapro-
gramming in Ruby, but you’ve made a fine start with define_method. Rails is full of
metaprogramming, and that is one reasons it is so popular: it is smart enough to do a
considerable amount of programming for you based on minimal input.

RubyGems
RubyGems is a package utility for Ruby (http://rubyforge.org/projects/rubygems) writ-
ten by Jim Weirich. It installs Ruby software packages and keeps them up to date.
RubyGems is quite easy to learn and use—even easier than tools like the Unix/Linux
tar utility (http://www.gnu.org/software/tar) or Java’s jar utility (http://java.sun.com/
j2se/1.5.0/docs/tooldocs/windows/jar.html).

For more information, read the RubyGems documentation at http://docs.rubygems.org/.
The RubyGems User Guide (http://docs.rubygems.org/read/book/1) gives you most
everything you need to know about using RubyGems. There is also a command Ref-
erence (http://docs.rubygems.org/read/book/2).

Example 10-7. meta.rb

#!/usr/bin/env ruby

class Meta
 %w{ jane elizabeth mary kitty lydia }.each do |n|

define_method(n) { puts "My name is #{n.capitalize} Bennet." }
 end
end

Meta.instance_methods - Object.instance_methods # => ["jane", "elizabeth", "mary",
"kitty", "lydia"]

meta = Meta.new

meta.elizabeth # => My name is Elizabeth Bennet.

http://rubyforge.org/projects/rubygems/
http://www.gnu.org/software/tar/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html
http://docs.rubygems.org/
http://docs.rubygems.org/read/book/1
http://docs.rubygems.org/read/book/2

RubyGems | 159

RubyGems likely was installed on your system when you installed Ruby. To make
sure, type on Unix or Linux:

$ which gem
/usr/local/bin/gem

Or just check the version by typing:

$ gem -v
0.9.0

or:

$ gem --version
0.9.0

If you don’t have RubyGems installed, go to Chapter 3 of the Ruby-
Gems User Guide at http://rubygems.org/read/chapter/3 for complete
installation instructions.

Let’s start from scratch—by getting help on how to issue RubyGems commands:

$ gem
RubyGems is a sophisticated package manager for Ruby. This is a
basic help message containing pointers to more information.

 Usage:
 gem -h/--help
 gem -v/--version
 gem command [arguments...] [options...]

 Examples:
 gem install rake
 gem list --local
 gem build package.gemspec
 gem help install

 Further help:
 gem help commands list all 'gem' commands
 gem help examples show some examples of usage
 gem help <COMMAND> show help on COMMAND
 (e.g. 'gem help install')
 Further information:
 http://rubygems.rubyforge.org

Now let’s get help on what commands are available (some output truncated).

$ gem help commands

GEM commands are:

 build Build a gem from a gemspec
 ...
 specification Display gem specification (in yaml)
 uninstall Uninstall a gem from the local repository

http://rubygems.org/read/chapter/3

160 | Chapter 10: More Fun with Ruby

 unpack Unpack an installed gem to the current directory
 update Update the named gem (or all installed gems) in the local repository

For help on a particular command, use 'gem help COMMAND'.

Commands may be abbreviated, so long as they are unambiguous.
e.g. 'gem i rake' is short for 'gem install rake'.

Let’s look at the help on examples (some output truncated).

$ gem help examples

Some examples of 'gem' usage.

* Install 'rake', either from local directory or remote server:

 gem install rake

* Install 'rake', only from remote server:

 gem install rake --remote

* Install 'rake' from remote server, and run unit tests,
 and generate RDocs:

 gem install --remote rake --test --rdoc --ri
...

* See information about RubyGems:

 gem environment

Select a command—why not environment—and get more help on that. You don’t
have to type out the full word environment, just enough for gem to disambiguate it
(env is enough).

$ gem help env
Usage: gem environment [args] [options]

 Common Options:
 --source URL Use URL as the remote source for gems
 -p, --[no-]http-proxy [URL] Use HTTP proxy for remote operations
 -h, --help Get help on this command
 -v, --verbose Set the verbose level of output
 --config-file FILE Use this config file instead of default
 --backtrace Show stack backtrace on errors
 --debug Turn on Ruby debugging

 Arguments:
 packageversion display the package version
 gemdir display the path where gems are installed
 gempath display path used to search for gems
 version display the gem format version
 remotesources display the remote gem servers
 <omitted> display everything

RubyGems | 161

 Summary:
 Display RubyGems environmental information

Show everything on the RubyGems environment with this command:

$ gem env
Rubygems Environment:
 - VERSION: 0.9.0 (0.9.0)
 - INSTALLATION DIRECTORY: /usr/local/lib/ruby/gems/1.8
 - GEM PATH:
 - /usr/local/lib/ruby/gems/1.8
 - REMOTE SOURCES:
 - http://gems.rubyforge.org

These are the results on Mac OS X Tiger. Now just show the RubyGems installation
directory:

$ gem env gemdir
/usr/local/lib/ruby/gems/1.8

Let’s check to see if Ruby on Rails is present with the list command.

$ gem list rails

*** LOCAL GEMS ***

It doesn’t appear to be there. Go ahead and install it with the install command and
sudo (superuser), which will require a password (output truncated in the following
code). I am running this command on Mac OS X. The --include-dependencies
option installs Rails with all of its dependencies. The output on your system may
look different; for example, Windows does not require superuser if the logged-in
user has the appropriate administrative privileges, so you won’t be prompted for a
password in that case.

$ sudo gem install rails --include-dependencies
Password:
Bulk updating Gem source index for: http://gems.rubyforge.org
....

You can check what dependencies a gem has with the dependency command:

$ gem dep rails
Gem rails-1.2.3
 rake (>= 0.7.2)
 activesupport (= 1.4.2)
 activerecord (= 1.15.3)
 actionpack (= 1.13.3)
 actionmailer (= 1.3.3)
 actionwebservice (= 1.2.3)

To select dependencies as you install a package, skip the --include-dependencies
option (this is not recommended; it is error-prone, as you have to confirm each one
individually).

$ sudo gem install rails

162 | Chapter 10: More Fun with Ruby

To update all the gems on your system with all the current versions, use the update
command. The --system flag updates the RubyGems system software (some output
truncated).

$ sudo gem update --system
Password:
Updating RubyGems...
Need to update 2 gems from http://gems.rubyforge.org
..
complete
Attempting remote update of rubygems-update
Successfully installed rubygems-update-0.9.0
Updating version of RubyGems to 0.9.0
Installing RubyGems 0.9.0
...
 Successfully built RubyGem
 Name: sources
 Version: 0.0.1
 File: sources-0.0.1.gem
RubyGems system software updated

To uninstall a package with the uninstall command:

$ sudo gem uninstall rails
Password:
Successfully uninstalled rails version 1.1.6
Remove executables and scripts for
'rails' in addition to the gem? [Yn]
Removing rails

Now you know the basics of RubyGems. To learn more, consult the RubyGems User
Guide (http://docs.rubygems.org/read/book/1). Go to http://rubygems.rubyforge.org/wiki/
wiki.pl?CreateAGemInTenMinutes to learn how to create your own RubyGems package.

Exception Handling
Exceptions occur when a program gets off course and the normal program flow is
interrupted. Ruby is already prepared to handle such problems with its own built-in
exceptions, but you can handle them in your own way with exception handling.

Ruby’s exception handing model is similar to the C++ and Java models. Table 10-3
shows a comparison of the keywords or methods used to perform exception han-
dling in all three languages. If you are a sage programmer, this table will be a touch-
stone for you.

Table 10-3. C++, Java, and Ruby exception handling compared

C++ Java Ruby

try {} try {} begin/end

catch {} catch {} rescue keyword (or catch method)

Not applicable finally ensure

throw throw raise (or throw method)

http://rubygems.rubyforge.org/wiki/wiki.pl?CreateAGemInTenMinutes
http://rubygems.rubyforge.org/wiki/wiki.pl?CreateAGemInTenMinutes

Exception Handling | 163

As usual, let’s look at an example. If you try to divide by zero in a Ruby program,
Ruby is going to complain. (Wouldn’t you?) Try it in irb:

irb(main):001:0> 12 / 0
ZeroDivisionError: divided by 0
 from (irb):1:in `/'
 from (irb):1

Ruby knew just how to complain, so by default, it handed you a ZeroDivisionError.

You can do things Ruby’s way, or you can handle this error your own way by using
the rescue and ensure clauses, as shown in Example 10-8. This little program’s rai-
son d’être is to show you how exceptions work in Ruby.

The condescending output from this program is:

Oops. You tried to divide by zero again.
Tsk. Tsk.

Here’s a brief analysis. The eval method (from Kernel) evaluates a string as a Ruby
statement. The result is disastrous, as you well know, but this time the rescue clause
catches the error, gives you a custom report in the form of the Oops string, and exits
the program. (exit is another Kernel method; the argument 1 is a catchall for general
errors.) You can have more than one ensure clause if your program calls for it.

Instead of giving its default message—that is, ZeroDivisionError: divided by 0—Ruby
returns the message in rescue, plus the message in ensure. Even though the program
exited at the end of the rescue clause, ensure yields its block, no matter what.

You don’t have to wait for Ruby to raise an exception at you: you can raise one on
your own with the raise method from Kernel (http://www.ruby-doc.org/core/classes/
Kernel.html). If things go haywire (not to your liking) in a program, you can raise an
exception with raise:

bad_dog = true

if bad_dog
 raise StandardError, "bad doggy"
else
 arf_arf
end
StandardError: bad doggy

Example 10-8. divide_by_zero.rb

begin
 eval "12 / 0"
rescue ZeroDivisionError
 puts "Oops. You tried to divide by zero again."
 exit 1
ensure
 puts "Tsk. Tsk."
end

http://www.ruby-doc.org/core/classes/
http://www.ruby-doc.org/core/classes/

164 | Chapter 10: More Fun with Ruby

If called without arguments, raise raises a RuntimeError if there was no previous
exception. If raise has only a String argument, it raises a RuntimeError with the
argument as a message. If the first argument is an exception, such as StandardError,
the exception is raised with the given message, if such a message is present.

Kernel also has the catch and throw methods. catch executes a block that will prop-
erly terminate if there is no accompanying throw. If a throw accompanies catch, Ruby
searches for a catch that has the same symbol as the throw. catch will then return the
value given to throw, if present.

The program in Example 10-9 is an adaptation of an example that came with the ri
documentation for catch. throw sends a message to catch if n is less than or equal to 0.

Creating Documentation with RDoc
RDoc is a tool for generating documentation from Ruby source files, whether written in
Ruby or C. It was created by Dave Thomas (http://www.pragmaticprogrammer.com),
and comes as part of the Ruby distribution. Documentation is available at http://
rdoc.sourceforge.net/doc/index.html.

RDoc parses Ruby source code and collects information from comments, as well as
information about methods, constants, and other things. It cross-references what it
can before producing default XHTML output in a doc subdirectory. You can embed
codes in your comments, too, allowing RDoc to format a page according to your
taste.

If you are a Java refugee, you’ll be happy to know that RDoc is similar
to Java’s Javadoc (http://java.sun.com/j2se/javadoc).

RDoc Basics
I’ll present the basics of RDoc here using the file ratios.rb, which contains the class
Ratios. The methods in this class calculate a few financial ratios.

Example 10-9. catch.rb

#!/usr/bin/env ruby

def limit(n)
 puts n
 throw :done if n <= 0
 limit(n-1)
end

catch(:done) { limit(5) }

http://www.pragmaticprogrammer.com/
http://rdoc.sourceforge.net/doc/index.html
http://rdoc.sourceforge.net/doc/index.html
http://java.sun.com/j2se/javadoc/

Creating Documentation with RDoc | 165

I first show the file piece by piece, then later, the whole file. I’ll walk you through
how to mark up your Ruby source files, and then show you how to process these
files to get XHTML or other output. Of course, I won’t show you everything you can
do with RDoc, just some of the most important things.

The comments before the class definition begins are interpreted as general documen-
tation for the class and are placed before any other documentation. Example 10-10
shows the beginning of ratios.rb.

Paragraphs in the comments become paragraphs in the documentation. Numbered
lists (1., 2., 3., etc.) become numbered lists. Labels followed by double colons (::)
line up the text that follows in tabular form. The :title: directive lets RDoc know
what you want the title of the XHTML document(s) to be (what goes inside <head>
<title></title></head>).

Next is some documentation for the initialize method.

The +new+ class method initializes the class.
=== Parameters
* _debt_ = long-term debt
* _equity_ = equity
=== Example
ratios = Ratios.new(2456, 9876)

 def initialize(debt, equity)
 @debt = debt
 @equity = equity
 end

Text enclosed by plus signs (+new+) will be shown in a typewriter (constant width)
font in XHTML, and text enclosed in underscores (as in _debt_) will be shown in
italic. Lines preceded by asterisks (*) will be set off as bullets in the XHTML. Words
preceded by equals signs (such as === Example) will be headings in the result, varying
in font size depending on the number of equals signs (the more you use, the smaller
the font of the heading; one = for a level-one heading, two == for a level two, and so
forth). Text that is indented by several spaces will also show up in typewriter font.

Example 10-10. Beginning of ratios.rb

This class provides a few methods for calculating financial ratios.
So far, three ratios are available:
1. debt-equity ratio (_der_)
2. long-term debt ratio (_ltdr_)
3. total debt ratio (_tdr_)
#
Author:: Mike Fitzgerald (mailto:mike@example.com)
Copyright:: Wy'east Communications
#
:title:Ratios

class Ratios

166 | Chapter 10: More Fun with Ruby

The markup in this fragment is a little different:

The <tt>ltdr</tt> method returns a long-term debt ratio.
=== Formula
long-term debt
-------------------- = long-term debt ratio
long-term debt/equity
=== Parameters
The parameters are:
* <i>debt</i> = long-term debt
* <i>equity</i> = equity
=== Example
ratios = Ratios.new(2456, 9876)
ratios.ltdr # => The long-term debt ratio is 0.20.
ratios.ltdr 1234, 56789 # => The long-term debt ratio is 0.02.

 def ltdr(debt=@debt, equity=@equity)
 ratio = debt/(debt+equity).to_f
 printf("The long-term debt ratio is %.2f.\n", ratio)
 ratio
 end

Marking up text in tt tags (<tt>ltdr</tt>) is the same as marking it up with plus
signs (+ltdr+). Likewise, marking up text in i tags (<i>debt</i>) is the same as mark-
ing it up with underscores (_debt_). The indented text under the Formula heading
will be displayed in typewriter font in XHTML.

The remainder of the file, shown in Example 10-11, has markup similar to what you
have already seen. Figure 10-3 illustrates how the XHTML documentation will
appear in a browser.

Example 10-11. Remainder of ratios.rb

This class provides a few methods for calculating financial ratios.
So far, three ratios are available:
1. debt-equity ratio (_der_)
2. long-term debt ratio (_ltdr_)
3. total debt ratio (_tdr_)
#
Author:: Mike Fitzgerald (mailto:mike@example.com)
Copyright:: Wy'east Communications
#
:title:Ratios

class Ratios

The +new+ class method initializes the class.
=== Parameters
* _debt_ = long-term debt
* _equity_ = equity
=== Example
ratios = Ratios.new(2456, 9876)
 def initialize(debt, equity)

Creating Documentation with RDoc | 167

 @debt = debt
 @equity = equity
 end

The <tt>ltdr</tt> method returns a long-term debt ratio.
=== Formula
long-term debt
-------------------- = long-term debt ratio
long-term debt/equity
=== Parameters
The parameters are:
* <i>debt</i> = long-term debt
* <i>equity</i> = equity
=== Example
ratios = Ratios.new(2456, 9876)
ratios.ltdr # => The long-term debt ratio is 0.20.
ratios.ltdr 1234, 56789 # => The long-term debt ratio is 0.02.

 def ltdr(debt=@debt, equity=@equity)
 ratio = debt/(debt+equity).to_f
 printf("The long-term debt ratio is %.2f.\n", ratio)
 ratio
 end

The <tt>der</tt> method returns a debt-equity ratio.
=== Formula
long-term debt
-------------------- = debt-equity ratio
equity
=== Parameters
The parameters are:
* <i>debt</i> = long-term debt
* <i>equity</i> = equity
=== Example
ratios = Ratios.new(2456, 9876)
ratios.der # => The debt-equity ratio is 0.25.
ratios.der(1301, 7690) # => The debt-equity ratio is 0.17.

 def der(debt=@debt, equity=@equity)
 ratio = debt/equity.to_f
 printf("The debt-equity ratio is %.2f.\n", ratio)
 ratio
 end

The class method +tdr+ returns total debt ratio.
=== Formula
total liabilities
-------------------- = total debt ratio
total assets
=== Parameters

Example 10-11. Remainder of ratios.rb (continued)

168 | Chapter 10: More Fun with Ruby

The parameters are:
* _liabilities_ = total liabilities
* _assets_ = total assets
=== Example
Ratios.tdr(14_000, 23_000) # => The total debt ratio is 0.61.

 def Ratios.tdr(liabilities, assets)
 ratio = liabilities/assets.to_f
 printf("The total debt ratio is %.2f.\n", ratio)
 ratio
 end

end

Figure 10-3. Ratios class documentation in RDoc

Example 10-11. Remainder of ratios.rb (continued)

Creating Documentation with RDoc | 169

Processing Files with RDoc
Now that you know how to mark up files, let’s talk about how to process them.
Double-check to see if the rdoc command is available from a shell or command
prompt. On Mac OS X and Linux systems, you can just do:

$ which rdoc
/usr/local/bin/rdoc

or run:

$ rdoc --version
RDoc V1.0.1 - 20041108

or:

$ rdoc -v
RDoc V1.0.1 - 20041108

Assume there is a directory, Ratios, that just contains one file, ratios.rb. You could
run RDoc without any options or file specifications:

$ rdoc

or run rdoc on ratios.rb:

rdoc ratios.rb

Either way, as long at there is only one file in the directory, you will see output from
the command like the following:

 ratios.rb: c....
Generating HTML...

Files: 1
Classes: 1
Modules: 0
Methods: 4
Elapsed: 0.363s

As RDoc generated XHTML, it also created the doc subdirectory, which contains a
variety of files:

$ ls doc
classes fr_class_index.html index.html
created.rid fr_file_index.html rdoc-style.css
files fr_method_index.html

I won’t drill down to what each of the files is for, but here are the brass tacks: index.
html in Example 10-12 contains frames that link to all the files prefixed by fr_; the
rdoc-style.css file is a Cascading Style Sheet (CSS); the file created.rid contains text, a
timestamp of when everything was created; the directories classes and files con-
tains files to make everything work together (that’s all you really need to know about
them at this point).

170 | Chapter 10: More Fun with Ruby

To generate ri (command-line) documentation, use the option --ri (or -r).

$rdoc --ri

No XHTML documentation will be generated if you use this option. This command
places an .rdoc directory in your home directory ~/.rdoc, where ~/ is an abbrevia-
tion for the full path of the home directory, which contains all the ri files (these files
are actually in YAML format, by the way).

To place the files in a system-wide directory, use the --ri-system (or -Y) option with
sudo, which requires a root or superuser password.

$ sudo rdoc --ri-system
Password:

 ratios.rb: c....
Generating RI...

Files: 1
Classes: 1
Modules: 0
Methods: 4
Elapsed: 0.342s

Once you have the ri files generated, you can look at them with the ri command:

$ ri Ratios#der
--- Ratios#der
 der(debt=@debt, equity=@equity)
--
 The +der+ method returns a debt-equity ratio.

 Formula
 long-term debt
 -------------------- = debt-equity ratio
 equity

 Parameters

Example 10-12. RDoc-generated index.html

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title>Ratios</title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<frameset rows="20%, 80%">
 <frameset cols="25%,35%,45%">
 <frame src="fr_file_index.html" title="Files" name="Files" />
 <frame src="fr_class_index.html" name="Classes" />
 <frame src="fr_method_index.html" name="Methods" />
 </frameset>
 <frame src="files/ratios_rb.html" name="docwin" />
</frameset>

Embedded Ruby | 171

 The parameters are:

 * _debt_ = long-term debt

 * _equity_ = equity

 Example
 ratios = Ratios.new(2456, 9876)
 ratios.der # => The debt-equity ratio is 0.25.
 ratios.der(1301, 7690) # => The debt-equity ratio is 0.17.

If you have ri files in both ~/.rdoc and in a system directory, ri may get
tripped up. An easy though hacky solution to this collision is to sim-
ply delete the ~/.rdoc directory and then regenerate the files. You
won’t delete the source files by deleting ~/.rdoc, just the generated
files. Don’t delete the source files!

If you have extra files in the directory that you do not want to process with RDoc,
use the --exclude (or -x) option.

$ ls
ratios.rb test.rb
$ rdoc --exclude test.rb

 ratios.rb: c....
Generating HTML...

Files: 1
Classes: 1
Modules: 0
Methods: 4
Elapsed: 0.387s

You can put everything in one XHTML file if you want (I do not recommended this
for beginners).

rdoc --one-file >> my_rdoc.html

Embedded Ruby
Embedded Ruby (ERB or eRuby) allows you to embed arbitrary Ruby code in text
files. The code is executed when the file is processed. If you have ever used JavaServer
Pages (JSP), ERB syntax will seem familiar to you. Like JSP, ERB uses template tags
to embed code.

ERB comes with the Ruby distribution. However, there are other, faster embedded
Ruby engines, such as Makoto Kuwata’s Erubis (http://rubyforge.org/projects/erubis).
I’ll focus on the syntax of an ERB page, not on implementations.

http://rubyforge.org/projects/erubis/

172 | Chapter 10: More Fun with Ruby

It’s very common to embed code in HTML or XHTML, or to generate web pages on
the fly with ERB. However, that’s not the only place you’ll see ERB. Example 10-13
shows you how ERB works in very simple terms.

To get ERB to work, you must require the erb library. The class method new creates
an instance of ERB (temp), with a string as an argument. Embedded in the string are a
pair of template tags, <%= and %>. These tags contain a reference to the local variable
person. When the program runs, the tags and the expression in the tags are replaced
with the result of the expression. This means that <%= person %> will be replaced with
the value of person, Matz!, when the program is run.

When the instance method result is called, temp is the receiver, and binding is the
argument. This produces the result Hello, Matz!.

The tags <%= and %> are just one possible pair of tags. All the ERB template tags are
shown in Table 10-4.

Example 10-14 uses an XHTML template to create individual records for horses.
These templates are often stored in .rhtml files by convention. This program is a sim-
plified version of a program in the ERB documentation (http://ruby-doc.org/core/
classes/ERB.html).

Example 10-13. simple_erb.rb

#!/usr/bin/env ruby

require 'erb'

person = "Matz!"

temp = ERB.new("Hello, <%= person %>")

puts temp.result(binding) # => Hello, Matz!

Table 10-4. ERB template tags

Tag Description

<% ... %> Ruby code; inline with output.

<%= ... %> Ruby expression; replace with result.

<%# ... %> Comment; ignored; useful in testing.

% A line of Ruby code; treated as <% .. %>; set with trim_mode argument in ERB.new.

%% Replace with % if it is the first thing on a line and % processing is used.

<%% ... %%> Replace with <% or %> , respectively.

Example 10-14. erb.rb

#!/usr/bin/env ruby

require 'erb'

http://ruby-doc.org/core/classes/ERB.html
http://ruby-doc.org/core/classes/ERB.html

Embedded Ruby | 173

The XHTML template document is formed inside a general delimited string (%[...]).
It uses instance variables from the Horse class to produce output. The array @foals
accumulates names via the foal method. The context method returns the binding.

A new ERB instance output is created, and a new instance of Horse is also created
with appropriate arguments. The foal method is called several times to append

document = %[
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title><%= @name %></title>
</head>
<body>
<h1><%= @name %></h1>

<p>Breed: <%= @breed %></p>
<p>Sex: <%= @sex %></p>

<h2>Foals</h2>
<% @foals.each do |foals| %>
 <%= foals %> <% end %>

</body>
</html>
]

class Horse

 def initialize(name, breed, sex)
 @name = name
 @breed = breed
 @sex = sex
 @foals = []
 end

 def foal(name)
 @foals << name
 end

 def context
 binding
 end

end

output = ERB.new(document)

horse = Horse.new("Monarch's Sunrise", "Quarter Horse", "Mare")
horse.foal("Dash")
horse.foal("Pepper")

output.run(horse.context)

Example 10-14. erb.rb (continued)

174 | Chapter 10: More Fun with Ruby

names to the @foals array. These names are retrieved via the each method and a
block. Notice the tags <% and %>. These hold Ruby code, whereas the <%= and %> tags
return a result from an expression.

<h2>Foals</h2>
<% @foals.each do |foals| %>
 <%= foals %> <% end %>

When this program runs, it yields the output shown in Example 10-15.

One place you’re likely to encounter these tags is in the .rhml files produced by Ruby
on Rails, the subject of Chapter 11.

Review Questions
1. What is the b format field used for in sprintf (printf)?

2. What method would you use to pretty-print with Builder?

3. What does the superclass method do?

4. How can you test whether a given class will respond to a method?

5. How do you require a RubyGems package in a Ruby program?

6. What is the name of a key method for metaprogramming in Ruby?

7. What RubyGems command would you use to install a package?

8. What Tk class is used for creating labels?

9. The Ruby keywords rescue and ensure are synonyms for what keywords in Java?

10. How do you format headings for consumption by RDoc?

Example 10-15. Output from erb.rb

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Monarch's Sunrise</title>
</head>
<body>
<h1>Monarch's Sunrise</h1>

<p>Breed: Quarter Horse</p>
<p>Sex: Mare</p>

<h2>Foals</h2>

 Dash
 Pepper

</body>
</html>

175

Chapter 11 CHAPTER 11

A Short Guide to Ruby on Rails11

Ruby on Rails (http://www.rubyonrails.org) is an open source web development
framework for creating database-enabled web applications without all the usual
agony. It is written in Ruby, and, as I mentioned in Chapter 1, Matz calls it Ruby’s
“killer app.”

Rails lets you build complex web sites quickly and easily, because you can let Rails
do a truckload of work for you. On the other hand, all the work Rails does is rela-
tively transparent, so it is easy to take as much control as you want. After some intro-
ductory remarks, you’ll find a Rails tutorial at the end of the chapter.

Where Did Rails Come From?
The private, Chicago-based company 37signals (http://www.37signals.com) was
founded by Jason Fried in 1999. The company makes web-based applications, such
as Basecamp for project management (http://www.basecamphq.com) and Backpack, a
nifty organizational tool (http://www.backpackit.com). 37signals asked David Heine-
meier Hansson (or DHH) to write Basecamp in PHP. He had met Matz at a confer-
ence when he was a student and really liked what Ruby had to offer. He preferred to
write Basecamp in Ruby over PHP, and the 37signals folks let him do it his way. The
rest, as they say, is history.

After he finished writing the code, DHH started extracting base code out of Base-
camp to use with another project, Ta-da Lists (http://www.tadalist.com). He later
turned that code into an open source project (MIT license) and called it Ruby on
Rails.

Rails version 0.5 was first released by DHH to the public on RubyForge on July 24,
2004 (http://rubyforge.org/frs/?group_id=307). Version 1.0 was released on Decem-
ber 13, 2005. The current version at the time of this writing is version 1.2.3, released
in early 2007.

http://www.rubyonrails.org
http://www.37signals.com
http://www.basecamphq.com/
http://www.backpackit.com/
http://www.tadalist.com/
http://rubyforge.org/frs/?group_id=307

176 | Chapter 11: A Short Guide to Ruby on Rails

Why Rails?
Does the world really need another web app framework? Don’t we already have
things like Apache Struts (http://struts.apache.org), Apache Cocoon (http://cocoon.
apache.org), Horde (http://www.horde.org), Maypole (http://maypole.perl.org), Tapes-
try (http://jakarta.apache.org/tapestry), WebSphere (http://www.ibm.com/websphere),
and a whole bunch of others?

Yes, we do have all those, but Rails is different. It just works. It is intelligently
designed, and the deeper you dig, the more you’ll like. Not that you won’t find some
flaws. Problems exist, just as they do in Ruby, but they are not the glaring, odious
kinds of horrors that send you flailing from your cubicle. They are minor annoy-
ances compared to the overall strength of Rails. So I don’t worry about them much,
and neither should you.

Another good thing is that people you can trust—people like Dave Thomas (http://
blogs.pragprog.com/cgi-bin/pragdave.cgi), Mike Clark (http://clarkware.com/cgi/blosxom),
Andy Hunt (http://toolshed.com/blog/), Chad Fowler (http://www.chadfowler.com), and
James Duncan Davidson (http://www.duncandavidson.com), among many others—
have given Rails everything from a thorough thrashing to glowing, hard-won reviews.
None of these folks just rolled off the turnip truck. Davidson, the creator of Apache
Java apps Tomcat and Ant, has said, “Rails is the most well thought-out web devel-
opment framework I’ve ever used.... Nobody has done it like this before.” Tim
O’Reilly has called it “a breakthrough in lowering the barriers of entry to program-
ming.” I find it hard to ignore statements like these (http://www.rubyonrails.com/
quotes).

Rails has some critics. You can easily find their blogs, but I’m too busy to focus
much energy on who is railing against Rails, though DHH himself doesn’t often
shrink from a fight (http://weblog.rubyonrails.org). There is a lot of fear out there,
because we are approaching a bit of a paradigm shift. I say hang onto your current
languages and frameworks and improve on them, but it would be wise to read up
on Ruby and Rails. It won’t be too taxing and you’ll be better prepared for the
future.

I think we have more than a few web frameworks around because people really don’t
worry too much about “the competition,” whatever that is. They worry about mak-
ing life and work easier for themselves and others, so they can’t help creating some-
thing that fits a need. They worry about making the environment they work in more
productive and comfortable and even more enjoyable. This was likely the case with
DHH and others who ventured into creative space to produce Basecamp, Rails’
direct ancestor. The difference is that Rails makes people remarkably productive,
even if they knew little about Ruby. If they don’t know Ruby, they learn in a hurry,
and with grace and ease.

Now allow me to elaborate on Rails’ coolness.

http://struts.apache.org/
http://cocoon.apache.org/
http://cocoon.apache.org/
http://www.horde.org/
http://maypole.perl.org/
http://jakarta.apache.org/tapestry/
http://www.ibm.com/websphere
http://blogs.pragprog.com/cgi-bin/pragdave.cgi
http://blogs.pragprog.com/cgi-bin/pragdave.cgi
http://clarkware.com/cgi/blosxom
http://toolshed.com/blog/
http://www.chadfowler.com
http://www.duncandavidson.com
http://www.rubyonrails.com/quotes
http://www.rubyonrails.com/quotes
http://weblog.rubyonrails.org/

Why Rails? | 177

A Full-Stack Framework
Rails has been described as a full-stack framework. What does that mean? Basically,
that means that Rails supplies the pieces of code necessary to build robust web appli-
cations in one neatly tied package. In other words, you won’t need to bolt on code
for writing XML, or scramble to find a database adapter, or fumble around after dark
for a package to run your unit tests. All the parts are already there. A synonym for
“full stack,” at least in my book, is “well thought out.”

Don’t Repeat Yourself
Rails abides by the philosophy of “don’t repeat yourself,” or DRY. DRY espouses the
precept that, in computer programming, you shouldn’t have to, and don’t want to,
repeat code or data in software. Ruby helps with that concept.

Under DRY, data, information, or code exists in one place and therefore requires
that any changes be made in one place only. This, of course, reduces errors, menial
work, and worry, and makes for happier, ulcer-free programmers.

Convention over Configuration
Rails is XML-free. Not that XML is a bad thing in and of itself (in my view), but the way
it is used is sometimes unfortunate—in bloated configuration files, for example. Rails
does it better: instead of verbose config files, it uses “convention over configuration.”

Here is an example of what that means. Rails uses a simple convention for URL rout-
ing: the names of a controller (a class name), action (a method name), and primary
key (ID) are used in a consistent manner in the URL, so they don’t need to be supplied
through some other mechanism. By the way, this convention can be overridden.

Rails doesn’t completely eschew configuration. You’ll find a YAML file (http://
www.yaml.org) for configuring a database (in database.yml), but that’s about it.

I Want My MVC
The Model-View-Controller or MVC software architecture cooks up data, presenta-
tion, and control logic in three separate pots instead of one kettle, which makes it a
lot easier to keep track of what you are doing and where things are going. Instead of
having the three mixed together, MVC enables you to manipulate, control, and track
each. Under Rails, the MVC scheme is divided up this way:

Model
The model architecture is managed by ActiveRecord (http://api.rubyonrails.org/
files/vendor/rails/activerecord/README.html), the layer of Rails code that pro-
vides the object-relational mapping (ORM) between Rails and a database such as
MySQL (http://www.mysql.com), PostgreSQL (http://www.postgresql.org), SQLite
(http://www.sqlite.org), or some other database. You can use Rails without a
database, but that isn’t common.

http://www.yaml.org
http://www.yaml.org
http://api.rubyonrails.org/files/vendor/rails/activerecord/README.html
http://api.rubyonrails.org/files/vendor/rails/activerecord/README.html
http://www.mysql.com
http://www.postgresql.org
http://www.sqlite.org

178 | Chapter 11: A Short Guide to Ruby on Rails

View
The view part of the architecture handles the presentation of the data, such as in
a web browser. Files with the .rhtml suffix under Rails can handle HTML in an
implicit or explicit way, spit out XML, or use Embedded Ruby (ERB)—similar to
JSP, ASP, or PHP—to display data from the model or whatever is in your .rhtml
pages. This code comes from ActionPack (http://api.rubyonrails.org/files/vendor/
rails/actionpack/README.html), the Rails code that handles view and controller
actions.

Controller
This controller code, which, like View, is also part of ActionPack, takes user
input and responds by operating on the model, and then prepares the result for
display. The view code displays the result.

Scripts
Rails’ scripts make it very easy to do many tasks, such as:

• Starting a web server like Ruby’s own WEBrick

• Generating scaffolding to help put instant web views of a database in place

• Creating controllers and models for a Rails application

• Migrating to a new database table schema and then backing it out to any previ-
ous version

• Bringing up a console to investigate a model and launching actions in a controller

Many more scripts are available—this is only a sample of what Rails can do to
reduce your workload.

Validation
Rails has methods that validate all kinds of things—the creation of things, the pres-
ence of things, the size or length of things, and so forth (see http://api.rubyonrails.
org/classes/ActiveRecord/Validations/ClassMethods.html). For example, the validate_
presence_of method validates that specified attributes (symbols) are not blank. The
following code says that the title attribute must be in the object and it cannot be
blank. Such validation is done for you upon saving an object.

class Novel < ActiveRecord::Base
validates_presence_of :title

end

Ajax
Rails supports Ajax, or Asynchronous JavaScript and XML. The term was coined by
Jesse James Garrett of Adaptive Path early in 2005 (http://www.adaptivepath.com/
publications/essays/archives/000385.php). It describes the ability of a browser to

http://api.rubyonrails.org/files/vendor/rails/actionpack/README.html
http://api.rubyonrails.org/files/vendor/rails/actionpack/README.html
http://api.rubyonrails.org/classes/ActiveRecord/Validations/ClassMethods.html
http://api.rubyonrails.org/classes/ActiveRecord/Validations/ClassMethods.html
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

Why Rails? | 179

update or change a portion of a web page by means of the XMLHttpRequest object,
which makes it possible for such updates to be done in the background (see http://
www.xml.com/pub/a/2005/02/09/xml-http-request.html). That’s only a brief descrip-
tion of an important topic on the web landscape. Rails supports Ajax by using the
Prototype JavaScript framework (http://prototype.conio.net) and Thomas Fuch’s
script.aculo.us JavaScript library of effects (http://script.aculo.us).

Migrations
As I mentioned in the previous section, Rails has the ability to easily migrate from
one database schema to another. These migrations are done with pure Ruby code
rather than with SQL Data Definition Language (DDL) or with an application. Even
if you can have multiple versions of a table, you can switch between versions, and
even to the original, with a single command.

Console
Rails allows you to test your Rails application using Interactive Ruby (irb) in a
console, as I discussed earlier. This allows you to examine and test code that
exists in your models and to touch off actions in controllers. irb lets you walk
through your code step by step to watch what happens along the way. In other
words, you can work close to the bone, and if you specify that the console is in
“sandbox” mode, any changes you make are thrown away when you close the
console.

Environments and Testing
One of the best features of Rails is its built-in environments and testing. By default,
Rails provides three parallel environments: development, test, and production. This
allows you to create freely in one environment (development), to hammer out bugs
in another (test), and to mind your p’s and q’s in another that is designed for public
consumption (production).

The test environment helps you easily design and perform functional and unit tests.
Fixtures containing sample data in YAML are also provided in the mix, and mocks
(mock HTTP requests and responses) are readily available. Because much of the test-
ing environment is set up for you automatically while you are working on your app,
many of the common worries and fears are allayed as you get ready to deploy the app
to the world. For unit testing, just run rake test_units. For more information on test-
ing with Rails, see “A Guide to Testing with Rails” at http://manuals.rubyonrails.com/
read/book/5.

http://www.xml.com/pub/a/2005/02/09/xml-http-request.html
http://www.xml.com/pub/a/2005/02/09/xml-http-request.html
http://prototype.conio.net/
http://script.aculo.us/
http://manuals.rubyonrails.com/read/book/5
http://manuals.rubyonrails.com/read/book/5

180 | Chapter 11: A Short Guide to Ruby on Rails

Capistrano
While you can do much more with it, Capistrano (formerly SwitchTower) is mostly
used as a highly configurable Ruby utility for securely deploying applications to one or
more remote servers with a single command. This headache reliever was written by
Jamis Buck (http://jamis.jamisbuck.org), who now works for 37signals. While Capist-
rano is not a part of Rails, it is a close relative. To learn more about Capistrano, see
“Capistrano: Automating Application Deployment” at http://manuals.rubyonrails.com/
read/book/17.

Rake
A build tool helps you build, compile, or otherwise process files, sometimes large
numbers of them. Rake is a build tool like make (http://www.gnu.org/software/make)
and Apache Ant (http://ant.apache.org), but it is written in Ruby. It is used by many
applications, not just Rails. Rails operations use Rake frequently, so it is worth men-
tioning here.

Rake uses a Rakefile to figure out what to do. A Rakefile contains named tasks.
When you create a Rails project, a Rakefile is automatically created to help you deal
with a variety of jobs, such as running tests and looking at project statistics. (After
creating a Rails project with one of the tutorials below, run rake --tasks or rake
stats while in the main Rails project directory to get a flavor of what Rake does.)

Rake was written by Jim Weirich (http://onestepback.org). You’ll find documenta-
tion on Rake at http://rake.rubyforge.org. A good introduction to Rake by Martin
Fowler may be found at http://www.martinfowler.com/articles/rake.html. For Rake’s
command-line options, type rake --help or see Appendix A.

What Have Other Folks Done with Rails?
Is Rails for real? With all this hype, don’t you wonder if it’s too good to be true? If
you do, I don’t blame you. So, let’s consider the real thing. We’ll have a look at just
three sites.

The original Rails app is Basecamp, the on-line, collaborative project-management
tool from 37signals. With over 100,000 users, it’s clear that Rails can handle traffic
and can scale enough to handle the real-world toe-to-toe. Figure 11-1 shows what it
looks like.

43things (http://www.43things.com) is the ultimate global to-do list, an example of
social software done right created by Robot Co-op (see Figure 11-2). It is also writ-
ten in Rails, and has over 700,000 users and counting (and probably way more by
the time you read this.) Watch 43places as well (http://www.43places.com).

http://jamis.jamisbuck.org/
http://manuals.rubyonrails.com/read/book/17
http://manuals.rubyonrails.com/read/book/17
http://www.gnu.org/software/make/
http://ant.apache.org/
http://onestepback.org/
http://rake.rubyforge.org/
http://www.martinfowler.com/articles/rake.html
http://www.43things.com
http://www.43places.com

What Have Other Folks Done with Rails? | 181

Rails app Blinksale from Firewheel Design, shown in Figure 11-3, provides a simple
way to send invoices over the Internet and keep track of them, too. You can also
send reminders and thank you notes.

Basecamp, 43things, and Blinksale are examples of what Web 2.0 looks like: user
focused, collaborative, decentralized. They demonstrate well what is possible for true
web-based applications. In the next few years, watch more and more desktop appli-
cations move to the web, and new, unheard of apps show up there as well. Deploy-
ment and revenue models are changing. I’d like to get caught up in the change, not
caught by it, wouldn’t you?

If you’d like to look at a long and growing list of real-world Rails applications, go to
http://wiki.rubyonrails.org/rails/pages/RealWorldUsage or http://happycodr.com and fol-
low links to your heart’s content. There is a lot of promise out there.

Figure 11-1. Basecamp

http://wiki.rubyonrails.org/rails/pages/RealWorldUsage
http://happycodr.com

182 | Chapter 11: A Short Guide to Ruby on Rails

Hosting Rails
A host of options are available for hosting Rails applications. For a growing list, go to
http://wiki.rubyonrails.com/rails/pages/RailsWebHosts. TextDrive (http://textdrive.com)
is the official Ruby on Rails host. DreamHost (http://dreamhost.com) has been highly
recommended to me. With low monthly costs, you’ll profit from trying several sites
to see which one you like the best.

Installing Rails
Before installing Rails, you should also have version 1.8.6 or higher of Ruby installed
(1.8.4 or 1.8.5 are acceptable, but 1.8.6 is best). At this point, you probably already
have Ruby installed. If not, well, I’m crushed. It’s time to head back to Chapter 1.
Please don’t tell me you need to do that!

Figure 11-2. 43things

http://wiki.rubyonrails.com/rails/pages/RailsWebHosts
http://textdrive.com/
http://dreamhost.com/

Installing Rails | 183

Using RubyGems to install Rails

RubyGems is the best way to install Rails or any Ruby package. In the previous chap-
ter, you learned about RubyGems. Here is how you install Rails with gem on Mac
OS X 1.4. You need sudo so you can issue the command as a superuser—that is,
someone who has the proper administrative privileges to install software, among
other things. You will be prompted for the root or superuser password. Just type in:

$ sudo gem install rails --include-dependencies
Password:

At this point, gem will talk back at you like this:

$ sudo gem install rails --include-dependencies
Password:
Bulk updating Gem source index for: http://gems.rubyforge.org
Successfully installed rails-1.2.3
Successfully installed activesupport-1.4.2
Successfully installed activerecord-1.15.3

Figure 11-3. Blinksale

184 | Chapter 11: A Short Guide to Ruby on Rails

Successfully installed actionpack-1.13.3
Successfully installed actionmailer-1.3.3
Successfully installed actionwebservice-1.2.3
Installing ri documentation for activesupport-1.4.2...
Installing ri documentation for activerecord-1.15.3...
Installing ri documentation for actionpack-1.13.3...
Installing ri documentation for actionmailer-1.3.3...
Installing ri documentation for actionwebservice-1.2.3...
Installing RDoc documentation for activesupport-1.4.2...
Installing RDoc documentation for activerecord-1.15.3...
Installing RDoc documentation for actionpack-1.13.3...
Installing RDoc documentation for actionmailer-1.3.3...
Installing RDoc documentation for actionwebservice-1.2.3...

It’s that easy. Gems knows what directories to put things in for you. The --include-
dependencies switch installs ActiveRecord, ActionPack, ActiveSupport, Action-
Mailer, and ActionWebService, without stopping to ask you if you want each indi-
vidual package (they are independent packages bundled in Rails). You also get RDoc
documentation.

On Tiger (Mac OS X 1.4), if you go to a shell prompt and type the following, you
should get a path to the location of Rails in response:

$ which rails
/usr/local/bin/rails

Now find out what version Rails is at:

$ rails --version
Rails 1.2.1

Then get a little help from your new friend:

$ rails --help
Usage: /usr/local/bin/rails /path/to/your/app [options]

Options:
 -r, --ruby=path Path to the Ruby binary of your choice
(otherwise scripts use env, dispatchers current path).
 Default: /usr/local/bin/ruby
 -d, --database=name Preconfigure for selected database (options:
mysql/oracle/postgresql/sqlite2/sqlite3).
 Default: mysql
 -f, --freeze Freeze Rails in vendor/rails from the gems
generating the skeleton
 Default: false

General Options:
 -p, --pretend Run but do not make any changes.
 --force Overwrite files that already exist.
 -s, --skip Skip files that already exist.
 -q, --quiet Suppress normal output.
 -t, --backtrace Debugging: show backtrace on errors.

Learning Rails | 185

 -h, --help Show this help message.
-c, --svn Modify files with subversion. (Note: svn must be

in path)

Description:
 The 'rails' command creates a new Rails application with a default
 directory structure and configuration at the path you specify.

Example:
 rails ~/Code/Ruby/weblog

 This generates a skeletal Rails installation in ~/Code/Ruby/weblog.
 See the README in the newly created application to get going.

WARNING:
 Only specify --without-gems if you did not use gems to install Rails.
 Your application will expect to find activerecord, actionpack, and
 actionmailer directories in the vendor directory. A popular way to track
 the bleeding edge of Rails development is to checkout from source control
 directly to the vendor directory. See http://dev.rubyonrails.com

Other Installation Information
Using gem is best, but there are other options. For Mac OS X, you can also turn to Dan
Benjamin’s HiveLogic site mentioned in Chapter 1 (http://hivelogic.com/articles/2005/12/
01/ruby_rails_lighttpd_mysql_tiger). Beyond Ruby and Rails, Dan’s instructions also get
you MySQL and the lighttpd server. Another option for Mac OS X is Ryan Rauum’s
Locomotive (http://locomotive.raaum.org/home/show/HomePage), which offers lighttpd
and SQLite. For Windows, there is also Instant Rails (http://instantrails.rubyforge.org/
wiki/wiki.pl), which gives you Ruby, Rails, the Apache server, and MySQL. For Linux,
there is Brian Ketelsen’s Rails Live CD at http://www.railslivecd.org.

Once you get Ruby and Rails installed, it’s time to start having some fun.

Learning Rails
By now, I am sure you are itching to start learning Rails. I’ll show you where you can
learn more.

The first thing to do is to watch the screencasts at http://www.rubyonrails.org/
screencasts. You could start with DHH’s colloquia presentation at Roskilde University
(http://www.ruc.dk/ruc_en/) in 2004 (http://media.rubyonrails.org/video/rubyonrails.mov).
It is actually under the “Presentations” heading on the screencast page; it is good
foundational material.

Then watch “Creating a weblog in 15 minutes” (http://media.rubyonrails.org/video/
rails_take2_with_sound.mov). Here you’ll learn how to create a complete weblog
from scratch with only 58 lines of code, with time left over for unit testing.

http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://locomotive.raaum.org/home/show/HomePage
http://instantrails.rubyforge.org/wiki/wiki.pl
http://instantrails.rubyforge.org/wiki/wiki.pl
http://www.railslivecd.org/
http://www.rubyonrails.org/screencasts
http://www.rubyonrails.org/screencasts
http://www.ruc.dk/ruc_en/
http://media.rubyonrails.org/video/rubyonrails.mov
http://media.rubyonrails.org/video/rails_take2_with_sound.mov
http://media.rubyonrails.org/video/rails_take2_with_sound.mov

186 | Chapter 11: A Short Guide to Ruby on Rails

Next, watch “Putting Flickr on Rails” (http://media.rubyonrails.org/video/flickr-rails-
ajax.mov). In five minutes, you’ll see Rails and the Flickr API (http://www.flickr.com/
services/api/) used to create a search engine for Flickr, the popular photo sharing
web site.

All the screencasts are in Apple’s QuickTime movie (.mov) format.

This site has one other screencast on migrations, and a half-dozen presentations, all
worth viewing.

Ruby Tutorials and Books
If you watched those screencasts, you have already been through tutorials in the
form of video. They got you to second base. Here are a few hands-on, learn-by-doing
tutorials that will get you across home plate.

Bill Walton and Curt Hibbs wrote an excellent tutorial called “Rolling with Ruby on
Rails Revisited.” Part 1 is at http://www.onlamp.com/pub/a/onlamp/2006/12/14/
revisiting-ruby-on-rails-revisited.html, and Part 2 is at http://www.onlamp.com/pub/a/
onlamp/2007/01/05/revisiting-ruby-on-rails-revisited-2.html. These appeared in late
2006 and early 2007. (The originals, written by Curt Hibbs alone, came out in late
2005. You’ll find Part 1 at http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html
and Part 2 at (http://www.onlamp.com/pub/a/onlamp/2005/03/03/rails.html).

These tutorials will take you step-by-step through the process of setting up and configur-
ing a Rails app and a MySQL server, and then playing with the interface. The tutorials
are based on the Windows platform, so you might have to do some real-time transla-
tion along the way to use them on other platforms. Curt has also written a book with
Bruce Tate called Ruby on Rails: Up and Running (O’Reilly). You can get a PDF version
as well as a print version from http://www.oreilly.com/catalog/rubyrails/index.html.

If you are on the Mac, Apple’s Developer Connection also has a tutorial, “Using
Ruby on Rails for Web Development on Mac OS X,” at http://developer.apple.com/
tools/rubyonrails.html.

A sure bet is Agile Web Development with Rails, by Dave Thomas et al. (Pragmatic).
This is a must-have for Rails programmers.

A Brief Tutorial
There are other sources for Rails tutorials, but I can’t resist the temptation to pro-
vide one here for you. It will be brief and very gentle on you—just enough to get
your feet wet. Don’t think too hard; just follow the step-by-step instructions and let
the process sink in. I’ll provide some tips along the way.

http://media.rubyonrails.org/video/flickr-rails-ajax.mov
http://media.rubyonrails.org/video/flickr-rails-ajax.mov
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/
http://www.onlamp.com/pub/a/onlamp/2006/12/14/revisiting-ruby-on-rails-revisited.html
http://www.onlamp.com/pub/a/onlamp/2006/12/14/revisiting-ruby-on-rails-revisited.html
http://www.onlamp.com/pub/a/onlamp/2007/01/05/revisiting-ruby-on-rails-revisited-2.html
http://www.onlamp.com/pub/a/onlamp/2007/01/05/revisiting-ruby-on-rails-revisited-2.html
http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html
http://www.onlamp.com/pub/a/onlamp/2005/03/03/rails.html
http://www.oreilly.com/catalog/rubyrails/index.html
http://developer.apple.com/tools/rubyonrails.html
http://developer.apple.com/tools/rubyonrails.html

A Brief Tutorial | 187

I’ll use Rails to create a simple address book on Mac OS X; Unix/Linux will be very
similar, but you will have to translate the steps a little if you are on Windows. These
instructions assume that Rails and MySQL are already installed. If you used the
HiveLogic or Instant Rails instructions under “Other installation information,” you
should be set to go.

In a shell window, move to your home directory, and just for sanity, test the exist-
ence of Rails and MySQL. Then create a directory where you will generate the Rails
project (address), and change directories to that new location.

$ cd ~/
$ rails --version
Rails 1.2.3
$ mysql --version
mysql Ver 14.12 Distrib 5.0.27, for apple-darwin8.6.0 (powerpc) using readline 5.0
$ mkdir address
$ cd address

So far so good? Now run the rails command with the name addressbook, and Rails
creates a number of directories and files.

$ rails addressbook
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create components
 create db
 create doc
 create lib
 ...

At this point you have a Rails application in skeletal form. In a matter of seconds,
Rails has done an unbelievable amount of work for you. This should become a little
more clear in the next few minutes.

Change directories to the directory created by Rails:

$ cd addressbook

We’ll use the WEBrick server to host Ruby, as it won’t require any other installation
on your part (it’s bundled with Ruby, so you got it when you installed Ruby). You
could run some other server, but we’ll stick with WEBrick for simplicity.

Pay attention to Mongrel—if you do much with Rails, you’ll probably
want to be using it soon. Mongrel is a speedy, up-and-coming little
HTTP server written mostly in Ruby. It can host web frameworks such
as Rails directly with HTTP rather than having to use FastCGI or
SCGI. See the Mongrel project page at http://rubyforge.org/projects/
mongrel on RubyForge for more information.

http://rubyforge.org/projects/mongrel/
http://rubyforge.org/projects/mongrel/

188 | Chapter 11: A Short Guide to Ruby on Rails

Run WEBrick with this command:

$./script/server webrick &
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
[2007-01-30 11:43:09] INFO WEBrick 1.3.1
[2007-01-30 11:43:09] INFO ruby 1.8.6 (2006-08-25) [powerpc-darwin8.8.0]
[2007-01-30 11:43:09] INFO WEBrick::HTTPServer#start: pid=863 port=3000

The & at the end of the command places the process in the back-
ground, so I can still use the shell prompt. It’s just my preference. You
don’t have to do this. It doesn’t work on Windows, by the way, unless
you have something like Cygwin installed (see http://www.cygwin.com).
To close WEBrick, type fg then Control-C.

Normally, you can just type ./script/server, without specifying webrick, but I have
another server installed, so I have to be specific about what server I want. On Win-
dows, issue this command as ruby script/server webrick or ruby script\server
webrick.

Highlight the URL http://0.0.0.0:3000 (http://127.0.0.1:3000 or http://localhost:3000 on
Windows), copy it, and then paste it into the address or location bar of your browser. I
am using Firefox 2 (http://www.mozilla.com/en-US/firefox). Figure 11-4 shows what I
see when Firefox loads this URL. When you get this far, it means that you are in good
shape—ready to start making things happen.

Figure 11-4. Rails welcome in Firefox 2

http://www.cygwin.com/
http://0.0.0.0:3000
http://127.0.0.1:3000
http://localhost:3000
http://www.mozilla.com/en-US/firefox/

A Brief Tutorial | 189

Let’s get MySQL working. I assume you’ll have it installed; if not, see “Other Instal-
lation Information,” earlier in this chapter. Usually, the MySQL server runs when
you start your computer, so you should have a service instance running. (If not, on
Mac OS X, run System Preferences on the Apple menu, and click on the MySQL
preference pane, then click the Start MySQL Server button.)

We are going to set up the MySQL database by hand using SQL command, without
using a GUI tool. It is simpler that way, because you don’t have to download yet
another tool or try to figure out how to get your tool to work when it looks so much
different from mine. It won’t be hard to do—just follow along and connect the dots.

Create a database by logging in as root and entering a create database addressbook_
development command, followed by a semicolon:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 236 to server version: 5.0.27-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database addressbook_development;
Query OK, 1 row affected (0.00 sec)

It is important that you use the name addressbook_development, as Rails is automati-
cally configured to use a database of that name.

Use the SQL command show databases, select our new database with the use
addressbook command, and then use show tables to see that no tables exist yet in the
current database addressbook.

mysql> show databases;
+-------------------------+
| Database |
+-------------------------+
| information_schema |
| addressbook_development |
| mysql |
| test |
+-------------------------+
4 rows in set (0.00 sec)

mysql> use addressbook_development;
Database changed
mysql> show tables;
Empty set (0.06 sec)

Create a table in addressbook with the create table command, followed by field
specifications for the address book—name, address, citystate, and so forth:

mysql> create table addresses (
 -> id int not null auto_increment,
 -> name varchar(100) not null,

190 | Chapter 11: A Short Guide to Ruby on Rails

 -> address varchar(255) not null,
 -> citystate varchar(100) not null,
 -> postcode varchar(20) not null,
 -> country varchar(100) not null,
 -> primary key(id));
Query OK, 0 rows affected (0.18 sec)

Verify your work with the show tables and describe addresses command, then quit
MySQL:

mysql> show tables;
+-----------------------------------+
| Tables_in_addressbook_development |
+-----------------------------------+
| addresses |
+-----------------------------------+
1 row in set (0.00 sec)

mysql> describe addresses;
+-----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
name	varchar(100)	NO			
address	varchar(255)	NO			
citystate	varchar(100)	NO			
postcode	varchar(20)	NO			
country	varchar(100)	NO			
+-----------+--------------+------+-----+---------+----------------+
6 rows in set (0.01 sec)

mysql> quit
Bye

In earlier versions of Rails, it was necessary to change a configuration file config/
database.yml to use a given database. Now Rails does this for you automatically by
assuming that the name of the Rails application addressbook will hook up to a data-
base called addressbook_development. This means you don’t have to change a config-
uration file or restart the web server.

With the database and table in place, you are ready to generate the scaffolding for a
model and controller with a simple script command. This is where the rubber hits
the road: the scaffolding magically makes everything work. Enter the following script
to make it happen:

$./script/generate scaffold address address
 exists app/controllers/
 exists app/helpers/
 create app/views/address
 exists app/views/layouts/
 exists test/functional/

A Brief Tutorial | 191

 dependency model
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/address.rb
 create test/unit/address_test.rb
 create test/fixtures/addresses.yml
 create app/views/address/_form.rhtml
 create app/views/address/list.rhtml
 create app/views/address/show.rhtml
 create app/views/address/new.rhtml
 create app/views/address/edit.rhtml
 create app/controllers/address_controller.rb
 create test/functional/address_controller_test.rb
 create app/helpers/address_helper.rb
 create app/views/layouts/address.rhtml
 create public/stylesheets/scaffold.css

The generate scaffold script has the arguments address and address. The first is the
name for the model, which is the object-relational mapping (ORM) layer for the
database (ActiveRecord), and the second is the name for the controller, which takes
user input and responds by operating on the model, then prepares the result for dis-
play (part of ActionPack). With the scaffolding in place, add address to the URL, as
in http://0.0.0.0:3000/address, and you will witness the magic (see Figure 11-5).

Using the embedded Ruby code (ERB) in list.rhtml (which you learned about in
Chapter 10), Rails has translated the names of table fields into the column headings
of an XHTML table! This is an example of what scaffolding does for you. It pro-
duces files like list.rhtml, new.rhtml, edit.rhtml, and so forth, to enable you to load
data into the database table and manipulate it using a web interface.

It is amazing how much work you don’t have to do with Rails! Now you are left with
the pleasant job of playing with the application until it becomes the web application
you want it to be.

Figure 11-5. Rails-generated list

http://0.0.0.0:3000/

192 | Chapter 11: A Short Guide to Ruby on Rails

Time to take the next step. Click the “New address” link to bring up the “New
address” (new.rhtml) page. Enter a new address—something similar to what’s shown
in Figure 11-6—then click the Create button; the list page reappears (Figure 11-7),
with the new address on it.

There you are. That’s as far as we’ll go with this little tutorial. Click the Show, Edit,
and Destroy links, and give yourself a full tour of the landscape.

Use the resources described in the earlier section “Learning Rails” to take your Rails
development to the next level. The exciting thing for me is to watch how far some-
one can go with Ruby and Rails in a relatively short period. Have a great time!

Figure 11-6. Creating a new address

Figure 11-7. Rails listing of new address

Review Questions | 193

Review Questions
1. From what program was the Rails framework extracted?

2. What does MVC stand for?

3. What part of Rails handles databases?

4. What do migrations do?

5. What are some applications that use Rails?

6. What is the Rake tool?

7. What is the purpose of Capistrano?

8. What is a preferred method for installing Rails?

9. Where is Rails’ database configuration stored?

10. What is the role of scaffolding in Rails?

195

Appendix A APPENDIX A

Ruby Reference1

Reference material on Ruby is gathered in this appendix for your convenience. You
will find information about the following: interpreter options, reserved words (key-
words), operators, escape characters, predefined variables, global constants, regular
expressions, String unpack directives, Array pack directives, flags and fields for
sprintf, file tests from Kernel#test, time formatting directives, RDoc options, and
Rake options.

Ruby Interpreter
Here is the syntax for the Ruby interpreter:

ruby [switches] [--] [program filename] [arguments]

Switches (or command-line options) include:

-0[octal]
Specify record separator (\0 if no argument)

-a
Set autosplit mode with -n or -p (splits $_ into $F)

-c
Check syntax only

-Cdirectory
cd to directory before executing your script

-d
Set debugging flags (set $DEBUG to true)

-e 'command'
Execute one line of script; several -e’s allowed; omit [program filename]

-Fpattern
split() pattern for autosplit (-a)

-i[extension]
Edit ARGV files in place (make backup if extension is supplied)

196 | Appendix A: Ruby Reference

-Idirectory
Specify $LOAD_PATH directory (may be used more than once)

-Kkcode
Specify KANJI (Japanese) code-set

-l
Enable line-ending processing

-n
Assume 'while gets(); ... end' loop around your script

-p
Assume loop similar to -n but print line similar to sed

-rlibrary
Require the library, before executing your script

-s
Enable some switch parsing for switches after script name

-S
Look for the script using a PATH environment variable

-T[level]
Turn on tainting checks

-v
Print version number, then turn on verbose mode

-w
Turn on warnings for your script

-W[level]
Set warning level: 0 for silence, 1 for medium, 2 for verbose (default)

-x[directory]
Strip off text before #!ruby line and perhaps cd to directory

--copyright
Print the copyright

--version
Print the version (compare with -v)

Ruby’s Reserved Words
Table A-1 lists all of Ruby’s reserved words.

Table A-1. Ruby’s reserved words

Reserved word Description

BEGIN Code, enclosed in { and }, to run before the program runs.

END Code, enclosed in { and }, to run when the program ends.

alias Creates an alias for an existing method, operator, or global variable.

Ruby’s Reserved Words | 197

and Logical operator; same as && except and has lower precedence. Compare with or.

begin Begins a code block or group of statements; closes with end.

break Terminates a while or until loop or a method inside a block.

case Compares an expression with a matching when clause; closes with end. See when.

class Defines a class; closes with end.

def Defines a method; closes with end.

defined? A special operator that determines if a variable, method, super method, or block exists.

do Begins a block and executes code in that block; closes with end.

else Executes following code if previous conditional, in if, elsif, unless, or when, is not true.

elsif Executes following code if previous conditional, in if or elsif, is not true.

end Ends a code block (group of statements) started with begin, def, do, if, etc.

ensure Always executes at block termination; use after last rescue.

false Logical or Boolean false; instance of FalseClass. See true.

for Begins a for loop; used with in.

if Executes code block if conditional statement is true; closes with end. Compare with unless, until.

in Used with for loop. See for.

module Defines a module; closes with end.

next Jumps before a loop’s conditional. Compare with redo.

nil Empty, uninitialized, or invalid, but not the same as zero; object of NilClass.

not Logical operator; same as !.

or Logical operator; same as || except or has lower precedence. Compare with and.

redo Jumps after a loop’s conditional. Compare with next.

rescue Evaluates an expression after an exception is raised; used before ensure.

retry Repeats a method call outside of rescue; jumps to top of block (begin) if inside rescue.

return Returns a value from a method or block; may be omitted.

self Current object (invoked by a method).

super Calls method of the same name in the superclass. The superclass is the parent of this class.

then A continuation for if, unless, and when; may be omitted.

true Logical or Boolean true; instance of TrueClass. See false.

undef Makes a method in current class undefined.

unless Executes code block if conditional statement is false. Compare with if, until.

until Executes code block while conditional statement is false. Compare with if, unless.

when Starts a clause (one or more) under case.

while Executes code while the conditional statement is true.

yield Executes the block passed to the method.

__FILE__ Name of current source file.

__LINE__ Number of current line in the current source file.

Table A-1. Ruby’s reserved words (continued)

Reserved word Description

198 | Appendix A: Ruby Reference

Operators
Table A-2 lists all of Ruby’s operators in the order of precedence. If the operator is
defined as a method, it is indicated in the Method column, and may be overridden.

Escape Characters
Table A-3 lists all of Ruby’s escape characters.

Table A-2. Ruby operators

Operator Description Method

:: Scope resolution

[] []= Reference, set �

** Raise to power (exponentiation) �

+ - ! ~ Positive (unary), negative (unary), logical negation,
complement

� (but not !)

* / % Multiplication, division, modulo (remainder) �

+ - Addition, subtraction �

<< >> Shift left, shift right �

& Bitwise and �

| ^ Bitwise or, bitwise exclusive or �

> >= < <= Greater than, greater than or equal to, less than, less
than or equal to

�

<=> == === != =~ !~ Equality comparison (spaceship), equality, equality,
not equal to, match, not match

� (but not != !~)

&& Logical and

|| Logical or

.. ... Range inclusive, range exclusive � (but not ...)

? : Ternary

= += -= *= /= %= **= <<=
>>= &= |= ^= &&= ||=

Assignment, abbreviated assignment

not Logical negation

and or Logical composition

defined? Special operator (no precedence)

Table A-3. Escape (nonprintable) characters

Backslash notation Hexadecimal character Description

\a 0x07 Bell or alert

\b 0x08 Backspace

\cx Control-x

Predefined Variables | 199

Predefined Variables
Table A-4 lists all of Ruby’s predefined variables.

\C-x Control-x

\e 0x1b Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline

\nnn Octal notation, where n is in the range 0–7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x Character x

\xnn Hexadecimal notation, where n is in the range 0–9, a–f, or A–F

Table A-4. Predefined variables

Predefined variable Description

$! Exception-information message containing the last exception raised. raise sets this variable.
Access with => in a rescue clause.

$@ Stack backtrace of the last exception, retrievable via Exception#backtrace.

$& String matched by the last successful pattern match in this scope, or nil if the last pattern match
failed. Same as m[0] where m is a MatchData object. Read only. Local.

$` String preceding whatever was matched by the last successful pattern match in the current scope, or
nil if the last pattern match failed. Same as m.pre_matchwhere m is a MatchData object. Read
only. Local.

$' String following whatever was matched by the last successful pattern match in the current scope, or
nil if the last pattern match failed. Same as m.post_match where m is a MatchData object.
Read only. Local.

$+ Last bracket matched by the last successful search pattern, or nil if the last pattern match failed.
Useful if you don’t know which of a set of alternative patterns matched. Read only. Local.

$1, $2... Subpattern from the corresponding set of parentheses in the last successful pattern matched, not
counting patterns matched in nested blocks that have been exited already, or nil if the last pattern
match failed. Same as m[n] where m is a MatchData object. Read only. Local.

$~ Information about the last match in the current scope. Regex#match returns the last match infor-
mation. Setting this variable affects match variables like $&, $+, $1, $2, etc. The nth subexpression
can be retrieved by $~[nth]. Local.

$= Case-insensitive flag; nil by default.

Table A-3. Escape (nonprintable) characters (continued)

Backslash notation Hexadecimal character Description

200 | Appendix A: Ruby Reference

$/ Input record separator;newline by default. Works likeawk’s RS variable. If it is set tonil, a whole file
will be read at once. gets, readline, etc., take the input record separator as an optional argument.

$\ Output record separator for print and IO#write; nil by default.

$, Output field separator between arguments; also the default separator for Array#join, which
allows you to indicate a separator explicitly.

$; Default separator for String#split; nil by default.

$. Current input line number of the last file that was read. Same as ARGF.lineno.

$< Virtual concatenation file of the files given by command-line arguments, or standard input (in case
no argument file is supplied). $<.filename returns the current filename. Synonym for ARGF.

$> Default output for print, printf, and $stdout by default. Synonym for $defout.

$_ Last input line of string by gets or readline in the current scope; set to nil if gets or
readline meets EOF. Local.

$0 Name of the current Ruby program being executed.

$* Command-line arguments given for the script. The options for the Ruby interpreter are already
removed.

$$ Process number (process.pid) of the Ruby program being executed.

$? Exit status of the last executed process.

$: Synonym for $LOAD_PATH.

$" Array containing the module names loaded by require. Used to prevent require from loading
modules twice.

$DEBUG True if -d or --debug switch is set.

$defout Default output for print, printf, and $stdout by default. Synonym for $>.

$F Receives output from split when -a is specified. Set if -a is set along with -p and -n.

$FILENAME Name of the file currently being read from ARGF. Same as ARGF.filename or $<.filename.

$LOAD_PATH Synonym for $:.

$SAFE Security level:

0
No checks on externally supplied (tainted) data are allowed (default).

1
 Potentially dangerous operations using tainted data are forbidden.

2
Potentially dangerous operations performed on processes and files are forbidden.

3
All newly created objects are considered tainted.

4
Modification of global data is forbidden.

$stdin Current standard input; STDIN by default.

$stdout Current standard output; STDOUT by default.

$stderr Current standard error output; STDERR by default.

Table A-4. Predefined variables (continued)

Predefined variable Description

Global Constants | 201

Global Constants
Table A-5 lists all of Ruby’s global constants.

$VERBOSE True if verbose flag is set by the -v, -w, or --verbose switch of the Ruby interpreter.

$-0 Alias of $/.

$-a True if option -a is set. Read only.

$-d Alias of $DEBUG.

$-F Alias of $;.

$-i In in-place-edit mode, holds the extension; otherwise nil. Can enable or disable in-place-edit
mode.

$-I Alias of $:.

$-l True if option -lis is set. Read only.

$-p True if option -pis is set. Read only.

Table A-5. Global constants

Constant Description

ARGF I/O-like stream that allows access to a virtual concatenation of all files provided on the command
line, or standard input if no files are provided. Synonym for $<.

ARGV Array that contains all the command-line arguments passed to a program. Synonym for $*.

DATA Input stream for reading the lines of code following the __END__ directive. Not defined if
__END__ is not present in code.

ENV Hash-like object containing the program’s environment variables; can be treated as a hash.

FALSE Synonym for false; false is preferred.

NIL Synonym for nil; nil is preferred.

PLATFORM Synonym for RUBY_PLATFORM. Deprecated.

RELEASE_DATE Synonym for RUBY_RELEASE_DATE. Deprecated.

RUBY_PLATFORM String indicating the platform of the Ruby interpreter; e.g., "powerpc-darwin8.8.0".

RUBY_RELEASE_DATE String indicating the release date of the Ruby interpreter; e.g., "2006-08-25".

RUBY_VERSION The Ruby version; e.g., "1.8.5".

STDERR Standard error output stream with default value of $stderr.

STDIN Standard input stream with default value of $stdin.

STDOUT Standard output stream with default value of $stdout.

TOPLEVEL_BINDING Binding object at Ruby’s top level.

TRUE Synonym for true; true is preferred.

VERSION Synonym for RUBY_VERSION. Deprecated.

Table A-4. Predefined variables (continued)

Predefined variable Description

202 | Appendix A: Ruby Reference

Regular Expressions
Table A-6 lists regular expressions in Ruby.

Table A-6. Regular expressions in Ruby

Pattern Description

/pattern/options Pattern pattern in slashes, followed by optional options, one or more of: i for case-insensitive;
o for substitute once; x for ignore whitespace, allow comments; m for match multiple lines and
newlines as normal characters.

%r!pattern! General delimited string for a regular expression, where ! can be an arbitrary character.

^ Matches beginning of line.

$ Matches end of line.

. Matches any character.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if already matched; otherwise, refers to octal representa-
tion of a character code.

\n, \r, \t, etc. Matches character in backslash notation.

\w Matches word character; same as [0-9A-Za-z_].

\W Matches nonword character; same as [^0-9A-Za-z_].

\s Matches whitespace character; same as [\t\n\r\f].

\S Matches nonwhitespace character; same as [^\t\n\r\f] .

\d Matches digit; same as [0-9].

\D Matches nondigit; same as [^0-9].

\A Matches beginning of a string.

\Z Matches end of a string, or before newline at the end.

\z Matches end of a string.

\b Matches word boundary outside [] or backspace (0x08) inside [].

\B Matches nonword boundary.

\G Matches point where last match finished.

[..] Matches any single character in brackets, such as [ch].

[^..] Matches any single character not in brackets.

* Matches zero or more of previous regular expressions.

*? Matches zero or more of previous regular expressions (nongreedy).

+ Matches one or more of previous regular expressions.

+? Matches one or more of previous regular expressions (nongreedy).

{m} Matches exactly m number of previous regular expressions.

{m,} Matches at least m number of previous regular expressions.

{m,n} Matches at least m but at most n number of previous regular expressions.

{m,n}? Matches at least m but at most n number of previous regular expressions (nongreedy).

String Unpack Directives | 203

String Unpack Directives
Table A-7 lists unpack directives for String#unpack.

? Matches zero or one of previous regular expression.

| Alternation, such as color|colour.

() Groups regular expressions or subexpression, such as col(o|ou)r.

(?#..) Comment.

(?:..) Groups without back-references (without remembering matched text).

(?=..) Specifies position with pattern.

(?!..) Specifies position with pattern negation.

(?>..) Matches independent pattern without backtracking.

(?imx) Toggles i, m, or x options on.

(?-imx) Toggles i, m, or x options off.

(?imx:..) Toggles i, m, or x options on within parentheses.

(?-imx:..) Toggles i, m, or x options off within parentheses.

(?ix-ix:) Turns on (or off) i and x options within this noncapturing group.

[:alnum:] POSIX character class for alphanumeric.

[:alpha:] POSIX character class for uppercase and lowercase letters.

[:blank:] POSIX character class for blank and tab.

[:cntrl:] POSIX character class for Control characters.

[:digit:] POSIX character class for digits.

[:graph:] POSIX character class for printable characters (but not space).

[:lower:] POSIX character class for lowercase letter.

[:print:] POSIX character class for printable characters (space included).

[:punct:] POSIX character class for printable characters (but not space and alphanumeric).

[:space:] POSIX character class for whitespace.

[:upper:] POSIX character class for uppercase letters.

[:xdigit:] POSIX character class for hex digits: A–F, a–f, and 0–9.

Table A-7. String unpack directives

Directive Returns Description

A String Removes trailing nulls and spaces

a String String

B String Extracts bits from each character (most significant bit first)

b String Extracts bits from each character (least significant bit first)

Table A-6. Regular expressions in Ruby (continued)

Pattern Description

204 | Appendix A: Ruby Reference

C Fixnum Extracts a character as an unsigned integer

c Fixnum Extracts a character as an integer

d, D Float Treats sizeof(double) characters as a native double

E Float Treats sizeof(double) characters as a double in little-endian byte order

e Float Treats sizeof(float) characters as a float in little-endian byte order

f, F Float Treats sizeof(float) characters as a native float

G Float Treats sizeof(double) characters as a double in network byte order

g Float Treats sizeof(float) characters as a float in network byte order

H String Extracts hex nibbles from each character (most significant bit first)

h String Extracts hex nibbles from each character (least significant bit first)

I Integer Treats sizeof(int) (modified by _) successive characters as an unsigned native integer

i Integer Treats sizeof(int) (modified by _) successive characters as a signed native integer

L Integer Treats four (modified by _) successive characters as an unsigned native long integer

l Integer Treats four (modified by _) successive characters as a signed native long integer

M String Quoted-printable

m String Base64-encoded

N Integer Treats four characters as an unsigned long in network byte order

n Fixnum Treats two characters as an unsigned short in network byte order

P String Treats sizeof(char *) characters as a pointer and return \emph{len} characters from the
referenced location

p String Treats sizeof(char *) characters as a pointer to a null-terminated string

Q Integer Treats eight characters as an unsigned quad word (64 bits)

q Integer Treats eight characters as a signed quad word (64 bits)

S Fixnum Treats two (different if _ is used) successive characters as an unsigned short in native byte order

s Fixnum Treats two (different if _ is used) successive characters as a signed short in native byte order

U Integer UTF-8 characters as unsigned integers

u String UU-encoded

V Fixnum Treats four characters as an unsigned long in little-endian byte order

v Fixnum Treats two characters as an unsigned short in little-endian byte order

w Integer BER-compressed integer (see Array#pack)

X Skips backward one character

x Skips forward one character

Z String With trailing nulls removed up to first null with *

@ Skips to the offset given by the length argument

Table A-7. String unpack directives (continued)

Directive Returns Description

Array Pack Directives | 205

Array Pack Directives
Table A-8 lists pack directives for use with Array#pack.

Table A-8. Array pack directives

Directive Description

@ Moves to absolute position

A ASCII string (space padded; count is width)

a ASCII string (null padded; count is width)

B Bit string (descending bit order)

b Bit string (ascending bit order)

C Unsigned char

c Char

D, d Double-precision float, native format

E Double-precision float, little-endian byte order

e Single-precision float, little-endian byte order

F, f Single-precision float, native format

G Double-precision float, network (big-endian) byte order

g Single-precision float, network (big-endian) byte order

H Hex string (high nibble first)

h Hex string (low nibble first)

I Unsigned integer

i Integer

L Unsigned long

l Long

M Quoted-printable, MIME encoding (see RFC 2045)

m Base64-encoded string

N Long, network (big-endian) byte order

n Short, network (big-endian) byte order

P Pointer to a structure (fixed-length string)

p Pointer to a null-terminated string

Q, q 64-bit number

S Unsigned short

s Short

U UTF-8

u UU-encoded string

206 | Appendix A: Ruby Reference

Sprintf Flags and Field Types
Tables A-9 and A-10 list flags and field types for Kernel#sprintf (or its synonym
Kernel#format), respectively.

V Long, little-endian byte order

v Short, little-endian byte order

w BER-compressed integer\fnm

X Backs up a byte

x Null byte

Z Same as a, except that null is added with *

Table A-9. Flag characters for sprintf

Flag For field types Description

[space] bdeEfgGiouxX Places a space at the start of a positive number.

[1–9]$ All field types Absolute number of an argument for this field.

beEfgGoxX For the field b, prefixes the result with 0b; for o, with 0; for x, with 0x; for X, with 0X.
For e, E, f, g, and G, adds decimal point. For g and G, does not remove trailing spaces.

+ bdeEfgGiouxX Adds a leading plus sign (+) to positive numbers.

- All field types Left-justifies the result.

0 bdeEfgGiouxX Pads the result with zeros (0) instead of spaces.

* All field types Uses the next argument as the field width. If negative, left-justifies the result. If asterisk
(*) is followed by a number and a dollar sign ($), uses argument as width.

Table A-10. Field types for sprintf

Field Description

b Converts a numeric argument to binary.

c Converts a numeric argument (character code) to a character.

d Converts a numeric argument to a decimal number. Same as i.

e Converts a floating-point argument into exponential notation using one digit before the decimal point. Defaults
to six fractional digits. Compare with g.

E Same as e, but uses E in result.

f Converts a numeric argument to a floating-point number. Defaults to six fractional digits. Precision determines
the number of fractional digits.

g Converts a numeric argument to a floating point number using the exponential form if the exponent is less than -4
or greater than or equal to precision, otherwise using the form d.dddd. Compare with e.

G Same as g, but uses E in result.

i Converts a numeric argument to a decimal number. Same as d.

Table A-8. Array pack directives (continued)

Directive Description

File Tests | 207

File Tests
Tables A-11 and A-12 list file tests for one and two files from Kernel#test, respectively.

o Converts a numeric argument to octal.

p Same as argument.inspect where inspect gives you a printable version of the argument, with special
characters escaped.

s Substitutes an argument as a string. If the format string contains precision, at most that many characters are
copied in the substitution.

u Treats argument as an unsigned decimal. Negative integers are displayed as a 32-bit two’s complement plus one
for the underlying architecture (for example, 2**32+n). Because Ruby has no inherent limit on the number of
bits used to represent an integer, negative values are preceded by two leading periods, indicating an infinite
number of leading sign bits.

x Converts a numeric argument to hexadecimal with lowercase letters a through f. Negative numbers are dis-
played with two leading periods, indicating an infinite string of leading ffs.

X Same as x, but uses uppercase letters A through F in the result. Negative numbers are displayed with two lead-
ing periods, indicating an infinite string of leading FFs.

Table A-11. File tests

Test Returns Meaning

?A Time Last access time for file1

?b Boolean True if file1 is a block device

?c Boolean True if file1 is a character device

?C Time Last change time for file1

?d Boolean True if file1 exists and is a directory

?e Boolean True if file1 exists

?f Boolean True if file1 exists and is a regular file

?g Boolean True if file1 has the \CF{setgid} bit set (false under NT)

?G Boolean True if file1 exists and has a group ownership equal to the caller’s group

?k Boolean True if file1 exists and has the sticky bit set

?l Boolean True if file1 exists and is a symbolic link

?M Time Last modification time for file1

?o Boolean True if file1 exists and is owned by the caller’s effective uid

?O Boolean True if file1 exists and is owned by the caller’s real uid

?p Boolean True if file1 exists and is a FIFO

?r Boolean True if file1 is readable by the effective uid/gid of the caller

?R Boolean True if file1 is readable by the real uid/gid of the caller

?s Int/nil If file1 has nonzero size, return the size; otherwise return nil

Table A-10. Field types for sprintf (continued)

Field Description

208 | Appendix A: Ruby Reference

Time Formatting Directives
The directives listed in Table A-13 are used with the method Time#strftime.

?S Boolean True if file1 exists and is a socket

?u Boolean True if file1 has the setuid bit set

?w Boolean True if file1 exists and is writable by the effective uid/gid

?W Boolean True if file1 exists and is writable by the real uid/gid

?x Boolean True if file1 exists and is executable by the effective uid/gid

?X Boolean True if file1 exists and is executable by the real uid/gid

?z Boolean True if file1 exists and has a zero length

Table A-12. File tests for two files

Test Returns Description

?- Boolean True if file1 and file2 are identical

?= Boolean True if the modification times of file1 and file2 are equal

?< Boolean True if the modification time of file1 is prior to that of file2

?> Boolean True if the modification time of file1 is after that of file2

Table A-13. Directives for formatting time

Directive Description

%a Abbreviated weekday name (Sun)

%A Full weekday name (Sunday)

%b Abbreviated month name (Jan)

%B Full month name (January)

%c Preferred local date and time representation

%d Day of the month (01 to 31)

%H Hour of the day, 24-hour clock (00 to 23)

%I Hour of the day, 12-hour clock (01 to 12)

%j Day of the year (001 to 366)

%m Month of the year (01 to 12)

%M Minute of the hour (00 to 59)

%p Meridian indicator (AM or PM)

%S Second of the minute (00 to 60)

%U Week number of the current year, starting with the first Sunday as the first day of the first week (00 to 53)

Table A-11. File tests (continued)

Test Returns Meaning

RDoc Options | 209

RDoc Options
RDoc options are used like this:

rdoc [options] [names...]

Files are parsed, and the information they contain collected, before any output is
produced. This allows cross-references between all files to be resolved. If a name on
the command line is a directory, it is traversed. If no names are specified on the com-
mand line, all Ruby files in the current directory (and subdirectories) are processed.

Options include:

--accessor, -A accessorname[,..]
Comma-separated list of additional class methods that should be treated like
attr_reader and friends. Option may be repeated. Each accessorname may have
=text appended, in which case that text appears where the r/w/rw appears for
normal accessors.

--all, -a
Include all methods (not just public) in the output.

--charset, -c charset
Specify HTML character-set.

--debug, -D
Display lots on internal stuff.

--diagram, -d
Generate diagrams showing modules and classes. You need dot v1.8.6 or later to use
the --diagram option correctly. Dot is available from http://www.research.att.com/
sw/tools/graphviz.

%W Week number of the current year, starting with the first Monday as the first day of the first week (00 to 53)

%w Day of the week (0 to 6; Sunday is 0)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00 to 99)

%Y Year with a century

%Z Time zone name

%% Literal % character

Table A-13. Directives for formatting time (continued)

Directive Description

http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/

210 | Appendix A: Ruby Reference

--exclude, -x pattern
Do not process files or directories matching pattern. Files given explicitly on the
command line will never be excluded.

--extension, -E new=old
Treat files ending with .new as if they ended with .old. Using '-E cgi=rb' will
cause xxx.cgi to be parsed as a Ruby file.

--fileboxes, -F
Classes are put in boxes, which represents files, where these classes reside.
Classes shared among more than one file are shown with a list of files that are
sharing them. Silently discarded if --diagram is not given Experimental.

--fmt, -f chm/html/ri/xml
Set the output formatter. Available output formatters are chm, html, ri, and xml.

--help, -h
You’re looking at it.

--help-output, -O
Explain the various output options.

--image-format, -I gif/png/jpg/jpeg
Sets output image format for diagrams. Can be png, gif, jpeg, jpg. If this option
is omitted, png is used. Requires --diagram.

--include, -i dir[,dir...]
Set (or add to) the list of directories to be searched when satisfying :include:
requests. Can be used more than once.

--inline-source, -S
Show method source code inline rather than via a pop-up link.

--line-numbers, -N
Include line numbers in the source code.

--main, -m name
name will be the initial page displayed.

--merge, -M
When creating ri output, merge processed classes into previously documented
classes of the name name.

--one-file, -1
Put all the output into a single file.

--op, -o dir
Set the output directory.

--opname, -n name
Set the name of the output. Has no effect for HTML.

RDoc Options | 211

--promiscuous, -p
When documenting a file that contains a module or class also defined in other
files, show all stuff for that module/class in each files page. By default, only show
stuff defined in that particular file.

--quiet, -q
Don’t show progress as we parse.

--ri, -r
Generate output for use by ri. The files are stored in the .rdoc directory under
your home directory unless overridden by a subsequent --op parameter, so no
special privileges are needed.

--ri-site, -R
Generate output for use by ri. The files are stored in a site-wide directory, mak-
ing them accessible to others, so special privileges are needed.

--ri-system, -Y
Generate output for use by ri. The files are stored in a system-level directory,
making them accessible to others, so special privileges are needed. This option is
intended to be used during Ruby installations.

--show-hash, -H
A name of the form #name in a comment is a possible hyperlink to an instance
method name. When displayed, the # is removed unless this option is specified.

--style, -s stylesheet url
Specifies the URL of a separate stylesheet.

--tab-width, -w n
Set the width of tab characters (default is 8).

--template, -T template name
Set the template used when generating output.

--title, -t text
Set txt as the title for the output.

--version, -v
Display RDoc’s version.

--webcvs, -W url
Specify a URL for linking to a web frontend to CVS. If the URL contains a “%s,”
the name of the current file will be substituted; if the URL doesn’t contain a
“%s,” the filename will be appended to it.

For information on where the output goes, use:

rdoc --help-output

212 | Appendix A: Ruby Reference

How RDoc generates output depends on the output formatter being used and on the
options you give.

• HTML output is normally produced into a number of separate files (one per
class, module, and file, along with various indices). These files will appear in the
directory given by the --op option (doc/ by default).

• XML output by default is written to standard output. If a --opname option is
given, the output will instead be written to a file with that name in the output
directory.

• .chm files (Windows help files) are written in the --op directory. If an --opname
parameter is present, that name is used; otherwise, the file will be called rdoc.chm.

Rake
A build tool helps you build, compile, or otherwise process files, sometimes large
numbers of them. Rake is a build tool like make (http://www.gnu.org/software/make)
and Apache Ant (http://ant.apache.org), but it is written in Ruby. It is used by many
Ruby applications, not just Rails. Rails operations use Rake frequently, so it is worth
mentioning here.

Rake uses a Rakefile to figure out what to do. A Rakefile contains names tasks.
When you create a Rails project, a Rakefile is automatically created to help you deal
with a variety of jobs, such as running tests and looking at project statistics. (After
creating a Rails project with one of the tutorials below, while in the main Rails
project directory, run rake --tasks or rails stats to get a flavor of what Rake does.)

Rake was written by Jim Weirich (http://onestepback.org). You’ll find documenta-
tion on Rake at http://rake.rubyforge.org. A good introduction to Rake by Martin
Fowler may be found at http://www.martinfowler.com/articles/rake.html.

To run Rake help, type:

$ rake --help

Here’s how Rake is used:

rake [-f rakefile] {options} targets...

Options include:

--classic-namespace (-C)
Put Task and FileTask in the top-level namespace.

--dry-run (-n)
Do a dry run without executing actions.

--help (-H)
Display this help message.

http://www.gnu.org/software/make/
http://ant.apache.org/
http://onestepback.org/
http://rake.rubyforge.org/
http://www.martinfowler.com/articles/rake.html

Rake | 213

--libdir=libdir (-I)
Include libdir in the search path for required modules.

--nosearch (-N)
Do not search parent directories for the Rakefile.

--prereqs (-P)
Display the tasks and dependencies, then exit.

--quiet (-q)
Do not log messages to standard output.

--rakefile (-f)
Use FILE as the Rakefile.

--rakelibdir=rakelibdir (-R)
Auto-import any .rake files in rakelibdir (default is rakelib).

--require=module (-r)
Require module before executing the Rakefile.

--silent (-s)
Like --quiet, but also suppresses the “in directory” announcement.

--tasks (-T)
Display the tasks (matching optional PATTERN) with descriptions, then exit.

--trace (-t)
Turn on invoke/execute tracing. Enable full backtrace.

--usage (-h)
Display usage.

--verbose (-v)
Log message to standard output (default).

--version (-V)
Display the program version.

214

Appendix BAPPENDIX B

Answers to Review Questions 2

Chapter 1 Review Questions
1. What is the nickname of the inventor of Ruby? Matz

2. Ruby came out in 1995. What other programming language was released to the
public that year? Java

3. Is everyone who writes a programming book morally or otherwise obligated to
write a “Hello, World!” program? No!

4. What does the abbreviation irb stand for? Interactive Ruby, the line-oriented
Ruby sandbox

5. What is Ruby’s killer app? Ruby on Rails

6. What is the name of the funny book on Ruby? why’s (poignant) guide to Ruby

7. Who wrote the pickaxe book? Dave Thomas

8. What’s one of the author’s favorite programming environments on the Mac?
TextMate

Chapter 2 Review Questions
1. What is one of the main differences between a class and a module? You can

instantiate a class, but not a module

2. What module does the Object class include? Kernel

3. What syntax do you use to form block comments? =begin/=end

4. What special character begins an instance variable? A class variable? A global
variable? @, @@, $

5. What is the main feature that distinguishes a constant? A constant must begin
with an uppercase letter

6. When a method ends with a ?, what does that signify by convention? Returns
true or false

Chapter 4 Review Questions | 215

7. A block is a sort of nameless _____________ . Method or function

8. What is a proc? A stored procedure, with context

9. What is the most important characteristic of a symbol? It occupies a single mem-
ory location

10. What is RDoc? The Ruby documentation tool

Chapter 3 Review Questions
1. Why is case/when somewhat more convenient than if/elsif/else? It is more suc-

cinct because == is assumed

2. What is the ternary operator? expr ? expr : expr

3. What is a statement modifier? A conditional, such as if, at the end of a statement

4. Why is upto or downto more convenient than a regular for loop? They are more
concise and use blocks

5. An unless statement is the negated form of what other control structure? if

6. What are the synonyms for && and ||? and/or but have lower precedence

7. What is probably the most common control structure used in Ruby and other
languages? if

8. What is the benefit of using begin/end with a while statement? Statements in the
loop are evaluated once before the condition is checked

Chapter 4 Review Questions
1. How do chop and chomp differ? chop removes the last character; chomp, the last

record separator

2. Name two ways to concatenate strings. With <<, concat, or +

3. What happens when you reverse a palindrome? Nothing

4. How do you iterate over a string? With the method each or each_line

5. Name two or more case conversion methods. capitalize, capitalize!, casecmp,
downcase, downcase!, swapcase, swapcase!, upcase, upcase!

6. What methods would you use to adjust space in a string? center, ljust, lstrip,
lstrip!, rjust, rstrip, rstrip!, strip, strip!

7. Describe alteration in a regular expression pattern? The | character (use one or
the other)

8. What does /\d{3}/ match? Three digits

9. How do you convert a string to an array? The to_a method

10. What do you think is the easiest way to create a string? Reader’s choice, but I
think the easiest way is to just enclose the string in quotes

216 | Appendix B: Answers to Review Questions

Chapter 5 Review Questions
1. In Ruby, are numbers primitives or objects? Objects

2. What method can you use to discover what modules a Ruby class includes?
included_modules

3. What is the possible range of numbers represented by the Fixnum class? What the
computer can hold in its machine word (32 or 64 bits, minus 1)

4. How can you avoid truncating the result of division? Use at least one floating-
point number as an operator

5. Rational numbers are another name for ______________. Fractions

6. If a unary operator is absent, what is the sign of the number that follows? Positive

7. What are the two constants in the Math module? Math::PI and Math::E

8. What method can you use to convert an integer into a character representation?
The chr method

Chapter 6 Review Questions
1. Name the class methods for Array. Come on, there’s only two of them. new and []

2. Show three ways to create an array. Array(), [], %w{}, and so forth

3. Use two methods to access the last element in an array. ary.last and ary[-1]

4. True or false: shift and unshift perform reverse stack operations. True

5. What is the difference between delete and delete_at? delete deletes a matching
object; delete_at deletes a matching index

6. Multiple choice: You need to add an object to every element in an array. Where
do you turn? map

a. value_at

b. length

c. map

d. []=

7. What are two methods for comparing arrays for equality? == or <=> or eql?

8. What method can you use to remove nils from an array? compact

Chapter 7 Review Questions
1. What is the difference between a hash and an array? A hash is an unordered col-

lection, with keys and values; an array is an ordered collection, with an index start-
ing with 0, and whose values are called elements

2. Why would you choose a hash over an array? When order is not important and
when the association of a key with a value is

Chapter 10 Review Questions | 217

3. How would you check to see if a hash has a given key, or a given value? has_
key?, key?, has_value?, value?

4. The Hash class is based on what other class? Array

5. What is the benefit of converting a hash to a hash? Both will have the same object ID

6. What is the difference between has_key? and key?? Nothing, they are synonyms,
as are member? and include?

7. Show how to create a hash with Hash[]. Hash[key => value] or Hash[key, value]

8. What is the result of sorting a hash? An array of two-element arrays

Chapter 8 Review Questions
1. How is ARGV useful? It represents the names of all the files on the command line

2. How would you obtain a file type from a file on disk with Ruby? ftype

3. What does the mask 0700 do to a file’s permissions? Creates rwx mask for the owner

4. How would you access the date and time a file was created? ctime, mtime, atime

5. What kind of object does the entries method from Dir return? An array

Chapter 9 Review Questions
1. True or false: You cannot add methods or variables to built-in classes. False

2. An instance variable is prefixed by a _____ character. At sign (@)

3. What is one distinguishing characteristic of a class method? It is prefixed with the
class name

4. True or false: In Ruby, even a class is an object. True

5. What is a singleton method, and how do you create one? A method tied to a sin-
gleton class; using an instance method of an instance of a singleton class

6. Can you instantiate a module? No, but you can include one

7. What is the main difference between single and multiple inheritance? With sin-
gle, you can inherit from only one class; with multiple, you can inherit from multi-
ple classes

8. What is Ruby’s base class? Object

9. What is the default visibility for members of a class? Public

Chapter 10 Review Questions
1. What is the b format field used for in sprintf (printf)? Binary

2. What method would you use to pretty-print with Builder? to_xs

3. What does the superclass method do? Returns the name of the parent class

218 | Appendix B: Answers to Review Questions

4. How can you test whether a given class will respond to a method? respond_to?

5. How do you require a RubyGems package in a Ruby program? require
'rubygems' and require_gem

6. What is the name of a key method for metaprogramming in Ruby? define_
method

7. What RubyGems command would you use to install a package? [sudo] gem
install pkg_name

8. What Tk class is used for creating labels? TkLabel

9. The Ruby keywords rescue and ensure are synonyms for what keywords in Java?
catch and finally

10. How do you format headings for consumption by RDoc? Using equals signs

Chapter 11 Review Questions
1. From what program was the Rails framework extracted? Basecamp, from 37signals

2. What does MVC stand for? Model-View-Controller

3. What part of Rails handles databases? ActiveRecord or the model

4. What do migrations do? Allow you to migrate from one database schema to another

5. What are some applications that use Rails? Basecamp, Blinksale, 43things, to
name a few

6. What is the Rake tool? It is a build tool written in Ruby

7. What is the purpose of Capistrano? Deploying applications

8. What is a preferred method for installing Rails? RubyGems

9. Where is Rails’ database configuration stored? config/database.yml

10. What is the role of scaffolding in Rails? To create instant web views of your Rails
application

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

219

Glossary

accessor
A method for accessing data in a class that
is usually inaccessible otherwise. Also
called getter and setter.

Ajax
Originally an abbreviation for Asynchro-
nous JavaScript and XML. A web design
technique that uses XMLHttpRequest to
load data (often small bits of data) onto a
web page without requiring the entire
page to be refreshed from the server.

aliasing
Using the Ruby keyword alias, you can
alias a method, operator, or global con-
stant by specifying an old and a new
name.

ARGF
An I/O-like stream that allows access to a
virtual concatenation of all files provided
on the command line, or standard input if
no files are provided.

ARGV
An array that contains all of the
command-line arguments passed to a
program.

argument
Variables passed to a method. In the
method call hello(name), the variable
name is an argument. See method.

array
A data structure containing an ordered list
of elements—any Ruby object—starting
with an index of 0. Compare hash.

ASCII
Abbreviation for American Standard Code
for Information Interchange. ASCII is a
character set representing 128 letters,
numbers, symbols, and special codes, in
the range 0–127. Each character can be
represented by an 8-bit byte (octet). Com-
pare with UTF-8. Ruby default. Set with
$KCODE = 'a'.

block
A nameless function, always associated
with a method call, contained in a pair of
braces ({}) or do/end.

block comment
See comment.

C extensions
Ruby is written in the C programming
language. You can extend Ruby with C
code, perhaps for performance gains or
to do some heavy lifting. For instruc-
tions on how to do this, see Peter Coo-
per’s article “How to create a Ruby
Extension in C in under 5 minutes” at
http://www.rubyinside.com/how-to-create-
a-ruby-extension-in-c-in-under-5-minutes
-100.html.

carriage return
See newline.

child class
A class that is derived from a parent or
superclass. Compare with superclass.

http://www.rubyinside.com/how-to-create-a-ruby-extension-in-c-in-under-5-minutes-100.html
http://www.rubyinside.com/how-to-create-a-ruby-extension-in-c-in-under-5-minutes-100.html

class

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Glossary

class
A collection of code, including methods
and variables called members. The code in
a class sets the rules for objects of the
given class. See instance, module, object.

class variable
A variable that can be shared between
objects of a given class. In Ruby, prefixed
with two at signs, as in @@count. See global
variable, instance variable, local variable.

closure
A nameless function or method. It is like a
method within a method, that refers to or
shares variables with the enclosing or
outer method. In Ruby, the closure or
block is wrapped by braces ({}) or do/end,
and depends on the associated method to
work.

comment
Program text that is ignored by the Ruby
interpreter. If it is preceded by a #, and not
buried in double quotes, it is ignored by
the Ruby interpreter. Block comments,
enclosed by =begin/=code, can contain
comments that cover more than one line.
These are also called embedded documents.

composability
The degree to which you can express
logic by combining and recombining
parts of a language (see “The Design of
RELAX NG,” by James Clark, at
http://www.thaiopensource.com/relaxng/
design.html#section:5).

concatenation
Joining or chaining two character strings
performed in Ruby with the +, <<, and
concat methods.

conditional expression
See ternary operator.

conditional statement
Tests whether a given statement is true or
false, executing code (or not) based on the
outcome. Conditional statements are
formed with keywords such as if, while,
and unless.

constant
In Ruby, a constant name is capitalized or
all uppercase. It is not fixed as in other
languages, though when you change the
value of a constant, the Ruby interpreter

warns you that the constant is already ini-
tialized. Compare with variable.

data structure
Data stored in a computer in a way that
(usually) allows efficient retrieval of the
data. Arrays and hashes are examples of
data structures.

database
A systematic collection of information,
stored on a computer. Ruby on Rails is a
database-enabled web application frame-
work.

default
A value that is assigned automatically
when interacting with code or a program.

each
In Ruby, a method named each (or simi-
larly, like each_line) iterates over a given
block, processing the data piece by
piece—by bytes, characters, lines, ele-
ments, and so forth, depending on the
structure of the data. See block.

embedded document
See comment.

embedded Ruby
See ERB.

enumerable
In Ruby, collection classes that have tra-
versal and searching methods and sort
capability.

error
A problem or defect in code that usually
causes a program to halt. Common errors
in Ruby programs are identified with
classes such as ArgumentError, EOFError,
and ZeroDivisionError. Compare with
exception.

ERB
An abbreviation for Embedded Ruby. A
technique, similar to JavaServer Pages, for
embedding Ruby code in tags—such as
<%= and %>—in text files, including HTML
and XHTML, that is executed when the
files are processed. Ruby on Rails makes
extensive use of embedded Ruby. ERB is
actually a built-in implementation of
embedded Ruby, but other, faster imple-
mentations also exist, such as Erubis
(http://rubyforge.org/projects/erubis).

http://www.thaiopensource.com/relaxng/design.html#section:5
http://www.thaiopensource.com/relaxng/design.html#section:5
http://rubyforge.org/projects/erubis/

instance variable

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Glossary | 221

eRuby
See ERB.

exception
Allows you to catch and manage runtime
and other errors while programming.
Managed with rescue, ensure, and raise.
Compare with error.

expression
A programming statement that includes
keywords, operators, variables, and so
forth, and returns a value.

expression substitution
In Ruby, a syntax that allows you to
embed expressions in strings and other
contexts. The substitution is enclosed in
#{ and }, and the result of the expression
replaces the substitution in place when the
code runs through the interpreting.

extension, file
The part of the filename (if present) that
follows the period. The conventional file
extension for Ruby is .rb.

extension, C
See C extensions.

file mode
Depending on how it is set, determines
the ability to read, write, and execute a
file. One way you can set a file’s mode is
with File.new at the time the file is created.

float
In Ruby, objects that represent real num-
bers, such as 1.0.

gem
See RubyGems.

general delimited strings
A technique for creating strings using %!
and !, where ! can be an arbitrary nonal-
phanumeric character. Alternative syntax:
%Q!string! for double-quoted strings,
%q!string! for single-quoted strings, and
%x!string! for back-quoted strings.

getter method
See accessor.

global variable
A variable whose scope includes the
entire program. Compare with class vari-
able, instance variable, local variable.

graphical user interface
See GUI.

GUI
An abbreviation for graphical user inter-
face. A user interface that focuses on
graphics rather than text. Mac OS X is an
example. Tcl/Tk is Ruby’s built-in GUI
library.

hash
An unordered collection of data where
keys and values are mapped. Compare
with array.

hash code
An integer calculated from an object.
Identical objects have the same hash code.
Generated by a hash method.

here document
A technique that allows you to build strings
from multiple lines, using <<name/name
where name is an arbitrary name. Alterna-
tive syntax: <<"string"/string for
double-quoted strings, <<'string'/string
for single-quoted strings, <<`string`/string
for back-quoted strings, and
<<-string/string for indented strings.

hexadecimal
A base-16 number, represented by the dig-
its 0–9 and the letters A–F or a–f. Often
prefixed with 0x. For example, the base-10
number 26 is represented as 0x1A in hexa-
decimal.

index
An integer, beginning with 0, that num-
bers or identifies the elements in an array.
See array.

inheritance
The ability of a class to inherit features
from another class via the < operator. See
multiple inheritance, single inheritance.

instance
An object that is created when a class is
instantiated, often with the new class
method—for example, str = String.new
creates an instance of the String class.

instance variable
A variable associated with an instance of a
class. In Ruby, instance variables are pre-
fixed with a single at sign—for example,

I/O

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Glossary

@name. See class variable, local variable,
global variable.

I/O
An abbreviation for input/output. Refers to
the flow of data to and from the com-
puter, such as reading data to and from a
file. The IO class is the basis for all of
Ruby’s I/O, and the File class is a sub-
class of IO.

key
A key is associated with a value in a hash.
You can use keys to access hash values.
See hash.

keyword
See reserved word.

lambda
A method that creates a Proc object that is
bound to the current context and does
parameter checking (checks the number)
when called. See proc.

library
See standard library.

line-end character
See newline.

linefeed
See newline.

local variable
A variable with local scope, such as inside
a method. You cannot access a local vari-
able from outside of its scope. In Ruby,
local variables begin with a lowercase let-
ter or an underscore (_). num and _outer
are examples of local variables. See class
variable, global variable, instance variable.

loop
A repeatable iteration of one or more
statements. Ruby uses for loops, and even
has a loop method for such a task. A loop
may be stopped (break). Control then
passes to the next statement in the pro-
gram, or a special location, or may even
exit the program.

match
When a method finds a specified regular
expression, it is said to match. See regular
expression.

member
Variables and methods are considered
members of a class or object. See class,
method, object, variable.

metaprogramming
Programming that creates and/or manipu-
lates other programs. Ruby’s define_
method method is one tool that can be
used in metaprogramming. Reflection is
another capability that plays a role in
metaprogramming. See reflection.

method
A named collection of statements, with or
without arguments, and a return value. A
member of a class. See class.

mixin
When a module is included in a class, it is
mixed into the class, hence the name mixin.
Using mixins helps overcome the problems
that stem from multiple inheritance.

mode, file
See file mode.

module
A module is like a class, but it cannot be
instantiated like a class. A class can
include a module so that when the class is
instantiated, it gets the included module’s
methods and so forth. The methods from
an included module become instance
methods in the class that includes the
module. This is called mixing in, and a
module is referred to as a mixin. See class,
mixin.

modulo
A division operation that returns the
remainder of the operation. The percent
sign (%) is used as the modulo operator.

multiple inheritance
When a class can inherit more than one
class. C++, for example, supports multi-
ple inheritance, which has disadvantages
that, in the opinion of many, outweigh the
advantages. See single inheritance.

namespace
In Ruby, a module acts as a namespace. A
namespace is a set of names—such as
method names—that have a scope or con-
text. A Ruby module associates a single

private

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Glossary | 223

name with a set of method and constant
names. The module name can be used in
classes in other modules. Generally, the
scope or context of such a namespace is
the class or module where the namespace
(module name) is included. A Ruby class
can also be considered a namespace.

newline
A character that ends a line, such as a line-
feed (Mac OS X and Unix/Linux) or a
combination of characters such as charac-
ter return and linefeed (Windows).

nil
Empty, uninitialized, or invalid. nil is
always false, but is not the same as zero. It
is an object of NilClass.

object
An instance of a class, a thing, an entity,
or a concept that is represented in contig-
uous memory in a computer. See instance,
class.

object-oriented programming
Refers to a programming practice that is
based on organizing data with methods
that can manipulate that data. The meth-
ods and data (members) are organized
into classes that can be instantiated as
objects. See class.

octal
A base-8 number, represented by the dig-
its 0–7. Often prefixed with 0 (zero). For
example, the base-10 number 26 is repre-
sented as 32 in octal.

OOP
See object-oriented programming.

operators
Perform operations such as addition and
subtraction. Ruby operators include, like
other languages, + for addition, - for sub-
traction, * for multiplication, / for divi-
sion, % for modulo, and so forth. Many
Ruby operators are methods.

overloading
Method or function overloading is a prac-
tice in object-oriented programming that
allows methods with the same name to
operate on different kinds of data (meth-
ods or functions with the same name but

different signatures). You can’t really
overload methods in Ruby without
branching the logic inside the method. See
overriding.

overriding
Redefining a method. The latest defini-
tion is the one recognized by the Ruby
interpreter. Compare with overloading.

package
See RubyGems.

parent class
See superclass.

path
The location of a file on a filesystem. Used
to help locate files for opening, executing,
and so forth. Contained in the PATH envi-
ronment variable.

pattern
A sequence of ordinary and special char-
acters that enables a regular expression
engine to locate a string. See regular
expression.

pop
A term related to a stack—a last-in,
first-out (LIFO) data structure. When you
pop an element off a stack, you are remov-
ing the last element first. You can pop ele-
ments off (out of) an array in Ruby.
Compare with push.

push
A term related to a stack—a last-in,
first-out (LIFO) data structure. When you
push an element onto a stack, you are
adding an element onto the end of the
array. You can pop elements off (out of)
an array in Ruby. Compare with pop.

precision
Refers to the preciseness with which a
numerical quantity is expressed. The
Precision module in Ruby enables you to
convert numbers (float to integer, integer
to float).

private
A method that is marked private can only
be accessed, or is only visible, within its
own class. Compare with protected, public.

proc

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Glossary

proc
In Ruby, a procedure that is stored as an
object, complete with context; an object
of the Proc class. See lambda.

protected
A method that is marked protected can
only be accessed or visible within its own
class, or child classes. Compare with pri-
vate, public.

pseudovariable
An object that looks like a variable and
acts like a constant but can’t be assigned a
value.

public
A method that is marked public (which is
the default) is accessible or visible in its
own class and from other classes. Com-
pare with private, protected.

RAA
See Ruby Application Archive.

RDoc
A tool for generating documentation
embedded in comments in Ruby source
code. See http://rdoc.sourceforge.net.

Rails
See Ruby on Rails.

Rake
A build tool written in Ruby with capabili-
ties like make, a predecessor. See
http://rake.rubyforge.org.

random number
With the Kernel#rand or Kernel#srand
methods, Ruby can generate an arbitrary,
pseudo-random number.

range
In Ruby, a way of representing inclusive
(..) and exclusive (...) ranges of objects,
usually numbers. For example, 1..10 is a
range of numbers from 1 to 10, inclusive;
using ... instead of .. excludes the last
value from the range.

rational number
A fraction. In Ruby, rational numbers are
handled via the Rational class.

RoR
Abbreviation for Ruby on Rails. See Ruby
on Rails.

receiver
An object that receives or is the context
for the action that a method performs. In
the method call str.length, str is the
receiver of the length method.

reflection
The ability of a language such as Ruby to
examine and manipulate itself.

regular expression
A concise sequence or pattern of special
characters used to search for strings. See
match.

reserved word
Another name for keyword. Reserved
words such as begin, end, if, else, and so
forth are set aside and have special mean-
ing to the Ruby interpreter.

Ruby Application Archive
A web-based archive for Ruby applica-
tions. Not the same as RubyForge.

RubyForge
A web-based archive for Ruby applica-
tions. Not the same as Ruby Application
Archive.

RubyGems
The premier packing system for Ruby
applications. A RubyGems package is
called a gem. It comes with Ruby (though
you must choose to install it with certain
installation procedures).

Ruby on Rails
A productive, popular web application
framework written in Ruby. Matz, the
inventor of Ruby, has called it Ruby’s
killer app.

setter method
See accessor.

single inheritance
When a class can inherit only one class, as
opposed to multiple inheritance, which
allows a class to inherit from multiple
classes. See multiple inheritance.

http://rdoc.sourceforge.net/
http://rake.rubyforge.org/

XML

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Glossary | 225

singleton
A singleton class is tied to a particular
object, can be instantiated only once, and
is not distinguished by a prefixed name. A
singleton method is tied to the singleton
class.

standard library
A library or collection of Ruby code con-
taining packages that perform specialized
tasks. Some example packages are REXML
for XML processing, and Iconv for charac-
ter set conversion. Online documentation is
available at http://ruby-doc.org/stdlib.

statement
An instruction for a program to carry out.

string
A sequence of objects, usually characters.

substitution
See expression substitution.

superclass
The parent class. A child class is derived
from the parent or superclass. Compare
with child class.

Tcl/Tk
The Tcl scripting language with the Tk
user interface toolkit, Ruby’s built-in GUI
library or system.

ternary operator
An operator that takes three arguments
separated by ? and :, a concise form of
if/then/else. For example, label = length
== 1 ? " argument" : " arguments".

thread
Ruby supports threading. Threading
allows programs to execute multiple tasks
simultaneously (or almost simulta-
neously) by slicing the time on the clock
that runs the computer processor. The
threads in Ruby are operating-system
independent, so threading is available on
all platforms that run Ruby, even if the OS
doesn’t support them.

Unicode
An international character coding system
that allows approximately 65,000 charac-
ters. See http://www.unicode.org.

UTF-8
A character set, based on one to four bytes,
that can describe most characters in human
writing systems. Set with $KCODE = 'n'.
Compare with ASCII.

variable
A name that may be assigned a quantity or
a value. See class variable, global variable,
instance variable, local variable.

XML
An abbreviation for Extensible Markup
Language. A language specified by the
W3C that enables you to create vocabu-
laries using tags and other markup. Ruby
uses REXML, Builder, and libxml to pro-
cess XML.

http://ruby-doc.org/stdlib/
http://www.unicode.org

227

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (array intersection), 99, 100
& (background), 10, 155
&& (and operator), 48
<< method, 4, 62, 99
< operator, 133
* method, 5, 66
@ (instance variable), 29
@@ (class variable), 29
` (backtick or grave), 5
=begin/=end (block comment), 27
{ } (braces), 42, 59

use in Builder, 146
[] (brackets) method, 31
[] class method, 108
: (colon), 43
:title directive, 165
- (difference) array operation, 99
$ (dollar sign), 29
$stdin, $stderr, $stdout, 123
.rb file extension, 3
=~ method, 76
=> (in comments), 5
= (equals sign), 37
== method, 101
== (equals operator), 47, 65
=== (range) method, 86
=== (range operator), 52
! (exclamation point), 37, 93
(hash mark), 27
% (percent) as format specifier, 140
% method, 6
%o field type, 141

+ method, 4, 63
(pound character), 3
? (question mark), 37, 93
?: (ternary operator), 51
; (semicolon), 2
#! (shebang), 3
// (forward slashes), 32
<=> (spaceship operator), 65, 83, 101, 148
[] (square brackets), 95
[]= method, 66, 110
[] method, 63
[] method, 97
_ (underscore), 29
_ _FILE_ _, 27, 197
_ _LINE_ _, 27, 197
| (union array operation), 99

Numerals
37signals, 175
43things and 43places, 180

A
abbreviated assignment operators, 83
abs method, 88
abstract classes and methods, Java, 125
accessor methods, 128–130, 219
acos and acos! methods, 89
acosh and acosh! methods, 89
ActionPack, 178
ActiveRecord, 177, 178
add_element method, 144
Ajax (Asynchronous JavaScript and

XML), 178, 219

228 | Index

ajd method, 151
alias, 26, 196, 219
aliasing methods, 39, 219
alternation syntax (regular expression), 75
ancestors method, 80, 153
anchors syntax (regular expression), 75
and, 26, 197
and (&&) operator, 48
appending to a string, 4
ARGF, 115, 119, 200, 201, 219
argf.rb, 119
ArgumentError, 140
arguments, 219

default arguments (method), 38
variable arguments (method), 38

ARGV (command-line arguments
variable), 6, 115, 118, 201, 219

argv.rb, 118
arrays, 8, 34, 93–106, 219

Array class, 93
array methods, 95, 105
Array pack directives, 205
blocks and, 103
clear, 95
comparing, 101
concatenation, 99
creating, 94–97
elements, 93

accessing, 97–98
changing, 101–103
deleting, 103
referencing of, 93
unique elements, 100

indexes, 93
later Ruby versions and, 105
multidimensional arrays, 104
new, 95
set operations, 99
sorting, 104
stacks, 100
string conversion to via split method, 69

ASCII, 70, 219
asctime, 148
asin and asin! methods, 89
assoc command (Windows), 21
asterisk (*) method, 66
at method, 97
atan and atan! methods, 89
atime method, 121
attr method, 129, 157
attr_accessor method, 129, 157
attr_reader method, 129, 157

attr_writer method, 129, 157
Austen, Jane, 158
autoexec.bat, 22

B
backslash (escape) characters, 198
backticks (`), 5
base class, 125
Basecamp, 175, 180
base-three operator, 51
BEGIN, 26, 59, 196
begin, 26, 53, 55, 162, 197
Benjamin, Dan, 16, 185
Bignum class, 79
bitwise operators, 84
Blinksale, 181
block_given? method, 41
blocks, 8, 40–43, 219

arrays and, 103
procs, 42

converting to, 9
yield statement, 40

braces ({ }), 42
brackets ([]) method, 31
break, 26, 54, 197
Buck, Jamis, 180
bucket analogy, 25
Builder, 145–146

RubyGems require_gem method, 145

C
C extensions, 219
calendar forms, 150
call method, 9, 43
canonical standards, 147
Capistrano, 180
capitalize method, 64, 70
carriage return, 12, 199
Cascading Style Sheet (CSS), 169
case, 26, 197
case conversion on strings, 70–71
case statement, 51
casecmp method, 66
catch method, 162, 164
ceil method, 88
center method, 72
chdir method, 115
child class, 125, 219
chmod masks, 122
chmod method, 121
chomp and chomp! methods, 67

Index | 229

chop and chop! methods, 67
chown method, 122
chr method, 31, 88
civil method, 149
Clark, James, 1, 220
Clark, Mike, 176
class, 26, 197
class << self, 132
class members, 125
class method (Object class), 152
class properties, 125
classes, 9, 23, 125–138, 220

accessor methods, 128–130
child class, 219
class methods, 33, 131–133
class variables, 29, 130, 220
Date class, 149–151
definition, 126
enumerable classes, 220
inheritance, 125, 133
instance variables, 127
interfaces, 125
members, 222
modules and, 134
public, private, and protected

methods, 137
singleton class, 224
superclasses, 125, 225
Time class, 147–149
(see also modules)

clear method, 95, 112
close method, 124
closures (blocks), 42, 220
code blocks, 8
code examples, xi
colon (:), 43
command-line arguments variable, 6
comment! method, 146
Comment.new method, 144
comments, 3, 27, 220

block comments, 27, 220
compact method, 102
Complex class, 80
composability, 1, 220
concatenating arrays, 99
concatenation, 220
conditional expressions, 51, 220
conditional statements, 34, 41, 47, 220

case statement, 51
downto method, 58
else and elsif, 49
for loop, 56

if, 47
loop method, 55
ternary operator, 51
times method, 57
unless and until, 54
upto method, 57
while loop, 52–54

conf.last_value, 153
configure, 15
Conrad, Joseph, 153
constant width font, usage in XHTML, 165
constants, 30, 220

global constants, 201
reflection on, 153

constants method, 88, 153
Coordinated Universal Time (UTC), 148
cos and cos! methods, 89
cosh and cosh! methods, 89
CR+LF, 12
CSS (Cascading Style Sheet), 169
ctime method, 121, 148

D
DATA, 201
data structures, 220
databases, 220
Date class, 149–151

calendar forms, 150
downto method, 149
new method, 149
upto method, 150

DateTime class, 151
Davidson, James Duncan, 176
dd_attribute method, 144
decimal to binary string conversion, 139
decrement operators, 84
def, 8, 26, 35, 197
default, 220
default arguments (method), 38
define_method, 158
defined?, 197
defined? operator, 26
delete method, 68, 103, 111, 120
delete_at method, 103
delete_if method, 111
destructive methods, 37
difference (-), 100
Dir class, 115
Dir.entries mehtod, 116
Dir.mkdir method, 116
Dir.open method, 116
Dir.pwd method, 115

230 | Index

Dir.rmdir methd, 116
directories, 115–117

creating and deleting, 116
Dir class methods, 115

foreach method, 116
directory streams, 116
permissions, setting, 116
(see also files)

directory? method, 121
div method, 82
divmod method, 82
do, 26, 197
documentation using RDoc (see RDoc)
downcase and downcase! methods, 71
downto method, 58, 149
DreamHost, 182
DRY (don’t repeat yourself), 177
dst? method, 148
duck typing, 28
dynamic typing, 28

E
-e option, 7
each method, 8, 40, 70, 103, 109, 116, 158,

220
each_byte method, 31, 70
each_key method, 109
each_pair method, 109
each_value method, 109
elements, 34, 93

(see also arrays)
else, 26, 49, 197
elsif, 26, 49, 197
Embedded Ruby (see ERB)
empty? method, 94, 95, 107
END, 26, 59, 196
end, 26, 35, 56, 126, 197
ensure, 26, 44, 162, 163, 197
entries method, 116
enumerable classes, 220
ENV, 201
environment variables (Windows), 20, 22
eql? method, 65, 101
equals operator (==), 47
equals sign (=), 37
ERB (Embedded Ruby), 171–174, 220

template tags, 172
erf and erfc methods, 89
errors, 220
Erubis, 171
escape characters, 198
Euler number, 88

eval method, 7, 163
exception handling, 44, 162

rescue and ensure clauses, 163
Ruby compared to C++ and Java, 162

exceptions, 221
exclamation point (!), 37, 93
exec command, 4
executable? method, 121
exist? and exists? methods, 121
exit method, 163
exp and exp! methods, 89
exponentiation, 33
expression substitution, 6, 118, 149, 158,

221
expressions, 81, 221

conditional expressions, 220
Extensible Markup Language (see XML)
extensions, file, 221

F
FALSE, 201
false, 26, 197
field types, 139, 142, 206
File class, 115, 123
file descriptors, 123
file extensions, 221
file flags, 117
file masks, 121
file modes, 123, 221
file tests, 207
file type associations, setting in Windows, 21
File.atime, File.ctime, and File.mtime

methods, 121
file.closed? method, 117
File.delete method, 120
File.directory method, 121
File.executable method, 121
File.exist? and File.exists? methods, 121
File.ftype method, 121
File.mtime method, 121
File.new method, 117
File.readable method, 121
File.rename method, 120
File.size and File.size? methods, 121
File.writable method, 121
File.zero? method, 121
fileno method, 124
files, 117–124

ARGF, 115, 119
ARGV, 115, 118
chmod masks, 122
creating, 117

Index | 231

deleting and renaming, 120
existing files, opening, 117
File methods

chown, 122
inquiries using, 120
new, 117

file modes, 117
changing, 121

IO class (see IO class)
owners, changing, 121
URIs, opening, 119
(see also directories)

finite? and infinite? methods, 87
Firewheel Design, 181
first method, 98
Fixnum class, 33, 79
flags, 206
flatten method, 105
Flickr, 186
float, 221
Float class, 79
Float method, 81
floor method, 88
flush method, 124
for, 26, 56, 197
foreach method, 116
format flags, 6
format specifiers, 139
format strings, 139
Fowler, Chad, 176
Fowler, Martin, 180
freeze method, 63
frexp method, 89
Fried, Jason, 175
ftype command (Windows), 21
ftype method, 121
full-stack framework, 177
Fulton, Hal, 1, 14

G
Garrett, Jesse James, 178
gem command, 159–162
general delimited strings, 173, 221
generate scaffold script, 190, 191
getc method, 124
gets method, 7, 55, 124
getter methods, 128
Gettysburg Address, 65
getwd method, 115
global constants, 115, 201
global variables, 29, 221
global_variables method, 153

GMT (Greenwich Mean Time), 148
graphical user interfaces, creating with Tk

(see Tk toolkit)
grave (`) accents, 5
Gregorian and Julian calendars, 150
gregorian method, 151
grouping syntax (regular expression), 75
gsub method, 68
GUI (Graphical User Interface), 221

H
Hansson, David Heinemeier, xi, 175
has_key? method, 109
has_value? method, 109
hash mark (#), 27
hashes, 35, 107–114, 221

accessing, 108
changing, 110
converting to other classes, 113
creating, 107
deleting and clearing, 111
hash code, 221
iterating over, 109
key-value pairs, 107
merging, 110
methods, getting information on, 114
replacing, 112
sorting, 111

Hay Manuscript, 65
headings, formatting in RDoc, 165
Hello, World, 2
helper methods, 137
here documents, 62, 221
hexadecimal conversion, sprintf flag for, 142
hexadecimals, 81, 221
Hibbs, Curt, 186
HiveLogic, 185
hour method, 147
Hunt, Andy, 1, 176
hypot method, 89

I
I/O (Input/Output), 222

I/O modes, 123
id2name method, 44
if, 26, 197
if statement, 34, 47
in, 26, 197
include method, 98, 134
include? method, 109
included_modules method, 80, 152

232 | Index

increment operators, 84
index (array), 93, 221
index method, 64, 98, 105
infinite? method, 87
inheritance, 23, 125, 133, 221

multiple inheritance, 222
single inheritance, 224

initialize method, 126
in-place changes, 37
input and output (see IO class)
insert method, 66, 102
instance, 221
instance variables, 29, 126, 127, 133, 221
instance_methods method, 154
instance_of method, 152
instance_variables method, 153
Instant Rails, 14, 185
instruct! method, 146
Integer class, 28, 79
Integer method, 81
integer? method, 86
Interactive Ruby (see irb)
interfaces, 125
intern method, 44, 74
intersection (&), 99
IO class, 123, 221

standard streams, 123
write method, 140

irb (Interactive Ruby), 12, 33, 81
exception handling, 163
Rails application testing, 179
reflection, 153

is_a? method, 152
ISO 8601, 147

J
Java interfaces, 125
jd method, 151
join method, 102
Julian and Gregorian calendars, 150
julian method, 151

K
Kernel method, 135
Kernel module, 23, 25, 139
Kernel#test, 207
Kernigan, Brian W., 51
Ketelsen, Brian, 185
key? method, 109
keyboard input, programming for, 7
keys, 107–114, 222
keys method, 109

key-value pairs, 107
keywords, 26, 195
kind_of? method, 28, 152
King Lear, 61
King Richard III, 63
Kleene, Stephen, 74
Kuwata, Makoto, 171

L
lambda method, 9, 42, 222
language symbols, 50
last method, 98
ldexp method, 89
length method, 60, 94, 107
LF (linefeed) character, 12
Libxml-Ruby, 143
LIFO, 100
lighttpd server, 185
Lincoln, Abraham, 65
lineno method, 118
Linux, Path environment setup, 20
ljust and rjust methods, 71
load method, 134
load path, 134
local method, 147
local variables, 5, 29, 222
local_variables method, 153
Locomotive, 15, 185
loop method, 55, 222
loops, 222
Lord Jim, 153
lstrip and lstrip! methods, 72

M
Macintosh

Path environment, setup, 20
Ruby installation on Mac OS X

Tiger, 15–17
TextMate, 11

make, 15
Rake, compared to, 180

MatchData class, 76
matches, 222
math

abbreviated assignment operators, 83
classes and modules related to, 79
division, 82
iteration through blocks, 87
math class hierarchies, 80
math functions, 88
math operations, 81
mathn library, 91

Index | 233

methods, 88
operators, 85
(see also numbers)

Math class, 79
Math module, 33, 88
Matrix class, 80
Matsumoto, Yukihiro, 1
Matz, 1
matz.rb, 3
member? method, 109
members, 222
merge methods, 111
merge! method, 111
metaprogramming, 129, 157, 222

define_method, 158
methods, 8, 35–40, 222

accessor methods, 128–130
aliasing of, 39
exclamation point (!) suffix, 93
naming conventions for, 37
private methods, 223
protected methods, 223
public methods, 223
question mark (?) suffix, 93
reflection on, 154
singleton methods, 132

migrations, 179
minutes method, 147
Mistral font, 155
mixin, 134, 222
mjd method, 151
mkdir method, 115, 116
mocks, 179
Model-View-Controller (MVC)

architecture, 177
module, 26, 197
Module class, 129

define_method, 158
included_modules method, 152

modules, 25, 134–136, 222
modulo, 222
modulo method, 82
Mongrel, 14, 187
month method, 147
mtime method, 121
multidimensional arrays, 104
multiple inheritance, 125, 133, 222
MVC (Model-View-Controller)

architecture, 177
MySQL, 185, 189

presence, testing for, 187
web site, 177

N
name collision, 125
name method, 152
nameless functions, 40
namespaces, 135, 222
nan? method, 87
new method, 60, 117, 123, 149

hashes, creating, 107
newline, 199, 223
newline characters, 12
next keyword, 26, 197
next method, 73, 88, 91, 149
next! method, 73
Nicolay version, Gettysburg Address, 65
NIL, 201
nil, 12, 26, 95, 105, 197, 223
nitems method, 105
nonzero? method, 86
not, 26, 49, 197
now method, 147
numbers, 33

classes and modules related to, 79
converting, 81
equality, testing for, 83
math operations, 81
objects and, 79
prime numbers, 91
rational numbers, 90
zero or nonzero values, 86
(see also math)

Numeric class, 33, 79
numeric file descriptor, 123

O
Object class, 25, 125

class method, 152
instance_of? method, 152
methods method, 154
object_id method, 152

Object methods, 154
object_id method, 69, 152
object-oriented programming (OOP), 25,

223
object-relational mapping (ORM), 177, 191
objects, 23, 223
octal, 223
octal prefix, 81
One-Click Installer, 17
OnLamp, 186
OOP (object-oriented programming), 223
open method, 117

234 | Index

OpenURI class, 120, 156
operators, 33, 85, 198, 223, 225
or, 26, 197
ORM (object-relational mapping, 177
ORM (object-relational mapping), 191
Ousterhout, John, 155
output, formatting (see sprintf)
overloading, 223
overriding, 223

P
pack directives, Arrays, 205
package (see RubyGems)
palindromes, reversing, 69
parallel assignment, 30
path, 20, 115, 223
Path environment, setup, 20
path method, 116
PATHEXT environment variable

(Windows), 21
patterns, 223
permission bits, 117
“Permission denied” message, 20
PLATFORM, 201
pop method, 100, 105, 223
PostgreSQL, 177
pound (#) character, 3
precision, 223
Precision class, 80
precision indicators, 140, 141
Precision Information Services, 14
predefined variables, 199–201
Pride and Prejudice, 158
Prime class, 91
prime numbers, 91
primitives, 33
print method, 7, 45
printf method, 6
private, 126, 137, 223
private method, 137
private_instance_methods method, 154
private_methods method, 154
procs (procedures), 9, 42, 224
protected, 137, 224
protected method, 137
protected_instance_methods method, 154
protected_methods method, 154
pseudovariables, 50
public, 137
public method, 137
public methods, 224

public_instance_methods method, 154
public_methods method, 154
push, 223
push method, 100
putc method, 124
puts command, 2

multiplication of text output, 5
puts method, 2, 123, 140
pwd method, 115

Q
question mark (?), 37, 93
quo method, 82

R
rails command, 187
Rails Live, 185
raise method, 162, 163
Rake, 180, 212, 224
rake test_units, 179
Rakefiles, 180
rand method, 135
random numbers, 224
range operators, 52
ranges, 31, 52, 85, 224

dot indicators, 64
Rational class, 80, 90
rational numbers, 90, 224
Rauum, Ryan, 185
.rb file extension, 3
rbfile, 21
RDoc, 13, 45, 164–171, 224

format of output, 165
headings, formatting of, 165
processing files, 169
RDoc options, 209

read method, 116
readable? method, 121
readline, 16
readline method, 124
receiver, 224
redo, 26, 197
reflection, 80, 151–154, 224

on methods, 154
on variables and constants, 153

Regexp class, 76
regular expressions, 32, 67, 74–77, 202, 224

shortcut syntax, 75
reject method, 112
RELAX NG, 1

OpenURI class, 120, 156
operators, 33, 85, 198, 223, 225
or, 26, 197
ORM (object-relational mapping, 177
ORM (object-relational mapping), 191
Ousterhout, John, 155
output, formatting (see sprintf)
overloading, 223
overriding, 223

P
pack directives, Arrays, 205
package (see RubyGems)
palindromes, reversing, 69
parallel assignment, 30
path, 20, 115, 223
Path environment, setup, 20
path method, 116
PATHEXT environment variable

(Windows), 21
patterns, 223
permission bits, 117
“Permission denied” message, 20
PLATFORM, 201
pop method, 100, 105, 223
PostgreSQL, 177
pound (#) character, 3
precision, 223
Precision class, 80
precision indicators, 140, 141
Precision Information Services, 14
predefined variables, 199–201
Pride and Prejudice, 158
Prime class, 91
prime numbers, 91
primitives, 33
print method, 7, 45
printf method, 6
private, 126, 137, 223
private method, 137
private_instance_methods method, 154
private_methods method, 154
procs (procedures), 9, 42, 224
protected, 137, 224
protected method, 137
protected_instance_methods method, 154
protected_methods method, 154
pseudovariables, 50
public, 137
public method, 137
public methods, 224

public_instance_methods method, 154
public_methods method, 154
push, 223
push method, 100
putc method, 124
puts command, 2

multiplication of text output, 5
puts method, 2, 123, 140
pwd method, 115

Q
question mark (?), 37, 93
quo method, 82

R
rails command, 187
Rails Live, 185
raise method, 162, 163
Rake, 180, 212, 224
rake test_units, 179
Rakefiles, 180
rand method, 135
random numbers, 224
range operators, 52
ranges, 31, 52, 85, 224

dot indicators, 64
Rational class, 80, 90
rational numbers, 90, 224
Rauum, Ryan, 185
.rb file extension, 3
rbfile, 21
RDoc, 13, 45, 164–171, 224

format of output, 165
headings, formatting of, 165
processing files, 169
RDoc options, 209

read method, 116
readable? method, 121
readline, 16
readline method, 124
receiver, 224
redo, 26, 197
reflection, 80, 151–154, 224

on methods, 154
on variables and constants, 153

Regexp class, 76
regular expressions, 32, 67, 74–77, 202, 224

shortcut syntax, 75
reject method, 112
RELAX NG, 1

Index | 235

RELEASE_DATE, 201
remainder method, 82
rename method, 120
repeat method, 35
repetition operators, 75
replace method, 112
require method, 10, 134, 135
require_gem method, 145
rescue, 26, 162, 163, 197
reserved words, 26, 196, 224
respond_to? method, 133, 154
retry, 26, 197
return, 26, 197
return values, 36
reverse method, 69, 104
reverse! method, 69
review question answers, 214–218
rewind method, 116
REXML (Ruby Electric XML), 9, 142–145

online documentation and resources, 145
XML documents, creating, 144

RFC 2822, 148
ri (Ruby Information), 45, 164, 170
rindex method, 98, 105
Ritchie, Dennis M., 51
rjust and ljust methods, 71
rmdir method, 116
Robot Co-op, 180
Romeo and Juliet, 61
Roskilde University, 185
round method, 88
rstrip and rstrip! methods, 72
Ruby, 1

installing, 15–22
Linux, 20
Mac OS X Tiger, 15–17
“Permission denied” message, 20
Windows file type associations, 21
Windows install with binaries, 19
Windows, using One-Click

Installer, 17
mailing lists, 14
object-oriented programming, 23
operating system commands, issuing, 4
Ruby interpreter, 195

directory location, 3
version, identifying, 2
web sites, books, and mailing lists, 13

Ruby Application Archive, 14, 224

Ruby Central, 13
ruby command, 3

-e option, 7
Ruby documentation, 45

(see also RDoc)
Ruby on Rails, ix, 1, 161, 175–193, 224

advantages, 176
Ajax and, 178
Capistrano, 180
console testing, 179
convention over configuration, 177
DRY philosophy, 177
environments and testing, 179
full-stack framework, 177
history, 175
hosting, 182
installing, 182–185

additional resources, 185
RubyGems, using, 183

learning, 185–192
resources for, 186
screencasts, 185
tutorial, 186–192

migrations, 179
Mongrel, 187
MVC, 177
rails command, 187
Rake, 180
real-world uses, 180
scaffolding, 190
scripts, 178
validation, 178
WEBrick server, 187
XML and, 177

RUBY_PLATFORM, 201
RUBY_RELEASE_DATE, 201
RUBY_VERSION, 201
RubyForge, 14, 224
RubyGems package utility, 14, 158–162, 224

commands, accessing help on, 159
dependency command, 161
install command, 161
installation, checking for, 159
require_gem method, 145
Ruby on Rails, installing, 183
uninstall command, 162

RubyMate, 11
RuntimeError, 164
Russell, Sean, 145

236 | Index

S
scaffolding, 190

generate scaffold script, 190, 191
scan method, 120
scope, 135, 137
scrape.rb, 119
screen scraping, 119
screencasts, 185
scRubyt toolkit, 119
seconds method, 147
select method, 109
self, 27, 197
semicolon (;), 2
setter methods, 224
shebang (#!), 3
shell commands, inserting output from, 5
shift method, 103
shortcut syntax (regular expressions), 75
sin and sin! methods, 89
single inheritance, 125, 133, 224
singleton classes, 132, 225
singleton methods, 132
singleton_methods method, 154
sinh and sinh! methods, 89
size method, 60, 94, 107
size? method, 121
sleep method, 58
slice and slice! methods, 98
slice method, 63
sonnet_119.txt, 118
sonnet_129, 117
sort method, 104, 111
spaceship operator (<=>), 65, 83, 101, 148
split method, 69, 92
sprintf, 139–142

field types, 139, 142, 206
flag characters, 141
flags, 206
format specifiers (%), 140
precision indicators, 141

sprintf method, 6
SQLite, 177, 185
sqrt and sqrt! methods, 89, 131
square brackets ([]), 63
stacks, 100
standard error, standard output, and

standard input, 123
standard input, 7, 123
standard library, 224
standard streams, 123

statements, 2, 26, 40
conditional statements, 34, 41, 47, 220
statement modifiers, 48, 53

static methods, 131
STDERR, 123, 201
STDIN, 123, 201
STDOUT, 123, 201
store method, 110
strftime method, 58
strings, 30, 60–78, 224

appending to, 4
case conversion, 70–71
comparing, 65

case-insensitive comparisons, 66
concatenating, 63
converting, 74
creating, 60
general delimited strings, 221
here documents, 62
incrementing, 73
iterating over, 70
manipulating, 66–69

arrays, conversion to via split
method, 69

changing all or part, 66
chop, chop!, chomp and chomp!, 67
delete method, 68
gsub method, 68
inserting a string in a string, 66
reverse method, 69
substring substitution, 68

regular expressions and, 74–77
String methods, accessing via, 31, 63–65
string methods, information resources

for, 60
string unpack (String#unpack)

directives, 203
substrings, substitution, 68
unpack directives, 203
whitespace, managing, 71

strings, appending, 4
strip and strip! methods, 72
subscripts, 93
substrings, substitution, 68
succ method, 73, 88, 91, 149
succ! method, 73
sudo, 16, 161, 183
Sunrise (Quarter Horse), 155
super, 27, 197
superclass method, 152
superclasses, 125, 133, 225

Index | 237

swapcase and swapcase! methods, 71
switch statement, compared to case, 51
SwitchTower, 180
symbols, 43
system command, 4, 121

T
Ta-da Lists, 175
tan and tan! methods, 89
tanh and tanh! methods, 89
Tate, Bruce, 186
Tcl/Tk scripting language, 155, 225
tell method, 116
ternary operators, 51, 225
text method, 144
TextDrive, 182
TextMate, 11
then, 27, 197
Thomas, Dave, 1, 14, 164, 186
thread, 225
throw method, 162, 164
Tiger (Mac OS X), 15
Time class, 147–149

local method, 147
now method, 147

time formatting (Time#strftime)
directives, 208

Time.now method, 147
times method, 5, 57, 87
Tk toolkit, 10, 154–157
to_a method, 113
to_f method, 28, 74
to_hash method, 113
to_i method, 124
to_s method, 102, 105, 113, 149
to_sym method, 44, 74
to_xs method, 145
today method, 149
TOPLEVEL_BINDING, 201
transpose method, 105
TRUE, 201
true, 27, 37, 197
try block, 162
type declarations, absence from Ruby, 28
typewriter font, usage in XHTML, 165

U
unary operators, 81
undef, 27, 35, 197
Unicode, 225
union (|), 99

uniq! method, 100
unique elements, 100
unit testing, 177
unless, 27, 54, 197
unshift method, 103
until, 27, 47, 54, 197
upcase and upcase! methods, 71
update method, 111
upto method, 57, 73, 88, 150
URIs, opening, 119
UTC (Coordinated Universal Time), 148
utc? method, 148
UTF-8, 31, 70, 144, 225

V
validate_presence_of method, 178
validation (Rails), 178
value? method, 109
values method, 109
values_at method, 109
variable arguments (method), 38
variables, 5, 28, 225

class variables, 29, 130
command-line arguments variable, 6
global variables, 29, 221
instance variable, 221
instance variables, 29, 126, 133
local variables, 5, 29, 222
parallel assignment, 30
predefined variables, 199–201
reflection on, 153

VERSION, 201
Vervloesem, Koen, 145

W
Waldron, Ryan, 119
Walton, Bill, 186
wday method, 147
web scraping, 119
weblog creation, screencast, 185
WEBrick server, 187
Weirich, Jim, 145, 158, 180
when, 27, 197
while, 27, 197
while loop, 52–54
whitespace, managing, 71
why the lucky stiff, 15
why’s (poignant) guide to Ruby, 15
Windows, 17–22

assoc command, 21
ftype command, 21

238 | Index

Windows (continued)
Path environment, setup, 20
ruby command, 3
ruby file type associations, setup, 21
Ruby installation with One-Click

Installer, 17
writable? method, 121
write method, 140

X
XCode, 16
XHTML, 164–174
XML, 9, 225

Rails and, 177
XML declaration, 144
XML processing, 142–146

Builder, 145–146
REXML (Ruby Electric XML), 142–145

XML documents, creating, 144

XMLDecl.new method, 144
XmlSimple, 143

Y
YAML, 177, 179
yday method, 147
year method, 147
yield, 8, 27, 40, 197

Z
zero? method, 34, 86, 121
ZeroDivisionError, 163
zone (timezone) method, 147

About the Author
Michael Fitzgerald has more than 20 years of experience as a writer and programmer
and describes Ruby as his “favorite language so far.” Michael is also the author of
Learning XSLT, XML Hacks, and Ruby Pocket Reference, and coauthor of XML
Pocket Reference, all published by O’Reilly.

Colophon
The animals on the cover of Learning Ruby are giraffes (Giraffa camelopardalis), the
tallest of all land animals. A giraffe can reach 16 to 18 feet in height and weigh up to
3,000 pounds. Its species name, camelopardalis, is derived from an early Roman
name, which described the giraffe as resembling both a camel and a leopard. The
spots that cover its body act as camouflage in the African savanna. Its long neck and
tough, prehensile tongue allow it to feed in treetops, consuming about 140 pounds
of leaves and twigs daily. And its complex cardiovascular system and 24-pound heart
regulate circulation throughout its tremendous body: in the upper neck, a pressure-
regulation system prevents excess blood flow to the brain when the giraffe lowers its
head to drink, while thick sheaths of skin on the lower legs maintain high extravas-
cular pressure to compensate for the weight of the fluid pressing down on them.

Giraffes travel in herds comprised of about a dozen females, one or two males, and
their young. Other males may travel alone, in pairs, or in bachelor herds. Male
giraffes determine female fertility by tasting the female’s urine to detect estrus. Yet
sexual relations in male giraffes are most frequently homosexual: the proportion of
same-sex courtships varies between 30 and 75 percent. Among females, homosexual
mounting appears to comprise only 1 percent of all incidents. Gestation lasts
between 14 and 15 months, after which a single calf is born. Only 25 to 50 percent of
calves reach adulthood, as the giraffe’s predators—including lions, leopards, hyenas,
and African wild dogs—mainly prey on young.

Giraffes use their long necks and keen sense of smell, hearing, and eyesight to guard
against attacks. They can reach speeds of up to 30 miles per hour and fight off preda-
tors using their muscular hind legs. A single kick from an adult giraffe can shatter a
lion’s skull. Giraffes were once hunted for their skin and tail but are currently a
protected species.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Learning Ruby
	Table of Contents
	Preface
	Who Should Read This Book?
	How This Book Works
	About the Examples
	How This Book Is Organized
	Conventions Used in This Book
	Comments and Questions
	Safari® Enabled
	Acknowledgments

	Ruby Basics
	Hello, Matz
	A Very Short Ruby Program
	Shebang!
	Issue a System Command
	Appending a String
	Multiply
	Inserting a Shell Command
	Using a Variable
	Expression Substitution
	Formatting a String
	The eval Method and -e Option
	Getting Input from the Keyboard
	Methods
	The block
	The each Method
	The proc
	XML
	The Class
	The Tk Toolkit
	Editing and Running Ruby in TextMate

	Interactive Ruby
	Resources
	Installing Ruby
	Installing Ruby on Mac OS X Tiger
	Installing Ruby on Windows with the One-Click Installer
	Installing Ruby on Windows with Binaries
	Installing Ruby on Linux

	Permission Denied
	Associating File Types on Windows
	Review Questions

	A Quick Tour of Ruby
	Ruby Is Object-Oriented
	The Object Class and the Kernel Module

	Ruby’s Reserved Words
	Comments
	Variables
	Local Variables
	Instance Variables
	Class Variables
	Global Variables
	Constants
	Parallel Assignment

	Strings
	Regular Expressions

	Numbers and Operators
	Conditional Statements
	Arrays and Hashes
	Methods
	Return Values
	Method Name Conventions
	Default Arguments
	Variable Arguments
	Aliasing Methods

	Blocks
	The yield Statement
	Procs

	Symbols
	Exception Handling
	Ruby Documentation
	Review Questions

	Conditional Love
	The if Statement
	Using else and elsif
	The Ternary Operator

	The case Statement
	The while Loop
	Give me a break
	unless and until

	The loop Method
	The for loop
	The times Method
	The upto Method
	The downto Method

	Execution Before or After a Program
	Review Questions

	Strings
	Creating Strings
	General Delimited Strings
	Here Documents

	Concatenating Strings
	Accessing Strings
	Comparing Strings
	Manipulating Strings
	Inserting a String in a String
	Changing All or Part of a String
	The chomp and chop Methods
	The delete Method
	Substitute the Substring
	Turn It Around
	From a String to an Array

	Case Conversion
	Iterating Over a String
	downcase, upcase, and swapcase

	Managing Whitespace, etc.
	Incrementing Strings
	Converting Strings
	Regular Expressions
	1.9 and Beyond
	Review Questions

	Math
	Class Hierarchy and Included Modules
	Converting Numbers
	Basic Math Operations
	Division and Truncation
	Equality, Less Than, or Greater Than
	Abbreviated Assignment Operators
	Operators

	Ranges
	Inquiring About Numbers
	Iterating Through Blocks

	More Math Methods
	Math Functions
	Rational Numbers
	Prime Numbers
	Just for Fun

	Review Questions

	Arrays
	Creating Arrays
	Clear the Deck
	Creating an Array with a Block
	There’s an Easier Way
	It Gets Even Easier

	Accessing Elements
	Concatenation
	Set Operations
	Unique Elements
	Blow Your Stack
	Comparing Arrays
	Changing Elements
	As a String
	Using shift and unshift

	Deleting Elements
	Arrays and Blocks
	Sorting Things and About Face
	Multidimensional Arrays
	1.9 and Beyond
	Other Array Methods
	Review Questions

	Hashes
	Creating Hashes
	Accessing Hashes
	Iterating over Hashes
	Changing Hashes
	Merging Hashes
	Sorting a Hash
	Deleting and Clearing a Hash
	Replacing a Hash

	Converting Hashes to Other Classes
	1.9 and Beyond
	Other Hash Methods
	Review Questions

	Working with Files
	Directories
	Looking Inside Directories
	The Directory Stream

	Creating a New File
	Opening an Existing File
	ARGV and ARGF
	Opening a URI

	Deleting and Renaming Files
	File Inquiries
	Changing File Modes and Owner
	The IO Class
	Review Questions

	Classes
	Defining the Class
	Instance Variables
	Accessors
	Class Variables
	Class Methods
	Singletons

	Inheritance
	Modules
	public, private, or protected
	Review Questions

	More Fun with Ruby
	Formatting Output with sprintf
	Processing XML
	REXML
	Builder

	Date and Time
	The Time Class
	The Date Class
	Calendar forms

	Reflection
	Reflection on Variables and Constants
	Reflection on Methods

	Using Tk
	Metaprogramming
	RubyGems
	Exception Handling
	Creating Documentation with RDoc
	RDoc Basics
	Processing Files with RDoc

	Embedded Ruby
	Review Questions

	A Short Guide to Ruby on Rails
	Where Did Rails Come From?
	Why Rails?
	A Full-Stack Framework
	Don’t Repeat Yourself
	Convention over Configuration
	I Want My MVC
	Scripts
	Validation
	Ajax
	Migrations
	Console
	Environments and Testing
	Capistrano
	Rake

	What Have Other Folks Done with Rails?
	Hosting Rails
	Installing Rails
	Using RubyGems to install Rails
	Other Installation Information

	Learning Rails
	Ruby Tutorials and Books

	A Brief Tutorial
	Review Questions

	Ruby Reference
	Ruby Interpreter
	Ruby’s Reserved Words
	Operators
	Escape Characters
	Predefined Variables
	Global Constants
	Regular Expressions
	String Unpack Directives
	Array Pack Directives
	Sprintf Flags and Field Types
	File Tests
	Time Formatting Directives
	RDoc Options
	Rake

	Answers to Review Questions
	Chap�ter�1 Review Questions
	Chap�ter�2 Review Questions
	Chap�ter�3 Review Questions
	Chap�ter�4 Review Questions
	Chap�ter�5 Review Questions
	Chap�ter�6 Review Questions
	Chap�ter�7 Review Questions
	Chap�ter�8 Review Questions
	Chap�ter�9 Review Questions
	Chap�ter�10 Review Questions
	Chap�ter�11 Review Questions

	Glossary
	Index

